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The Algebraic de Rham Cohomology of
Representation Varieties

Eugene Z. Xia

Abstract. _eSL(2,C)-representation varieties of punctured surfaces form natural families param-
eterized by monodromies at the punctures. In this paper, we compute the loci where these varieties
are singular for the cases of one-holed and two-holed tori and the four-holed sphere. We then com-
pute the de Rham cohomologies of these varieties of the one-holed torus and the four-holed sphere
when the varieties are smooth via the Grothendieck theorem. Furthermore, we produce the explicit
Gauß-Manin connection on the natural family of the smooth SL(2,C)-representation varieties of
the one-holed torus.

1 Prelude

Let Σ = Σg ,m be a compact oriented surface of genus g with m punctures C =
{C1 , . . . ,Cm}. Denote by π = π1(Σ) its fundamental group. Let G be a reductive
complex algebraic group and Hom(π,G) the space of homomorphisms (representa-
tions) from π to G. Hom(π,G) inherits a variety structure from G, and G acts on
Hom(π,G) by equivalence of representations (conjugation)

G ×Hom(π,G) Ð→ Hom(π,G), (g , ρ) z→ gρg−1 .

Denote by
M(G) = Hom(π,G)/G

the categorical quotient of equivalent representations. Fix a conjugacy class C i ⊂ G
for each puncture Ci and let C = {C1 , . . . ,Cm}. Let

HomC(π,G) = { ρ ∈ Hom(π,G) ∶ ρ(Ci) ∈ C i , for 1 ≤ i ≤ m} .

_eG-action preserves HomC(π,G), and the representation variety is the categorical
quotient

MC(G) = HomC(π,G)/G .

_e representation variety MC(G) is of great interest because it is the (coarse)
moduli space of integrable G-connections on Σg ,m ; see [4, 5]. Fix G = SL(2,C) and
let

M =M(SL(2,C)), MC =MC(SL(2,C)).
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_e Algebraic de Rham Cohomology of Representation Varieties 703

As the conjugacy classes in C vary in G, the moduli spacesMC vary; that is, the vari-
etiesMC form a family parameterized byC. In this paper, we ûrst identify the singular
loci for the cases of Σ1,1, Σ1,2, and Σ0,4.

In the cases of Σ1,1 and Σ0,4, theMC ’s are 2-dimensional. In these two cases, their
homologies have been calculated via topological methods [9]. A remarkable theorem
of Grothendieck [11] states that the hypercohomology of the algebraic de Rham com-
plex of a smooth variety computes its smooth de Rham cohomology. _is provides an
algebraic method for computing H∗

dR(MC). We then carry out the computations for
the representation varieties for these two cases. _ere are pure algorithmic approaches
to these problems; however, these generalmethods tend to overwhelm computers; see
[18, 19, 22]. We compute our results directly while taking advantage of the computer
resources available, especially Macaulay2 [10].

_ese families have natural integrable connections, namely, the Gauß-Manin con-
nections [15]. We compute this connection explicitly for the family of representation
varieties of Σ1,1.

2 Generalities

2.1 Smooth Varieties and their Cohomologies

Let X be a smooth algebraic variety over C with structure sheaf OX . Denote by
(Ω●

X , d) the algebraic de Rham complex of X:

(Ω●

X , d)∶Ω0
X

d0Ð→ Ω1
X

d1Ð→ ⋅ ⋅ ⋅

We drop the subscript on d when the context is clear. A remarkable theorem of
Grothendieck [11] states the following.

_eorem 2.1 (Grothendieck) _e (hyper-)cohomologies of (Ω●

X , d) coincide with the
smooth de Rham cohomologies of X.

2.2 Relative de Rham Complex and Cohomologies

We begin by brie�y introducing the algebraic de Rham (hyper-)cohomology. _e
standard references for homological algebra and hypercohomology in particular are
[12], [8, §III.7.14], and [23, §5.7].

Let Y → Spec(C) be a smooth C-variety and f ∶X → Y a smooth Y-variety. De-
note by f ∗∶OY → OX the corresponding morphism between the structure sheaves.
From these come the three de Rham complexes [13, §2.8]]:

(Ω●

X , d), (Ω●

Y , d), (Ω●

X/Y , d).

Each complex is associated with their respective (hyper-)cohomologies. _e relative
de Rham cohomologies associated with (Ω●

X/Y , d) are cohomologies of OY -sheaves

Hi ∶=Hi(X) ∶= R i f∗(Ω●

X/Y).
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Let Φ∶ S → Y be a �at morphism. _en by base extension, we obtain the S-scheme
Φ∗(X) and its associated de Rham complex.

