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Abstract

We study nonparametric estimation problems for discrete-time stochastic networks of
GeomX/G/∞ queues. We assume that we are only able to observe the external arrival and
external departure processes at the nodes over a stretch of time. Based on such incomplete
information of the system, we aim to construct estimators for the unknown general service
time distributions at the nodes without imposing any parametric condition. We propose
two different estimation approaches. The first approach is based on the construction of a
so-called sequence of differences, and a crucial relation between the expected number of
external departures at a node and specific sojourn time distributions in the network. The
second approach directly utilizes the structure of the cross-covariance functions between
external arrival and departure processes at the nodes. Both methods lead to deconvolution
problems which we solve explicitly. A detailed simulation study illustrates the numerical
performances of our estimators and shows their advantages and disadvantages.
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1. Introduction

The overall primary aim of research in queueing theory is to improve the design and
performance of given real-life stochastic systems. Since in practical applications there are
usually processes or parameters which cannot be observed, there is great interest in statistical
inference for system characteristics depending on incomplete information of the stochastic
networks, such as, for example, idle or busy server periods, the workload processes, or sequences
of the arrival and departure points of customers. In the focus of interest are the service time
distributions at the nodes since they determine the performance, reliability, and efficiency of
the networks. In the IT context Liu et al. (2006, p. 41) formulated this issue as follows: ‘One of
the biggest challenges in modeling complex IT systems using queueing models consists in the
calibration of the queueing network parameters, such as the service requirements (…) at each
station’. Moreover, the statistical analysis of given observations is essential for an appropriate
probability modeling and analysis.

There is interest in both parametric and nonparametric statistical methods for the estimation
of the service time distributions. From the mathematical point of view we are faced with
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complex identification and estimation problems which often lead to inverse problems of decon-
volution. Despite the great need and use for the applications, the statistical theory for queueing
systems has not been well developed yet. Therefore, most of the current applied practice is
focused only on the estimation of the first- and second-order moments of the service processes;
see, e.g. Liu et al. (2006) and Ke and Chu (2006).

To the best of our knowledge, the only published result for the important case of statistical
inference for stochastic networks of two or more nodes where dependencies between the
components have to be taken into consideration is Wichelhaus and Langrock (2012). All
other results in the mathematical literature are for single nodes only. Important contributions to
parametric estimation problems for queues are, among others, the papers Bhat and Subba Rao
(1986/87), Conti (1999), Liu et al. (2006), and Pickands and Stine (1997). For nonparametric
approaches, we cite Bingham and Pitts (1999), Brown (1970), Conti (2002), Hall and Park
(2004), Hansen and Pitts (2006), and Pitts (1994). For a detailed literature overview, we refer
the reader to Wichelhaus and Langrock (2012).

In this paper we consider discrete-time stochastic networks of a finite number of nodes with
infinite server queues, general service time distributions and general batch arrival processes.
We assume that we are only able to observe the external arrivals and external departures of the
indistinguishable customers. Movements in the network are not observable. Direct matching
of arrivals to departures is not possible. Our aim is to construct nonparametric estimators
for the service time distributions at the nodes. These models, apart from being of theoretical
interest, are of wide practical interest, since they can fairly adequately represent several real-life
systems, such as, for example, transfer systems for data packages like integrated service digital
networks, communication systems, nets of nerves in neural science, and production systems.

We propose two estimation approaches which lead to uniform, strongly consistent estima-
tors of the service time distributions at the nodes. The fact that we can recover the basic
characteristics of the networks from the external processes only is nontrivial. Note that, from
the output process of a simple stationary M/M/N system, only the rate of the Poisson arrival
process can be determined; the output process contains no information about the service times
(not even the mean) or the number N of servers at the nodes (for details, see Daley (1976)).
In our first approach we construct a so-called sequence of differences which leads to explicit
relations between conditional sojourn time distributions in the network. We then arrive at
discrete deconvolution problems for the service time distributions under study which we can
solve explicitly. The underlying basic idea first appeared in the case of a single-node queue in
continuous time in Brown (1970). For our second approach, we directly compute the cross-
covariances between adequate external arrival and departure processes. Utilizing the structures
behind, again leads to deconvolution problems which involve the service time distributions
under study. In both cases we prove the uniform strong consistency of the estimators.

We first develop our statistical approaches and present results in the framework of stochastic
networks of two nodes (Sections 2–5). Generalizations to networks with more than two nodes
are shown in Section 6. In a detailed simulation study in Section 7 we compare the estimators
and show their advantages and disadvantages.

We denote the set of positive integers by N := {1, 2, 3, . . . }, and set N0 := N ∪ {0}.
Throughout this paper, we will mostly study nonnegative integer-valued random variables with
probability mass functions f on N0. For our purposes, it will be convenient to define the
corresponding distribution functions F on N0, rather than on R, by F : N0 → [0, 1], k �→∑k

i=0 f (i). Analogously, we call a function F : N0 → [0, 1] a distribution function on N0 if it
is monotonically increasing and limk→∞ F(k) = 1.
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A finite mass function h on N0 is defined by the two conditions h(k) ≥ 0 for all k ∈ N0
and

∑
k∈N0

h(k) < ∞. For two finite mass functions f and g on N0, we define the convolution
(f ∗ g)(·) on N0 by (f ∗ g)(k) := ∑k

l=0f (k − l)g(l) for k ∈ N0. In the case of probability
mass functions f and g, the convolution of the corresponding distribution functions F and G

on N0 is defined by (F ∗ G)(k) := ∑k
i=0(f ∗ g)(i) = ∑k

l=0F(k − l)g(l) for k ∈ N0.

2. Networks of two GeomX/G/∞ queues

Let us consider a stationary, discrete-time stochastic network with two nodes of general
topology. There are external arrival processes A1 = (A1(t))t∈Z and A2 = (A2(t))t∈Z

at nodes 1 and 2, respectively, such that at each time slot t, Ai(t) ≥ 0 indistinguishable
customers arrive and enter node i from the outside, i = 1, 2. Both A1 and A2 are nonnegative,
integer-valued independent and identically distributed (i.i.d.) sequences. The distribution
function of Ai(0) on N0 will be denoted by Fi, i = 1, 2. We assume that E[Ai(0)] <

∞ for i = 1, 2. At each node there are infinitely many servers so that no waiting occurs.
The service times of customers at node i are distributed according to a distribution function
Gi with related probability mass function gi on N0. We assume that, with probability 1, mean
sojourn times at the nodes are finite and customers stay at least one time slot in the network,
i.e.

∑∞
k=0 (1 − Gi(k)) < ∞ and Gi(0) := 0 for i = 1, 2.

Customers finishing their service at the first node either leave the system (with probability
1 − p ∈ (0, 1)) or jump to the second node (with probability p). Analogously, customers
finishing their service at the second node are redirected to the first node (with probability
q ∈ (0, 1)) or leave the system (with probability 1 − q). This means that a customer, once
having entered the system, can possibly obtain an arbitrary number of consecutive service times
at both nodes before leaving the system. We assume that the routeing probabilities p and q are
known. We denote by Di = (Di(t))t∈Z the external departure process at node i, i.e. Di(t) gives
the number of customers leaving the system from node i at time slot t . Note that Di is in general
not an i.i.d. sequence, i = 1, 2. We assume that at each node departures occur before arrivals
take place and that there is no time needed for traveling from one node to another. We prescribe
for all processes and random variables a common underlying probability space (�, F , P). We
assume that all routeing decisions, service times, and arrivals are mutually independent.

We assume that we are able to observe the external input processes A1 and A2, and the
external departure processes D1 and D2 over a stretch of time. The movements of customers
from node 1 to node 2 and vice versa are not observable. Our aim is to estimate the service time
distributions G1 and G2, and the input distributions F1 and F2. Since the arriving groups can
be directly observed, the estimation of the input distributions F1 and F2 will be straightforward.
However, this is not the case for the service time distributions G1 and G2, since we cannot
directly assign the external departures to the external arrivals and measure the individual sojourn
times of customers in the network. In particular, for a customer leaving the system via D1,
we cannot tell if he/she has entered the system via A1 or A2. Thus, at first it is not clear if all
parameters are identifiable from the given observations.