Proposition 2.2 Φ∗(Hi) ≅Ð→ R i( f ○Φ)∗(ΩΦ∗(X)/S).

Proof See [13, Proposition 5.2].

In particular, this is true for localization at a closed point P ∈ Y , i.e., for Φ∶YP → Y .
Let C = k(P) be the residue ûeld at the closed point P and

ϕ∶Spec(k(P)) Ð→ Y .

_en we obtain the S-scheme U = ϕ∗(X) by base extension and the associated de
Rham complex (Ω●

U , d). Denote by H● the de Rham cohomologies of U .

2.3 The Gauß–Manin Connection

Assume f to be smooth. _en there is an exact sequence

0Ð→ OX ⊗ f ∗ Ω1
Y Ð→ Ω1

X Ð→ Ω1
X/Y Ð→ 0.

_is gives rise to a ûltration F on Ω●

X :

F i = im(Ω●−i
X ⊗ f ∗ Ω i

Y
∧Ð→ Ω●

X).
_e (E1 , d1)pair of the resulting spectral sequence satisûes E p,q

1 ≅ Ωp
Y⊗ f ∗H

q ; see [15].
_e Gauß–Manin connection [15] on Hq is the diòerential ∇ = d0,q1 in the following
complex

0Ð→Hq d0,q1Ð→ Ω1
Y ⊗ f ∗ H

q d 1,q
1Ð→ Ω2

Y ⊗ f ∗ H
q Ð→ ⋅ ⋅ ⋅ .

3 Singular and Smooth Varieties

For the rest of the paper, unless otherwise speciûed, we assume all varieties are aõne
over C.

3.1 Rings, Modules, and Affine Varieties

Denote by x the set {x1 , x2 , . . . , xn} and O ≅ C[x], the coordinate ring of Cn and by
(Ω● , d) the algebraic de Rham complex over Spec(C[x]). Let a ∈ Zn

≥0. We will use
the standard notation

∣a∣ ∶=
n

∑
i=1
a i , xa ∶=

n

∏
i=1

xa ii .

Let N = { j ∶ 1 ≤ j ≤ n} be the ordered index set of n elements. For an ordered
subset K ⊆ N , write dxK for ∧ j∈Kdx j . _en Ω i is generated as an O-module by
{dxK ∶ ∣K∣ = i}.

Deûnition 3.1 Let w ∈ Ω i .
(i) Denote by ∂ j the diòerential operator ∂

∂x j
.

(ii) w is a monomial form of degree ∣a∣ if w = xadxK .
(iii) deg(w) denotes the maximum degree of the monomial forms in w.
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Let I = (ϕ i ∶ 1 ≤ i ≤ k) ⊆ O be the (ûnitely generated) ideal of deûnition of U ,
which is to say that U = Spec(OU) with

(3.1) 0Ð→ I Ð→ OÐ→ OU Ð→ 0.

_is induces an inclusion ι∶U → Cn .

Remark 3.2 For any module M, we will always use elements of M to denote ele-
ments of quotients of M when contexts are clear.

Remark 3.3 _emap

P∶Ω0 Ð→ Ωn , f z→ f dxN

is an O-module isomorphism.

3.2 Gröbner Basis and Singularity

Let F be a free O-module and let W be a complete order on the monomials of F
[§15, [6]]. For any v ,w ∈ F, we writeW(v) > W(w) if the leading monomial of v is
greater than the leadingmonomial ofw according to the orderW . Amonomial order
corresponds to a weight matrix, and we do not distinguish the two [2, §2.4].

Deûnition 3.4 ([6, §16]) Let J ⊆ O be the ideal generated by the c × c minors of
the Jacobian [∂ jϕ i], where 1 ≤ j ≤ n and c is the codimension of I (U). _e Jacobian
ideal of I is J(I) ∶= I + J ⊆ O.

Proposition 3.5 ([6, §16]) U is smooth if and only if J(I) = O.

Hence, one can determine whether U is smooth by computing a Gröbner basis JG
for J(I).

Remark 3.6 Let w be a monomial form. _en either

dw = 0 or deg(w) = deg(dw) + 1.

Deûnition 3.7 Amonomial orderW onΩ i is degree-modiûed if deg(η2) > deg(η1)
implies W(η2) >W(η1).

IfW is a monomial order on Ω0, then W induces a monomial order on Ωn and
vice versa, via P: W(xa) ↔ W(P(xa)). With respect to P, our order will always
satisfyW(w) >W(v) if and only ifW(P(w)) >W(P(v)) (see Remark 3.3).

4 Computing Algebraic de Rham Cohomology

Designing eòective algorithms to compute algebraic de Rham cohomologies for
smooth Noetherian varieties is an interesting problem. _ere is a general algorithm
for smooth projective varieties [22]. For the aõne case, there is a general algorithm to
compute the upper bounds of the Betti numbers [19]. As is typical with thesemethods,
they depend on the non-commutative Gröbner basis computation and the computa-
tional complexity is o�en large. _is section describes how to explicitly compute the
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top algebraic de Rham cohomology (Hdim(U)) of a smooth aõne variety correspond-
ing to a principal ideal domain.

We begin by recalling the inclusion morphism ι∶U → Cn . _e ûrst thing to notice
is that coherent sheaves on aõne varieties are acyclic. _is implies that hypercoho-
mology reduces to cohomology of complexes.

Corollary 4.1 Suppose U is aõne. _en the hypercohomologies of the algebraic de
Rham complex (Ω●

U , d) are

Hi ∶= Hi(U) ∶= ker(d i)
im(d i−1)

.

Deûne h i ∶= dim(Hi).

4.1 Algebraic de Rham Cohomology

Again, let I ⊆ O be the ideal of deûnition of U and let l = dim(U). From se-
quence (3.1), we obtain an exact sequence of O-modules where Q is the quotient

dI ∧Ω●−1 Ð→ Ω●
projÐ→ Q● Ð→ 0.

Pulling back this sequence by ι, we have

Ω●

U = ι∗(Q●) = OU ⊗ι∗ Q●

which is both anO- and anOU -module. We obtain the exact sequence ofO-modules

dI ∧Ω●−1 + IΩ● Ð→ Ω● Ð→ Ω●

U Ð→ 0.

Deûnition 4.2 For two i-forms w1 ,w2, write w1 ∼ w2 (cohomologous) if w1 =
w2 + du for some (i − 1)-form u.

Remark 4.3 Cn is (de Rham) acyclic.

Remark 4.4 d is notO-linear, so it is important to distinguishC-linear morphisms
and O-morphisms.

4.2 The Top Cohomology

Assume U to be smooth of dimension l for the rest of this section. _en Ω l+1
U = 0

and every form in Ω l
U is closed. Hence, we have the C-linear commutative diagram

in Figure 1 with exact rows. _e up arrows are projections. _is means that we obtain
a rather simple set of generators (compare [19, 20]).

Proposition 4.5 _e cohomology Hl is generated by the monomials

{ p(xadxK) ∶ a ∈ Zn
≥0 , K ⊆ N , ∣K∣ = l} .

Lemma 4.6 For any j,

d(dI ∧Ω j−1) = dI ∧ dΩ j−1 ⊆ d(IΩ j).
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dΩ l−1
U
� � // Ω l

U
// Hl // 0

dΩ l−1 + IΩ l + dI ∧Ω l−1 � � //

OO

Ω l p //

OO

Hl // 0

Figure 1

Proof _e ûrst equality is trivial. Let du ∧ dw ∈ dI ∧ dΩ j−1. _en udw ∈ IΩ j and

d(u ∧ dw) = dh ∧ dw + ud2(w) = du ∧ dw .

4.3 Principal Ideals and Codimension-one Subvarieties

_e smooth representation varieties of Σ1,1 and Σ0,4 are two-dimensional, deûned by
principal ideals I ⊂ C[x] (with n = 3) and their top de Rham cohomology is Hn−1.
For this subsection, we consider the case of l = n−1. SinceCn is acyclic and Ωn+1 = 0,

d∶Ωn−1 Ð→ Ωn

is onto, and a form in Ωn−1 is closed if and only if it is exact. _is implies that a form
w ∈ Ωn−1

U is exact if and only if dw = 0 in Ωn . _is, together with Remark 3.3 and
Lemma 4.6, extend Figure 1 to the following commutative diagram with exact rows:

dΩn−2
U
� � // Ωn−1

U
// Hn−1 // 0

dΩn−2 + IΩn−1 + dI ∧Ωn−2 � � //

d
��

OO

Ωn−1 p //

d
��

OO

Hn−1 // 0

d(IΩn−1) �
� // Ωn q // Hn−1 //// 0.