We will concentrate here on the estimation of the service time distribution function G2 at the
second node. Owing to the symmetry of the network considered, the estimation of the service
time distribution function G1 can be carried out in the same manner.

For the analysis of the system we introduce some further notation. For all k ∈ Z, j ∈ N, and
i = 1, 2, we denote the node at which the j th customer, who arrives at node i at time slot k,

leaves the network by the random variable E
(i)
k,j . Moreover, the random variable S

(i)
k,j gives the
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total sojourn time in the system of this specific customer. It is easy to compute

P(E
(1)
0,1 = 1) = 1 − p

1 − pq
and P(E

(2)
0,1 = 1) = (1 − p)q

1 − pq
.

The output processes D1 and D2 can be expressed as follows:

D1(t) =
∞∑

j=1

A1(t−j)∑
l=1

1{S(1)
t−j,l=j, E

(1)
t−j,l=1} +

∞∑
j=2

A2(t−j)∑
l=1

1{S(2)
t−j,l=j, E

(2)
t−j,l=1},

D2(t) =
∞∑

j=2

A1(t−j)∑
l=1

1{S(1)
t−j,l=j, E

(1)
t−j,l=2} +

∞∑
j=1

A2(t−j)∑
l=1

1{S(2)
t−j,l=j, E

(2)
t−j,l=2}.

(1)

The distribution function L1 : N → [0, 1] for the sojourn time in the network of an arbitrary
customer arriving at node 1 under the condition that he/she also leaves at node 1 is defined by

L1(x) := P(S
(1)
0,1 ≤ x | E

(1)
0,1 = 1)

=
∑∞

k=0(pq)k(1 − p)(G1 ∗ (G1 ∗ G2)
∗k)(x)

(1 − p)/(1 − pq)

= (1 − pq)

x∑
k=0

(pq)k(G1 ∗ (G1 ∗ G2)
∗k)(x). (2)

Analogously, the distribution function L2 : N → [0, 1] for the sojourn time of an arbitrary
customer arriving at node 1 under the condition that he/she leaves the system at node 2 is
defined by

L2(x) := P(S
(1)
0,1 ≤ x | E

(1)
0,1 = 2) = (1 − pq)

x∑
k=0

(pq)k((G1 ∗ G2)
∗(k+1))(x).

We define the corresponding probability mass functions l1, l2 : N → [0, 1] by

l1(x) := P(S
(1)
0,1 = x | E

(1)
0,1 = 1) and l2(x) := P(S

(1)
0,1 = x | E

(1)
0,1 = 2) for x ∈ N. (3)

We note that

L2 = L1 ∗ G2 (and l2 = l1 ∗ g2, respectively). (4)

This relation will turn out to be crucial for both approaches in our statistical analysis.

3. Estimation of the input distribution functions and the routeing probabilities

The estimation of the input distribution functions F1 and F2 is straightforward and the next
result directly follows from the Glivenko–Cantelli theorem.

Theorem 1. Let i = 1, 2. For every x ∈ N0, define F̂ i
n(x) := (1/n)

∑n−1
k=0 1{Ai(k)≤x}. Then

F̂ i
n converges almost surely (a.s.) uniformly to Fi , i.e. supx∈N0

|F̂ i
n(x) − Fi(x)| → 0 a.s. as

n → ∞.
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In Section 2 we prescribed for this paper that both routeing probabilities p and q are known.
If only either p or q is known, the statistical analysis done in this paper is still possible since
then an estimator for the other routeing probability can be derived. For example, Lemma 1
below implies that

q = E(D1(0)) − E(A1(0))(1 − p)

E(D1(0))p + E(A2(0))(1 − p)
.

Knowing p, owing to Birkhoff’s ergodic theorem, a strongly consistent estimator for q can then
be constructed in a straightforward way using the empirical means of the observations of the
processes A1, A2, and D1. The resulting estimator for q can then be inserted in place of q in the
estimators for G2 which are constructed in this paper. However, if both probabilities p and q

are unknown, the given observations of the external processes are not sufficient to identify the
routeing probabilities and thus also the service time distributions cannot be estimated.

4. The sequence-of-differences estimator

In this section we present our first estimation method for the service time distribution function
G2 at the second node. For the applicability of the method, we assume that, with probability 1,
there are time slots where no customers enter the system viaA1, i.e. let c1 := P(A1(0) = 0) > 0.

The outline of the method is as follows. We define the sequence of differences (Z1(t))t∈Z as
Z1(t) := t − max{n < t | A1(n) > 0} for t ∈ Z. Here Z1(t) denotes the difference between
the point in time t and the nearest external arrival before t at node 1, and can also be written
as Z1(t) = ∑∞

i=1 i1{A1(t−i)≥1, A1(t−i+1)=0,...,A1(t−1)=0}. Note that the process (Z1(t))t∈Z can
be directly computed from the observations. For an interpretation of Z1, we remark that,
for a customer departing from the system via node j at time point t0, Z1(t0) gives his/her
smallest possible sojourn time in the network under the assumption that he/she has entered the
system via node 1, j = 1, 2. Thus, so to speak, the sequence (Z1(t))t∈Z assigns the observed
departure points at both nodes to the observed arrival points at node 1 in an obviously wrong
way. Surprisingly, it will turn out (see Theorem 2 below) that, for all x ∈ N, the following
explicit relations hold:

E[D1(0)1{Z1(0)≤x}]
E[D1(0)] = 1 − cx

1

(
1 − 1 − p

1 − pq

E[A1(0)]
E[D1(0)]L1(x)

)
(5)

and
E[D2(0)1{Z1(0)≤x}]

E[D2(0)] = 1 − cx
1

(
1 − (1 − q)p

1 − pq

E[A1(0)]
E[D2(0)]L2(x)

)
. (6)

Based on the observation of the processes A1, D1, and D2, consistent estimators for the
ratios on the left-hand sides of the equations can be constructed. This will lead to consistent
estimators for L1(x) and L2(x). Since L2 = L1 ∗ G2 (see (4)), deconvolution methods from
Appendix A can be applied to derive estimators for G2. We start with the expectation of D1.

Lemma 1. The expectation of the external output process D1 at the first node is

E[D1(0)] = 1 − p

1 − pq
(E[A1(0)] + qE[A2(0)]).
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Proof. By Wald’s equation we have

E[D1(0)] = E

[ ∞∑
k=1

A1(−k)∑
j=1

1{E(1)
−k,j =1, S

(1)
−k,j =k} +

∞∑
k=2

A2(−k)∑
j=1

1{E(2)
−k,j =1, S

(2)
−k,j =k}

]

=
∞∑

k=1

E[A1(−k)]P(E
(1)
−k,1 = 1, S

(1)
−k,1 = k)

+
∞∑

k=2

E[A2(−k)]P(E
(2)
−k,1 = 1, S

(2)
−k,1 = k)

= E[A1(0)] 1 − p

1 − pq

∞∑
k=1

P(S
(1)
0,1 = k | E

(1)
0,1 = 1)

+ E[A2(0)] (1 − p)q

1 − pq

∞∑
k=2

P(S
(2)
0,1 = k | E

(2)
0,1 = 1)

= 1 − p

1 − pq
E[A1(0)] + (1 − p)q

1 − pq
E[A2(0)]

= 1 − p

1 − pq
(E[A1(0)] + qE[A2(0)]).

Remark 1. Owing to the symmetry of the system,

E[D2(0)] = 1 − q

1 − pq
(E[A2(0)] + pE[A1(0)]).

Theorem 2. For every x ∈ N, (5) and (6) hold.

The proof of Theorem 2 is lengthy and postponed to Appendix B.
For formal convenience, we define, for every x ∈ N, the abbreviations

H1(x) := 1 − cx
1

(
1 − (1 − p)E[A1(0)]

(1 − pq)E[D1(0)]L1(x)

)

and H2(x) := 1 − cx
1

(
1 − (1 − q)pE[A1(0)]

(1 − pq)E[D2(0)]L2(x)

)
.