Figure 2

5 Free Groups and their SL(2,C)-representation Varieties

_e fundamental group of the one-holed torus is a free group of two generators, while
those of the four-holed sphere and the two-holed torus are free groups of three gener-
ators. _e traces of elements in SL(2,C) are SL(2,C)-conjugate invariant. _erefore,
the moduli spaces M andMC have trace coordinates. Moreover conjugacy classes of
SL(2,C) are characterized by traces if we remove the identity class {I}. In this section,
we introduce the trace coordinates for the free groups of two and three generators. For
a detailed and excellent exposition, see [7].
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5.1 The Free Group on two Generators

Let F2 = ⟨F1 , F2⟩ be the free group on two generators. For ρ ∈ Hom(F2 , SL(2,C)), let
z1 = tr( ρ(F1)) , z2 = tr( ρ(F2)) , z12 = tr( ρ(F1F2)) .

_en the representation variety is M = C3 with O = C[z], where z = {z1 , z2 , z12}.

5.2 The Free Group on Three Generators

LetF3 = ⟨F1 , F2 , F3⟩ be the free group of three generators. Let ρ ∈ Hom(F3 , SL(2,C)).
For 1 ≤ i < j < k ≤ 3, let

z i = tr( ρ(Fi)) , z i j = tr( ρ(FiF j)) , z i jk = tr( ρ(FiF jFk)) .
_en M is deûned by the quotient O = C[z]/(u) (see [7, §5.1]), where

z = {z i , z i j , z i jk ∶ 1 ≤ i < j < k ≤ 3},
u = 4 − z2

1 − z2
2 − z2

3 − z1z2z3z123 − z2
123 + z1z2z12

+ z3z123z12 − z2
12 + z1z3z13 + z2z123z13 − z2

13

+ z2z3z23 + z1z123z23 − z12z13z23 − z2
23 .

6 The Representation Varieties of the One-holed Torus

_is section studies the representation varieties of the one-holed torus with structure
group SL(2,C) and describes the Gauß–Manin connection on a natural family. Let
g = m = 1. _en the fundamental group π is isomorphic to F2, the free group on two
generators [7]. We begin by renaming the variables in Section 5.1. Let x = {x1 , x2 , x3}
such that

x1 = z1 , x2 = z2 , x3 = z12 .
With respect to the two generators, the boundary element is

T = F1F2F−1
1 F−1

2 ,

see [7]. Let ρ ∈ Hom(π, SL(2,C)) and t = tr(ρ(T)). _en

t = −2 + x2
1 + x2

2 − x1x2x3 + x2
3 ∈ C[x].

Following the notation of Section 2, denote byO ≅ C[x] the coordinate ring ofM ≅
C3 and by (Ω● , d) = (Ω●

M , d) its algebraic de Rham complex. We have a morphism

f1∶MÐ→ Spec(C[y]) ≅ C
induced by the ring homomorphism

f ∗1 ∶C[y] Ð→ C[x], f ∗1 (y) = t.
_e representation varietiesMC are the ûbres of f1. For a ûxed b ∈ C, the representa-
tion varietyMC is deûned by Ib = (t − b), i.e.,MC = Spec(O/Ib). We renameMC as
Mb . Let

ψ1(y) = y2 − 4 ∈ C[y].

Proposition 6.1 For a ûxed b ∈ C,Mb is singular if and only if ψ1(b) = 0.
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Proof Let J(Ib) be the Jacobian ideal of Ib . For the Gröbner basis computation for
J(Ib), we treat b as a variable and use the elimination degree-lexicographic order on
x. More speciûcally, we use the monomial order matrix

W =
⎛
⎜⎜⎜
⎝

1 1 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎟
⎠

on {x3 , x2 , x1 , b}.

Denote by JG the resulting Gröbner basis of J(Ib). _e (constant) term in JG con-
taining only b is ψ1(b). In other words, ψ1(b) /= 0 if and only if J(Ib) = O if and only
ifMb is smooth by Proposition 3.5.

6.1 Computing de Rham H2

We assume here that ψ1(b) /= 0 unless otherwise speciûed and use the last row of
Figure 2 to compute H2.

_eorem 6.2 H2 has dimension h2 = 5 and a C-basis

B = {1, x1 , x2 , x3 , x2
1 } ⊗ (x1dx23).

_ese are parallel results to [9].

Proof We will use the last row of Figure 2 to show that q(dB) is a basis for H2.
Notice that W is degree-modiûed on x. Denote also byW the induced weight on Ω3,
according to Deûnition 3.7.

We ûrst observe that t ∈ O is symmetric and

dt = (2x1 − x2x3)dx1 + (2x2 − x3x1)dx2 + (2x3 − x1x2)dx3 .