Then it follows that E[Dj(0)1{Z1(0)≤x}] = E[Dj(0)]Hj(x) for all x ∈ N and j = 1, 2.

We now construct estimators for the sojourn time distribution functions L1(·) and L2(·).
The first step is the estimation of H1(·) and H2(·).
Lemma 2. For every x ∈ N, we define, for i = 1, 2,

Hi
n(x) :=

⎧⎨
⎩

∑n−1
j=0 Di(j)1{Z1(j)≤x}∑n−1

k=0 Di(k)
if

∑n−1
k=0 Di(k) 
= 0,

0 otherwise.

Then, for all x ∈ N, Hi
n(x) → Hi(x) a.s. as n → ∞ for i = 1, 2.

Proof. We fix an arbitrary x ∈ N. First we remark that the sequence (D1(j)1{Z1(j)≤x})j∈Z

is stationary since, by the model assumptions, the sequence

(A1(t), A2(t), (E
(1)
t,j )j∈N, (E

(2)
t,j )j∈N, (S

(1)
t,j )j∈N, (S

(2)
t,j )j∈N)t∈Z
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is i.i.d and, thus, the distribution of (D1(j)1{Z1(j)≤x})j∈Z does not change by shifting.
Furthermore, ergodicity of the sequence (D1(j)1{Z1(j)≤x})j∈N0 can be proved in the same
manner as Lemma 1 of Brown (1970). Owing to a generalization of Kolmogorov’s 0–1 law, it
is sufficient to show that each event of the tail σ -algebra of (D1(j)1{Z1(j)≤x})j∈N0 is independent
of (D1(j)1{Z1(j)≤x})0≤j≤K for all K ∈ N. This is ensured by the following two facts. At a
time point K there are only P-a.s. finitely many customers in the network since mean sojourn
times at the nodes are finite and the system is in its steady state. It takes only P-a.s. finitely
many time slots until there is an arrival of A1 after the time point K. Hence, Birkhoff’s ergodic
theorem and Theorem 2 yield:

1

n

n−1∑
j=0

D1(j)1{Z1(j)≤x} → E[D1(0)]H1(x) a.s. for n → ∞,

as E[D1(0)] < ∞ due to Lemma 1. Similarly, it follows that (1/n)
∑n−1

k=0 D1(k) → E[D1(0)]
a.s., since (D1(t))t∈N0 is ergodic. This implies that H 1

n (x) → H1(x) a.s. For H 2
n (x), the proof

is similar.

For technical reasons, we now have to ensure that, for every n ∈ N, the estimator for c1 is
greater than 0. Thus, we modify the estimator F̂ 1

n (0) from Theorem 1 as follows.

Lemma 3. Let c1 > 0. For n ∈ N, with some a0 ∈ (0, 1) define

ĉ1
n :=

{
a0 if F̂ 1

n (0) = 0,

F̂ 1
n (0) if F̂ 1

n (0) 
= 0.

Then, it holds that ĉ1
n → c1 a.s. as n → ∞.

Proof. Let B := {ω ∈ � : F̂ 1
n (ω)(0) → c1 as n → ∞}. By Theorem 1 we have P(B) = 1.

We fix an arbitrary ω ∈ B. There is an N(ω) such that |F̂ 1
n (ω)(0) − c1| < c1 for all n ≥ N(ω).

Hence, it holds that F̂ 1
n (ω) > 0 for all n ≥ N(ω) and, thus, ĉ1

n(ω) = F̂ 1
n (ω)(0) for all n ≥

N(ω).

We now note that, for every x ∈ N, with ĉ1
n as defined in Lemma 3,

L̂1
n(x) := (1 − pq)

∑n−1
i=0 D1(i)

(1 − p)
∑n−1

i=0 A1(i)
(1 − (ĉ1

n)
−x(1 − H 1

n (x)))

converges a.s. to L1(x) as n → ∞. Analogously, for every x ∈ N, L̂2
n(x) → L2(x) a.s., where

L̂2
n(x) := (1 − pq)

∑n−1
i=0 D2(i)

(1 − q)p
∑n−1

i=0 A1(i)
(1 − (ĉ1

n)
−x(1 − H 2

n (x))).

Since L1 ∗ G2 = L2 by (4), it remains to construct an estimator for the probability mass
function g2 by use of the deconvolution methods presented in Appendix A.

Definition 1. We define the estimator l̂in for the probability mass function li for x ≥ 1 by

l̂in(x) :=
{

L̂i
n(x) − L̂i

n(x − 1) if L̂i
n(x) − L̂i

n(x − 1) ≥ 0,

0 otherwise,

where l̂in(0) := L̂i
n(0) := 0 for i = 1, 2.
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It follows that l̂in(x) is a consistent estimator for li (x) for all x ∈ N and i = 1, 2.

Lemma 4. There is a nonnegative, integer-valued random function M̂n which converges a.s. to
M := min{x ∈ N : l1(x) > 0} as n → ∞. Furthermore, it holds that l̂1

n(M̂n) > 0 for all n ∈ N.

Note that M = min{x ∈ N : l1(x) > 0} = min{x ∈ N : g1(x) > 0}. The following proof
explicitly shows how the random function M̂n can be constructed.

Proof of Lemma 4. We first note that, since mean service times at the nodes are finite by
assumption, the mean of the conditional sojourn time distribution L1 is finite and, thus, there
is a finite x0 ∈ N with l1(x0) > 0. It is obvious that M ≤ x0. Furthermore, since the estimators
l̂1
n(x) are consistent for all x ∈ N, we can choose an ω ∈ � from a set with probability

mass 1 such that, for all x ∈ N, we have l̂1
n(ω)(x) → l1(x) as n → ∞. We now fix an

arbitrary δ > 0. Then, for all x ∈ N, there is an Nx,δ(ω) such that, for all m, n ≥ Nx,δ(ω), we
have |l̂1

m(ω)(x) − l̂1
n(ω)(x)| < δ. With Nδ(ω) := maxx≤x0 Nx,δ(ω) we define MNδ(ω),δ(ω) :=

min{y ≤ x0 : l̂1
Nδ

(ω)(ω)(y) > δ and l̂1
1/δ(ω)(y) > 0}, where we set min ∅ := x0. Then,

MNδ(ω),δ(ω) ≥ M, since l̂1
Nδ

(ω)(ω)(x) ≤ δ if l1(x) = 0. As δ → 0, we have Nδ(ω) →
∞ and, thus, MNδ(ω),δ(ω) → M as δ → 0. The proof is complete by setting M̂n(ω) :=
MN1/n(ω),1/n(ω).

Remark 2. The second condition l̂1
1/δ(ω)(y) > 0 in the definition of MNδ(ω),δ(ω) in the proof

of Lemma 4 is only needed to guarantee that l̂1
n(M̂n) > 0 for all n ∈ N, which is necessary for

Lemma 5 below.

We can now apply the method of Proposition 1 given in Appendix A to obtain the following
result.

Lemma 5. Recall the definition of M̂n in the proof of Lemma 4. We further define, for n ∈ N,
ŵn(1) := l̂2

n(M̂n + 1)/l̂1
n(M̂n), and ŵn(k) iteratively as

ŵn(k) = l̂2
n(M̂n + k) − ∑k−1

i=1 l̂1
n(M̂n + k − i)ŵn(i)

l̂1
n(M̂n)

, k ∈ N.

Then, it holds that, for all x ∈ N, ŵn(x) → g2(x) a.s. as n → ∞.

Finally, we use Theorem 6 (see Appendix A) to construct an a.s. uniform convergent
estimator.

Theorem 3. Let (ŵn)n∈N be defined as in the preceding lemma. Let (Ŵn)n∈N for all x ∈ N0
be defined as Ŵn(x) = 0 for x = 0 and

∑x
i=1 ŵn(i) for x ∈ N. Then Ŵn(x) converges a.s. to

G2(x) for all x ∈ N0. Moreover, define Ĝ2
n for all x ∈ N0 as Ĝ2

n(x) = min(maxy≤x Ŵn(y), 1).
Then Ĝ2

n converges a.s. uniformly to G2.

Remark 3. For identifiability and estimation of the service time distribution G2 at the second
node, it is sufficient to observe the external processes A1, D1, and D2. Knowledge of the process
A2 is not necessary here. In particular, the key relations (5) and (6) strongly depend via c1 and
Z1(0) on the distribution of the arrival process A1; however, there is no direct influence of the
process A2.

5. The cross-covariance estimator

In this section we present our second estimation method for the service time distribution
function G2. We do not need here the assumption that c1 = P(A1(0) = 0) > 0, but we
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do have to impose the condition that var[A1(0)] ∈ (0, ∞). The second estimation approach
is based on the explicit calculation of the covariance functions between external arrival and
external departure processes of the network. A comparison of the structure of these covariance
functions then directly leads to a deconvolution setting which can be solved with the methods
presented in Appendix A.

We start with the calculation of the cross-covariance functions.

Lemma 6. The cross-covariance function α1 between the external input process A1 and the
external departure process D1 at the first node is, for all k ∈ N, given by

α1(k) = cov[A1(0), D1(k)] = var[A1(0)]l1(k)
1 − p

1 − pq
,

where l1(k) = P(S
(1)
0,1 = k | E

(1)
0,1 = 1), as defined in (3).

Proof. By (1) we have, owing to the mutual independence of the processes A1 and A2,

cov[A1(0), D1(k)] = cov

[
A1(0),

∞∑
j=1

A1(k−j)∑
l=1

1{S(1)
k−j,l=j, E

(1)
k−j,l=1}

]

+ cov

[
A1(0),

∞∑
j=2

A2(k−j)∑
l=1

1{S(2)
k−j,l=j, E

(2)
k−j,l=1}

]

= cov

[
A1(0),

A1(0)∑
l=1

1{S(1)
0,l =k, E

(1)
0,l =1}

]
.

By Wald’s equation, it follows that

cov

[
A1(0),

A1(0)∑
l=1

1{S(1)
0,l =k, E

(1)
0,l =1}

]
= var[A1(0)]P(S

(1)
0,1 = k, E

(1)
0,1 = 1)

= var[A1(0)]P(S
(1)
0,1 = k | E

(1)
0,1 = 1)P(E

(1)
0,1 = 1)

= var[A1(0)]l1(k)
1 − p

1 − pq
.

Lemma 7. The cross-covariance function α2 between the external input process A1 at the first
node and the external departure process D2 at the second node is, for all k ∈ N, given by

α2(k) = cov[A1(0), D2(k)] = var[A1(0)]l2(k)
(1 − q)p

1 − pq
,

where l2(k) = P(S
(1)
0,1 = k | E

(1)
0,1 = 2) as defined in (3).

Proof. The proof is analogous to that of Lemma 6.

The following sample means are strongly consistent estimates due to Birkhoff’s ergodic
theorem (note that A1 is an i.i.d. sequence by assumption, and ergodicity of D1 and D2 can be
shown as in the proof of Lemma 2):

Ā1
n := 1

n

n−1∑
i=0

A1(i), D̄1
n := 1

n

n−1∑
i=0

D1(i), D̄2
n := 1

n

n−1∑
i=0

D2(i).
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With the help of these means, we define the estimators for the cross-covariance functions:

α̂
j
n(k) := 1

n

n−k−1∑
i=0

(A1(i) − Ā1
n)(Dj (i + k) − D̄

j
n), k ∈ N, j = 1, 2.

We have α̂1
n(k) → α1(k) a.s. and α̂2

n(k) → α2(k) a.s. for all k ∈ N.
Now, since l2 = l1 ∗ g2, we derive from Lemma 6 and Lemma 7 that

1 − p

(1 − q)p
α2(k) = α1 ∗ g2(k), k ∈ N.

Since α1(k) ≥ 0 and
∑

k∈N
α1(k) = var[A1(0)](1 − p)/(1 − pq) < ∞, we can apply the

deconvolution techniques fromAppendixA. Hence, we can directly derive a uniformly, strongly
consistent estimator for G2 by performing analogous steps as in Lemma 4, Lemma 5, and
Theorem 3.

We first note that M = min{x ∈ N : l1(x) > 0} = min{x ∈ N : α1(x) > 0}. Therefore, in
analogy to Lemma 4 we can show the following result.

Lemma 8. There is a nonnegative, integer-valued random function M̃n which converges a.s. to
M = min{x ∈ N : α1(x) > 0} as n → ∞. Furthermore, it holds that α̂1

n(M̃n) > 0 for all
n ∈ N.

Next we use the deconvolution techniques (see Proposition 1 given in Appendix A) to obtain
a strongly consistent estimator for g2.

Lemma 9. Define

v̂n(1) := (1 − p)α̂2
n(M̃n + 1)/(1 − q)p

α̂1
n(M̃n)

,

and v̂n(k) iteratively as

v̂n(k) = (1 − p)α̂2
n(M̃n + k)/(1 − q)p − ∑k−1

i=1 α̂1
n(M̃n + k − i)v̂n(i)

α̂1
n(M̃n)

, k ∈ N.

Then it holds that, for all x ∈ N, v̂n(x) → g2(x) a.s. as n → ∞.

Finally, we construct a uniform, strongly consistent estimator for G2 according to Theorem 6
(see Appendix A).

Theorem 4. Let (v̂n)n∈N be defined as in the preceding lemma. Let (V̂n)n∈N for all x ∈
N0 be defined as V̂n(x) = 0 for x = 0 and V̂n(x) = ∑x

i=1 v̂n(i) for x ∈ N. Then V̂n(x) con-
verges a.s. to G2(x) for all x ∈ N0. Moreover, define G̃2

n for all x ∈ N0 as G̃2
n(x) =

min(maxy≤x V̂n(y), 1). Then G̃2
n converges a.s. uniformly to G2.

Remark 4. As in the case of the sequence-of-differences estimator for the estimation of the
service time function G2, observations of only the processes A1, D1, and D2 are sufficient.
Note that α1(·) and α2(·) depend on the distribution function F1, but are independent of F2.

6. Generalizations to networks of more than two nodes

We consider here a stochastic network of J nodes of general topology. Let J̄ :={1, 2, . . . , J }.
Assume that we are given the routeing matrix and observations of the external arrival and external
departure processes at the nodes. The question of this section is: under which conditions is
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the service time distribution at node k identifiable, i.e. under which conditions on the network
topology can we construct a sequence of estimators based on one of the two concepts of this
paper (sequence-of-differences or cross-covariance estimator)?

Let us first specify the model. We consider a discrete-time stochastic network with J nodes
of general topology. As in the preceding sections, we assume that all processes of the system
are defined on a common underlying probability space (�, F , P). At each node i ∈ J̄ there
is an external arrival process Ai = (Ai(t))t∈Z, where Ai is a nonnegative, integer-valued
i.i.d. sequence with the meaning that at each time slot t, Ai(t) ≥ 0 customers arrive and enter
node i from the outside. The distribution function of Ai(0) on N0 will be denoted by Fi.

For technical reasons, with respect to the definition of the service time estimators we further
assume that, for all i ∈ J̄ , E[Ai(0)] < ∞, var[A1(0)] ∈ (0, ∞), and ci := P(Ai(0) = 0) >

0. At each node there are infinitely many servers so that no waiting occurs. The service
times of customers at node i ∈ J̄ are distributed according to a distribution function Gi on
N0 satisfying

∑∞
s=0 (1 − Gi(s)) < ∞ and Gi(0) = 0. After having been served at node i a

customer jumps to node j with probability r(i, j) and leaves the network with probability
r(i, 0) := 1 − ∑J

k=1 r(i, k). We assume that at each node departures occur before arrivals take
place and that there is no time needed for traveling from one node to another. We denote
by Di = (Di(t))t∈Z the external departure process at node i, i.e. Di(t) gives the number of
customers leaving the system from node i at time t. We assume that all routeing decisions,
service times, and arrivals are mutually independent.

Assume that we are able to observe the external input processes Ai (i = 1, 2, . . . , J ) and
the external departure processes Di (i = 1, 2, . . . , J ) over a stretch of time. Fix some node
k ∈ J̄ . The input distribution function Fk may be estimated along the same lines as in Section 3.
We concentrate on the estimation of the service time distribution function Gk here. Denote by
S

(i)
0,1 the total sojourn time of the first customer arriving via Ai at node i at time slot t = 0 and

denote by E
(i)
0,1 the node at which this customer leaves the network.

Theorem 5. Consider a general stochastic network of J nodes. Assume that we have obser-
vations of the external arrival and external departure processes at the nodes over a stretch of
time. The service time distribution at node k ∈ J̄ is identifiable if there exist, for some r ∈ N0,

nodes a0, a1, . . . , ar , d0, d1, . . . , dr ∈ J̄ with ca0 < 1, cav < 1 and r(d0, 0) > 0, r(dv, 0) > 0
for all v = 1, . . . , r, and nodes i1, . . . , is∈ J̄ \ {k} for some s ∈ N0 such that the service time
distributions at the nodes i1, . . . , is are identifiable and, for x ∈ N,

P(S
(a0)
0,1 ≤ x | E

(a0)
0,1 = d0) = K(R)Gi1 ∗ · · · ∗ Gis ∗ Gk ∗ P(S

(a1)
0,1 ≤ · | E

(a1)
0,1 = d1) ∗ · · ·

∗ P(S
(ar )
0,1 ≤ · | E

(ar )
0,1 = dr)(x), (7)

where K(R) is a factor just depending on the entries of the routeing matrix (r(i, j))i,j∈J̄∪{0}.
Moreover, estimators for the service time distribution at node k can then be constructed based
on the concept of sequence-of-differences estimators as well as of cross-covariance estimators.

Proof. First, since we can construct estimators for all Gil , l = 1, . . . , s, the same is true
for the discrete convolution Gi1 ∗ · · · ∗ Gis . Then, on the one hand, analogously to Lemma 6,
it can be shown that, for v = 0, 1, . . . , r,

cov[Aav (0), Ddv (x)] = var[Aav (0)]P(S
(av)
0,1 = x | E

(av)
0,1 = dv)P(E

(av)
0,1 = dv) for x ∈ N.
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The probabilities P(E
(av)
0,1 = dv), v = 0, 1, . . . , r , can be calculated from the routeing topology.

The quantities var[Aav (0)] and cov[Aav (0), Ddv (x)], v = 0, 1, . . . , r , can be estimated from
the observations of the processes Aav and Ddv in a straightforward way. Thus, all terms in (7)
except for Gk can be directly estimated. Furthermore, a consistent estimator for N := min{x ∈
N : h(x) > 0} with h(x) as the probability mass function of

Gi1 ∗ · · · ∗ Gis ∗P(S
(a1)
0,1 ≤ · | E

(a1)
0,1 = d1) ∗ · · · ∗ P(S

(ar )
0,1 ≤ · | E

(ar )
0,1 = dr)(x)

can be constructed as in the proof of Lemma 4. Clearly, N ≥ s+r. Then, the concept of discrete
deconvolution (see Proposition 1 given in Appendix A) yields an estimator for Gk based on
cross-covariances.

On the other hand, for the estimation using sequence-of-differences estimators similarly to
Theorem 2, it can be shown that, for all x ∈ N,

E[Ddv (0)1{Zav (0)≤x}]
= E[Ddv (0)]

[
1 − cx

av
(1 − P

(
E

(av)
0,1 = dv)

E[Aav (0)]
E[Ddv (0)]P(S

(av)
0,1 ≤ x | E

(av)
0,1 = dv)

)]
,

where (Zav (t))t∈Z is the sequence of differences given by Zav (t) := t −max{n < t | Aav (n) >

0}, t ∈ Z, v = 0, 1, . . . , r. Thus, analogously to Section 5, the sojourn times P(S
(av)
0,1 ≤

x | E
(av)
0,1 = dv), v = 0, 1, . . . , r, can be estimated and then, again, the concept of discrete

deconvolution yields an estimator for Gk due to (7).

Example 1. (a) In the case of a single-node system, i.e. J = 1, the crucial relation (7) is just
P(S

(1)
0,1 ≤ x | E

(1)
0,1 = 1) = G1(x), i.e. k = 1, s = 0, r = 0, a0 = d0 = 1, and K(R) = 1.

(b) In the case of the network of two nodes considered in Sections 2–5, the crucial relation (7)
is L2(x) = L1 ∗ G2(x) from (4). Thus, here k = 2, s = 0, r = 1, a0 = a1 = 1, d0 = 2,

d1 = 1, and K(R) = 1.

Example 2. Consider a network of two nodes with just one external arrival and departure
process given by the parameters c1 < 1, c2 = 1, r(1, 0) = 1−p, r(1, 2) = p, and r(2, 1) = 1.

Then a relation like (7) cannot be established. Also, the service time distributions at both nodes
are not identifiable. This is plausible since, based on the observation of the external arrival
and departure process only, there is no way to distinguish between the sojourn times at the two
different nodes.

The preceding example shows that the question of identifiability of nodes in a general
network is highly complex. We were unable to find a general all-encompassing topology of a
network such that a relation like (7) holds. The next corollary gives sufficient conditions on the
routeing topology such that (7) can be established and the service time distribution at node k

is identifiable. These conditions entail rather general routeing topologies of the underlying
networks for which our estimation methods may be applied.

Corollary 1. Consider for a discrete-time network of J nodes the estimation of the service time
distribution function Gk at node k ∈ J̄ . In the following cases there exist appropriate nodes
a0, a1, . . . , ar , d0, d1, . . . , dr , i1, . . . , is∈ J̄ such that relation (7) for Gk holds and, thus, the
distribution function Gk can be estimated.

1. ck < 1 and r(k, 0) > 0, and node k can only be visited once during a customer’s stay in
the network.
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2. r(k, 0) > 0, node k can only be visited once during a customer’s stay in the network, and
there is a node l ∈ J̄ \ {k} such that cl < 1, r(l, k) > 0, and r(l, 0) > 0. Furthermore,
there is no way from node l to node k other than the direct path.

3. ck < 1 and there are nodes l1, . . . , ln ∈ J̄ with n ∈ N such that r(k, l1)r(l1, l2) · · ·
r(ln−1, ln) > 0 and r(ln, 0) > 0 and all Gl1 , . . . , Gln are identifiable. Furthermore,
there is no other path through the network starting at node k and leaving from node ln.

4. r(k, 0) > 0 and there are nodes s1, . . . , sm ∈ J̄ with m ∈ N such that cs1 < 1 and
r(s1, s2)r(s2, s3) · · · r(sm, k) > 0 and all Gs1 , . . . , Gsm are identifiable. Furthermore,
there is no other path through the network starting at node s1 and leaving from node k.

5. There are m, n ∈ N and nodes s1, . . . , sm, l1, . . . , ln ∈ J̄ such that cs1 < 1,

r(s1, s2)r(s2, s3) · · · r(sm, k)r(k, l1)r(l1, l2) · · · r(ln−1, ln) > 0

and r(ln, 0) > 0 and all Gs1 , . . . , Gsm, Gl1 , . . . , Gln are identifiable. Furthermore, there
is no other path through the network starting at node s1 and leaving from node ln.

Proof. The proof is straightforward. For example, in case 2 we directly derive

P(S
(l)
0,1 ≤ x | E

(l)
0,1 = k) = Gk ∗ P(S

(l)
0,1 ≤ x | E

(l)
0,1 = l),

and in case 5,

P(S
(s1)
0,1 ≤ x | E

(s1)
0,1 = ln) = Gs1 ∗ · · · ∗ Gsm ∗ Gk ∗ Gl1 ∗ · · · ∗ Gln,

which are special cases of (7).

Example 3. Consider the network according to Figure 1.
We apply Corollary 1. First, G1, G6, and G9 are identifiable due to criterion 1. According

to 2 or 4 the distributions G2 and G10 are identifiable. Next, G5 and then G4 are identifiable
due to 3, and then G3 is identifiable using criterion 5. The service time distributions at nodes
7 and 8 are not identifiable.

1
p1 2 p2 3 p3

4

A1

D1

A4

D2

8

5

A5

6

A6

D6
7

9

p9

A9
D9

D10 10

Figure 1: Feedforward network of ten nodes.
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7. Simulations and discussions

To outline the efficiency of our proposed estimators and to compare the exactness of their
estimation, we have performed a simulation study using R. In particular, we considered a two-
node network with routeing probabilities p = 0.7 for jumping from node 1 to node 2, and
q = 0.4 for jumping from node 2 to node 1. We concentrated on the estimation of the service
time distribution G2 at the second node. We always set a forerun of 5 ·105 time units, so that we
could assume that our system had practically reached its steady state. The next 106 time units
were used to compute the estimates. Our simulations show that our estimation procedures yield
good results for a wide range of models. We focus here on Bernoulli and Poisson arrivals as
well as on the case of the geometric service time distribution and as a generalization the negative
binomial service distribution. These are the most relevant discrete-time models for applications
and the most frequently studied ones in the literature. First we illustrate the behavior of the
estimators by prototype examples with a balanced ratio between arrival and service rates. Later
on, we study the advantages and disadvantages of our two estimation methods with respect to
variations of the arrival and service parameters involved. Of particular importance here are
the cases of a high arrival rate at node 1 and of large possible service times at node 2. At
the end, we compare our two methods with the so-called B-customer estimator, an elementary
estimator proposed in Ross (1970). We start with two prototype simulation examples presented
in Figure 2. In the left-hand diagram of Figure 1 we present results for arriving Poisson
sequences and geometrically distributed service times at both nodes; in the right-hand diagram
we present results for arriving Poisson sequences at both nodes, negative binomial service times
at the second node, and geometric service times at the first node. For the chosen parameters,
see the figure captions. The results show good performance of both methods. Furthermore, it
can be deduced that the cross-covariance estimator gives more precise estimation results than
the sequence-of-differences estimator.

Next we examine the situation of a high arrival rate at node 1. Note that the arrival process
A2 has no direct influence on the estimators (compare with Remark 3 and Remark 4). For
the left-hand diagram of Figure 3 we chose Bernoulli input distributions and geometric service
distributions. It is well-known that the cross-covariance estimator remains very stable when
there are customers arriving at nearly every time slot at node 1. On the contrary, the sequence-

Actual distribution function
Sequence-of-differences estimator
Cross-covariance estimator

Actual distribution function
Sequence-of-differences estimator
Cross-covariance estimator0.0
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0.3
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0.6
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0.8
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0 2 4 6 7 10 12 14 16 18 20
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0.5
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0.9
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0 2 4 6 7 10 12 14 16 18 20

G2

Figure 2: Left: Poisson inputs λ1 = 0.25 and λ2 = 0.4, and geometric service times s1 = 0.3 and
s2 = 0.4. Right: Poisson inputs λ1 = 0.3 and λ2 = 0.3, with geometric service times s1 = 0.3 at the

first node and negative binomial service times k2 = 3 and s2 = 0.7 at the second node.
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Figure 3: Left: Bernoulli inputs b1 = 0.9 and b2 = 0.2, and geometric service times s1 = 0.3 and
s2 = 0.4. Right: input distributions P(A1(0) = 1) = P(A2(0) = 1) = 0.7 and P(A1(0) = 2) =

P(A2(0) = 2) = 0.3, and geometric service times s1 = 0.3 and s2 = 0.4.
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Figure 4: Left: Bernoulli inputs b1 = 0.01 and b2 = 0.01, and geometric service times s1 = 0.3 and
s2 = 0.01. Right: graphical illustration of Table 1.

of-differences estimator does not perform in a satisfactory way here. The cross-covariance
estimator can even be used in those scenarios where there are customers arriving at every time
slot with probability 1 as the right-hand diagram of Figure 3 shows. There is at each of the
nodes one external arriving customer with probability 0.7 and two external arriving customers
with probability 0.3 per time slot. The service times are geometric. We now turn to the case
of large possible service times at node 2. For the left-hand diagram of Figure 4, we chose
the service times at the second node to be geometric with the small parameter s2 = 0.01.
Both external input sequences are Bernoulli. We see that both estimators give satisfactory
results. However, the computation of the sequence-of-differences estimator was more than
five times faster. The reason for this is that, for the cross-covariance estimator, we have to
compute two cross-covariances for the calculation of each estimated value of the service time
distribution function G2, while the calculation for the sequence-of-differences estimator is
practically based on the computation of two empirical conditional distribution functions. Thus,
especially when calculating the estimators for a large number of values (which is necessary
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Table 1: Bernoulli inputs: b1 = as below, b2 = 0.2, geometric service times: s1 = 0.3, s2 = 0.4.

b1
Estimator

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

B-customer 0.0235 0.0410 0.0779 0.1595 0.2435 0.3043 0.4190 NaN NaN
Sequence-of-differences 0.0172 0.0174 0.0285 0.0338 0.0414 0.0594 0.0949 0.1365 0.2168
Cross-covariance 0.0130 0.0144 0.0134 0.0126 0.0130 0.0142 0.0159 0.0181 0.0223

when the service times at node 2 tend to be rather high), it takes much more computing time to
calculate the cross-covariance estimator than the sequence-of-differences estimator. Hence, the
sequence-of-differences estimator should be preferred in settings which are used to approximate
continuous-time systems.

Next we compare our estimators with the so-called B-customer estimator. The idea of this
estimator goes back to Ross (1970). The construction is as follows. Only customers entering
at the beginning of busy periods are used for estimation (so-called B-customers). Here, an
idle period of a network is the time where there are no customers at all nodes of the system.
To estimate the values L1(x) and L2(x), only those B-customers are used for which the next
arrival into the system (after their arrival) is larger than or equal to x (so-called Bx-customers)
for x ∈ N. Based on (2), estimation for L1(x) is then done in the following way:

1 − pq

1 − p

× #{Bx-customers entering system at node 1 and leaving at node 1 after ≤ x time units}

#{Bx-customers}
.

The estimation of L2 is defined analogously. An estimator for G2 is now constructed by
deconvolution using the relation L1 ∗ G2 = L2 as in case of the sequence-of-differences
estimator. Obviously, the B-customer estimator is the naive estimator one would think of
right away. Clearly, its biggest disadvantage is that it only uses a fraction of the observed data.
However, the B-customer estimator can be defined for nearly every class of queueing networks,
e.g. for GIX/G/k queues with a finite number k of parallel servers.

To compare the accuracy of the three estimators, we calculate the maximal difference between
the respective estimated values and the true distribution function (i.e. the || · ||∞ distance) in the
case of Bernoulli arrivals. To study in particular the influence of the external Bernoulli arrival
parameter b1 at the first node on the estimators, we examined the exactness of the estimators
for different choices of b1 by calculating the mean of the respective maximal differences in ten
runs. As can be seen from the results in Table 1 and Figure 4 (right-hand diagram), all three
estimators give satisfactory results for small arrival parameters b1. This can be explained by
a high number of idle periods, and clear differences between external departure and external
arrival points. We further note that the sequence-of-differences estimator and the B-customer
estimator perform considerably worse when increasing the arrival parameter b1, whereas the
cross-covariance estimator is only slightly influenced. For b1 = 0.8 and b1 = 0.9, we even
obtained no B-customer in the simulated 106 time units.

In summary, we have seen that the cross-covariance estimator is the most accurate
estimator, in particular for frequent external arrivals. The sequence-of-differences estima-
tor is considerably faster in computing than the cross-covariance estimator, especially when
approximating continuous-time settings. Moreover, it is still much more accurate than the
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B-customer estimator. The B-customer estimator can be used in an all-purpose way. How-
ever, much data is needed for its computation and its accuracy is much worse than for the two
more sophisticated estimators.

Appendix A. Mathematical basics

A.1. Discrete deconvolution on NNN

We assume here that we are given consistent estimators for a finite mass function f , as
well as for the convolution f ∗ g of f with a second finite mass function g. The aim is to
find conditions under which it is possible to uniquely identify and determine g. The following
proposition is related to techniques for discrete deconvolution in the deterministic setting used
in, e.g. digital signal processing (see Proakis and Manolakis (1992, pp. 374–376)).

Proposition 1. Let f and g be two finite mass functions on N. Let (�, F , P) be a probability
space, and let (fn)n∈N and (hn)n∈N be sequences of random functions defined on that space
such that, for all x ∈ N, fn(x) → f (x) a.s. as n → ∞ and hn(x) → (f ∗g)(x) a.s. as n → ∞.

Moreover, let Mn be a random sequence on (�, F , P), such that Mn(ω) ∈ N0, fn(Mn(ω)) > 0
for all ω ∈ � and Mn → M a.s. as n → ∞, where M := min {x ∈ N | f (x) > 0} < ∞.
Define gn(1) := hn(Mn + 1)/fn(Mn), and gn(k) iteratively for k ≥ 2 as

gn(k) := hn(Mn + k) − ∑k−1
i=1 fn(Mn + k − i)gn(i)

fn(Mn)
.

Then it holds that, for all x ∈ N, gn(x) → g(x) a.s. as n → ∞.

Proof. We choose an arbitrary ω ∈ � such that the functions Mn(ω), fn(ω)(z), and hn(ω)(z)

converge to the respective values M, f (z), and (f ∗ g)(z) for all z ∈ N. The set of all such ω

has probability 1 since P(
⋂

i∈N
Ai) = 1 when, for all i ∈ N, it holds that P(Ai) = 1. Since, for

n → ∞, Mn(ω) → M < ∞ and Mn(ω) ∈ N0 for all n ∈ N, there is an N(ω) ∈ N such that
Mn(ω) = M for all n ≥ N(ω). Thus, we can conclude that, for every j ∈ N0 with n ≥ N(ω),

fn(ω)(Mn(ω) + j) = fn(ω)(M + j) → f (M + j) as n → ∞, (8)

hn(ω)(Mn(ω) + j) = hn(ω)(M + j) → (f ∗ g)(M + j) as n → ∞.

Hence,

gn(ω)(1) = hn(ω)(Mn(ω) + 1)

fn(ω)(Mn(ω))
→ (f ∗ g)(M + 1)

f (M)
= g(1) as n → ∞.

The convergence of gn(x) for x ∈ N is shown by induction. For this purpose, we pick an
arbitrary x ∈ N and assume that, for all y < x, gn(y) → g(y) a.s. as n → ∞. Hence, with
(8) we have

∑x−1
i=1 fn(Mn + x − i)gn(i) → ∑x−1

i=1 f (M + x − i)g(i) a.s. as n → ∞, and the
convergence of gn(x) to g(x) directly follows.

A.2. Uniform convergence of distribution functions on NNN0

In this subsection we derive a construction principle for random functions that converge
a.s. uniformly to a distribution function on N0. In particular, we show how to construct
a.s. uniformly convergent estimators from a.s. pointwise convergent estimators for a distribution
function on N0. We start with sufficient conditions under which an a.s. pointwise convergent
sequence of random functions is also a.s. uniformly convergent on N0.
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Lemma 10. Let F be a distribution function on N0, and let (Fn)n∈N be a sequence of random
functions on N0 defined on some underlying probability space (�, F , P) such that

1. Fn(x) ≤ 1 for all n ∈ N and x ∈ N0, P-a.s.,

2. Fn(·) is monotonically increasing for all n ∈ N, P-a.s.,

3. Fn(x) → F(x) a.s. as n → ∞ for all x ∈ N0.

Then the sequence (Fn)n∈N converges P-a.s. uniformly to F , i.e.

P

(
sup
x∈N0

|Fn(x) − F(x)| → 0 as n → ∞
)

= 1.

Proof. We choose an arbitrary ω ∈ � for which the conditions 1–3 are fulfilled. Moreover,
let ε be arbitrary in R+. We prove the assertion by showing that there is an N ∈ N such that
supx∈N0

|Fn(ω)(x) − F(x)| ≤ ε for all n ≥ N. First, we find a C ∈ N0 with F(C) > 1 − ε/2,

since F is a distribution function on N0. Then, for each x ∈ {0, 1, . . . , C}, there is, due
to condition 3, a number Nx ∈ N with |Fn(ω)(x) − F(x)| < ε/2 for all n ≥ Nx. With
N := maxx∈{0,1,...,C} Nx , it follows that, for all x ∈ {0, 1, . . . , C}, |Fn(ω)(x) − F(x)| < ε/2
for all n ≥ N. Then, for all n ≥ N , Fn(ω)(C) = F(C)−F(C)+Fn(ω)(C) ≥ F(C)−|F(C)−
Fn(ω)(C)| > 1 − ε/2 − ε/2 = 1 − ε. Thus, due to conditions 1 and 2, 1 − ε < Fn(ω)(x) ≤ 1
for all x ≥ C and n ≥ N. Since 1 − ε < 1 − ε/2 < F(x) ≤ 1 for all x ≥ C, it is
now easy to see that, for all n ≥ N , |Fn(ω)(x) − F(x)| < ε for all x ≥ C. It follows that
supx∈N0

|Fn(ω)(x) − F(x)| ≤ ε for all n ≥ N. Since P(
⋂

i∈N
Ai) = 1, if, for all i ∈ N, we

have P(Ai) = 1, the proof is complete.

Theorem 6. Let F be a distribution function on N0, and let (Fn)n∈N be a sequence of random
functions on N0 defined on some probability space (�, F , P), satisfying Fn(x) → F(x) a.s. as
n → ∞ for all x ∈ N0. Let Gn : N0 → [0, 1] be defined as Gn(x) := min(maxy≤x Fn(y), 1).

Then the sequence (Gn)n∈N converges P-a.s. uniformly to F .

Proof. We show that (Gn)n∈N satisfies the assumptions of Lemma 10. The first two
conditions are obvious. For the proof of 3, we observe that, for all x ∈ N0,∣∣∣ max

y≤x
Fn(y) − F(x)

∣∣∣ =
∣∣∣ max
y∈{0,1,...,x} Fn(y) − max

y∈{0,1,...,x} F(y)

∣∣∣ ≤ max
y∈{0,1,...,x} |Fn(y) − F(y)|.

By assumption we have |Fn(ω)(y) − F(y)| → 0 as n → ∞ for all ω in some set Ay with
P(Ay) = 1. We conclude that, for all ω ∈ A0∩A1∩· · ·∩Ax : maxy≤x |Fn(ω)(y) − F(y)| → 0
as n → ∞. Thus, for all x ∈ N0, Gn(x) → min(F (x), 1) = F(x) a.s. as n → ∞.

Appendix B. Proof of Theorem 2

We show (5). The proof of (6) proceeds analogously. We begin by splitting the following
expectation into two terms:

E[D1(0)1{Z1(0)≤x}] = E

[( ∞∑
j=1

A1(−j)∑
k=1

1{S(1)
−j,k=j, E

(1)
−j,k=1}

)
1{Z1(0)≤x}

]

+ E

[( ∞∑
l=2

A2(−l)∑
m=1

1{S(2)
−l,m=l, E

(2)
−l,m=1}

)
1{Z1(0)≤x}

]
. (9)
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We consider the two terms in (9) separately. Owing to the mutual independence of A1, A2, and
the sequences of service times, the second term of (9) can be written as

E

[( ∞∑
l=2

A2(−l)∑
m=1

1{S(2)
−l,m=l, E

(2)
−l,m=1}

)
1{Z1(0)≤x}

]

= E

[ ∞∑
l=2

A2(−l)∑
m=1

1{S(2)
−l,m=l, E

(2)
−l,m=1}

]
P(Z1(0) ≤ x). (10)

Furthermore, we obtain P(Z1(0) ≤ x) = 1−P(A1(−x) = 0, A1(−x+1) = 0, . . . , A1(−1) =
0) = 1 − cx

1 . Moreover, by the monotone convergence theorem and Wald’s equation,

E

[ ∞∑
l=2

A2(−l)∑
m=1

1{S(2)
−l,m=l, E

(2)
−l,m=1}

]
= E[A2(0)]P(E

(2)
0,m = 1)

∞∑
l=2

P(S
(2)
−l,m = l | E

(2)
−l,m = 1)

= (1 − p)q

1 − pq
E[A2(0)].

Hence, (10) reads

E

[( ∞∑
l=2

A2(−l)∑
m=1

1{S(2)
−l,m=l, E

(2)
−l,m=1}

)
1{Z1(0)≤x}

]
= (1 − p)q

1 − pq
E[A2(0)](1 − cx

1 ). (11)

For the first term in (9), we fix an arbitrary 1 ≤ i ≤ x and calculate

E

[( ∞∑
j=1

A1(−j)∑
k=1

1{S(1)
−j,k=j, E

(1)
−j,k=1}

)
1{Z1(0)=i}

]

= P(Z1(0) = i)

× E

[ ∞∑
j=1

A1(−j)∑
k=1

1{S(1)
−j,k=j, E

(1)
−j,k=1}

∣∣∣∣ A1(−1) = 0, . . . , A1(−i + 1) = 0, A1(−i) > 0

]
.

(12)

Obviously, it holds that P(Z1(0) = i) = (1 − c1)c
i−1
1 . We split the second factor of (12):

E

[ ∞∑
j=1

A1(−j)∑
k=1

1{S(1)
−j,k=j, E

(1)
−j,k=1}

∣∣∣∣ A1(−1) = 0, . . . , A1(−i + 1) = 0, A1(−i) > 0

]

= E

[ i−1∑
j=1

A1(−j)∑
k=1

1{S(1)
−j,k=j, E

(1)
−j,k=1}

∣∣∣∣ A1(−1) = 0, . . . , A1(−i + 1) = 0, A1(−i) > 0

]

+ E

[A1(−i)∑
k=1

1{S(1)
−i,k=i, E

(1)
−i,k=1}

∣∣∣∣ A1(−1) = 0, . . . , A1(−i + 1) = 0, A1(−i) > 0

]

+ E

[ ∞∑
j=i+1

A1(−j)∑
k=1

1{S(1)
−j,k=j, E

(1)
−j,k=1}

∣∣∣∣ A1(−1) = 0, . . . , A1(−i + 1) = 0, A1(−i) > 0

]

= E

[A1(−i)∑
k=1

1{S(1)
−i,k=i, E

(1)
−i,k=1}

∣∣∣∣ A1(−i) > 0

]
+ E

[ ∞∑
j=i+1

A1(−j)∑
k=1

1{S(1)
−j,k=j, E

(1)
−j,k=1}

]
. (13)
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We calculate the second term in (13):

E

[A1(−i)∑
k=1

1{S(1)
−i,k=i,E

(1)
−i,k=1}

∣∣∣∣ A1(−i) > 0

]
=

E

[∑A1(−i)
k=1 1{S(1)

−i,k=i, E
(1)
−i,k=1}1{A1(−i)>0}

]
P(A1(−i) > 0)

= E[A1(0)]P(S
(1)
−i,1 = i, E

(1)
−i,1 = 1)

1 − c1

= 1

1 − c1
E[A1(0)] 1 − p

1 − pq
P(S

(1)
0,1 = i | E

(1)
0,1 = 1).

(14)

Moreover, the third term in (13) can be written as

E

[ ∞∑
j=i+1

A1(−j)∑
k=1

1{S(1)
−j,k=j, E

(1)
−j,k=1}

]

= E

[ ∞∑
j=1

A1(−j)∑
k=1

1{S(1)
−j,k=j, E

(1)
−j,k=1}

]
− E

[ i∑
j=1

A1(−j)∑
k=1

1{S(1)
−j,k=j, E

(1)
−j,k=1}

]

= 1 − p

1 − pq
E[A1(0)] − E[A1(0)] 1 − p

1 − pq

i∑
j=1

P(S
(1)
−j,1 = j | E

(1)
−j,1 = 1)

= 1 − p

1 − pq
E[A1(0)](1 − P(S

(1)
0,1 ≤ i | E

(1)
0,1 = 1)). (15)

Inserting (14) and (15) into (13) yields

E

[ ∞∑
j=1

A1(−j)∑
k=1

1{S(1)
−j,k=j, E

(1)
−j,k=1}

∣∣∣∣ A1(−1) = 0, . . . , A1(−i + 1) = 0, A1(−i) > 0

]

= 1

1 − c1
E[A1(0)] 1 − p

1 − pq
P(S

(1)
0,1 = i | E

(1)
0,1 = 1)

+ 1 − p

1 − pq
E[A1(0)](1 − P(S

(1)
0,1 ≤ i | E

(1)
0,1 = 1))

= 1 − p

1 − pq
E[A1(0)]

(
1 − P(S

(1)
0,1 ≤ i | E

(1)
0,1 = 1) + 1

1 − c1
P(S

(1)
0,1 = i | E

(1)
0,1 = 1)

)
.

Furthermore, inserting the preceding equation into (12) gives

E

[( ∞∑
j=1

A1(−j)∑
k=1

1{S(1)
−j,k=j, E

(1)
−j,k=1}

)
1{Z1(0)=i}

]

= (ci−1
1 (1 − c1))

1 − p

1 − pq
E[A1(0)]

×
(

1 − P(S
(1)
0,1 ≤ i | E

(1)
0,1 = 1) + 1

1 − c1
P(S

(1)
0,1 = i | E

(1)
0,1 = 1)

)

= ci−1
1

1 − p

1 − pq
E[A1(0)]

× ((1 − c1) − (1 − c1)P(S
(1)
0,1 ≤ i | E

(1)
0,1 = 1) + P(S

(1)
0,1 = i | E

(1)
0,1 = 1))
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= 1 − p

1 − pq
E[A1(0)]

× (ci−1
1 (1 − P(S

(1)
0,1 ≤ i − 1 | E

(1)
0,1 = 1)) − ci

1(1 − P(S
(1)
0,1 ≤ i | E

(1)
0,1 = 1))).

Summing over all 1 ≤ i ≤ x yields

E

[( ∞∑
j=1

A1(−j)∑
k=1

1{S(1)
−j,k=j,E

(1)
−j,k=1}

)
1{Z1(0)≤x}

]

= 1 − p

1 − pq
E[A1(0)]

×
(x−1∑

i=0

ci
1(1 − P(S

(1)
0,1 ≤ i | E

(1)
0,1 = 1)) −

x∑
i=1

ci
1(1 − P(S

(1)
0,1 ≤ i | E

(1)
0,1 = 1))

)

= 1 − p

1 − pq
E[A1(0)][1 − cx

1 (1 − P(S
(1)
0,1 ≤ x | E

(1)
0,1 = 1))].

Inserting the preceding equation and (11) into (9) gives the result with Lemma 1:

E[D1(0)1{Z1(0)≤x}]
= 1 − p

1 − pq
E[A1(0)][1 − cx

1 (1 − P(S
(1)
0,1 ≤ x | E

(1)
0,1 = 1))]

+ 1 − p

1 − pq
qE[A2(0)](1 − cx

1 )

= (1 − cx
1 )

[
1 − p

1 − pq
E[A1(0)] + 1 − p

1 − pq
qE[A2(0)]

]

+ 1 − p

1 − pq
E[A1(0)]cx

1P(S
(1)
0,1 ≤ x | E

(1)
0,1 = 1)

= E[D1(0)](1 − cx
1 ) + E[D1(0)] (1 − p)E[A1(0)]

(1 − pq)E[D1(0)]c
x
1P(S

(1)
0,1 ≤ x | E

(1)
0,1 = 1)

= E[D1(0)]
[

1 − cx
1

(
1 − (1 − p)E[A1(0)]

(1 − pq)E[D1(0)]L1(x)

)]
.
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