Let a = (a1 , a2 , a3) ∈ Z3
≥0.

Lemma 6.3 Fix i and set a i ≥ 0 and a j > 0 for j /= i. _en xadx123 ∼ vdx123 for
some v ∈ O with deg(v) < ∣a∣.

Proof Since t is a symmetric polynomial, without the loss of generality, we can as-
sume that a1 ≥ 0 and a j > 0 for j > 1. Let s = a − (0, 1, 1) and

w = d((t − b)xsdx23) = −((a1 + 1)xa + v)dx123 .

_en w ∈ d(IbΩ2) and deg(v) < ∣a∣. Hence, xadx123 ∼ − v
a1+1dx123. _is also means

that W(vdx123) <W(xadx123), sinceW is degree modiûed.

Lemma 6.4 Fix i and set a i > 2 and a j = 0 for j /= i. _en xadx123 ∼ vdx123 for
some v ∈ O with W(vdx123) <W(xadx123).

Proof Again since t is a symmetric polynomial, we can assume that i = 1. Let a =
(a1 , 0, 0) with a1 > 2 and

w1 = d((t − b)(2xa1−1
1 dx23 + a1xa1−2

1 x2dx13)) = (2xa + v)dx123 .
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_en w1 ∈ d(IbΩ2). Moreover, v has the following properties: if xs is a monomial in
v, then either ∣s∣ < a1 or xs satisûes the hypothesis of Lemma 6.3 with ∣s∣ = a1. In the
latter case, xsdx123 is cohomologous to a 3-form of degree less than a1 by Lemma 6.3.
Hence in both cases, xadx123 is cohomologous to a 3-formwith a strictly lowerweight.

Since t is symmetric, similar arguments take care of the cases of a = (0, a2 , 0) and
a = (0, 0, a3) for a2 , a3 > 2, respectively, by permuting the indices of the items in w1.
More speciûcally, for a = (0, a2 , 0), permute by 1↔ 2 in the expression ofw1 to obtain

w2 = d(−(t − b)(2xa2−1
2 dx13 + a2xa2−2

2 x1dx23)).

For for a = (0, 0, a3), permute by 1↔ 3 in the expression of w1 to obtain

w3 = d((t − b)(2xa3−1
3 dx12 + a3xa3−2

3 x2dx13)) .

From the above two lemmas, we can assume a i ≤ 2 and a j = 0 for j /= i. Suppose
a = (0, 2, 0). Set a2 = 2 for the expression ofw2 above; we getw2 = 4(x2

2 − x2
1 )dx123 ∈

d(IbΩ3). Hence, x2
2dx123 ∼ x2

1 dx123.
Suppose a = (0, 0, 2). Set a3 = 2 for the expression of w3 above and obtain w3 =

4(x2
3 − x2

2)dx123. Hence, x2
3dx123 ∼ x2

2dx123.
Hence, we conclude that q(dB) generates H2. By Remark 3.6, one needs only to

check a ûnite (very few) number of at most cubic polynomial 2-forms to verify the
linear independence of q(dB).

In this relatively simple situation, one can also compute the algebraic de Rham
cohomologies for the two singular cases.

Suppose b = −2. _en Mb has one singular point at origin and

dIb ∧Ω2 + IbΩ3 = {x1 , x2 , x3} ⊗ dx123 .

_is implies Ω3
Mb

= C⊗ dx123. Hence,

x1dx23 /∈ ker(d2) ⊆ Ω3
Mb

.

_erefore, {x1 , x2 , x3 , x2
1 } ⊗ x1dx23 is a basis for H2 and h2 = 4.

Suppose b = 2. _en aGröbner basis (withmonomial orderW) for dIb∧Ω2+IbΩ3

is

{−4 + x2
1 , x1x2 − 2x3 ,−4 + x2

2 ,−2x2 + x1x3 ,−2x1 + x2x3 ,−4 + x2
3} ⊗ dx123 .

_is implies

Ω3
Mb

= C⊗ {1, x1 , x2 , x3} ⊗ dx123 .

Hence, no 2-form of degree less than 3 is in ker(d2). Hence, {x2
1 } ⊗ x1dx23 is a basis

for H2 and h2 = 1.
_eorem 2.1 only guarantees that the algebraic de Rham cohomologies agree with

the smooth de Rham cohomologies. _ese two results show that this is also true for
these two particular singular spaces (compare [9]).
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6.2 What the Computer Says

Modern computer algebra has come of age, and one can obtain much information
directly from packages such as Macaulay2 [10]. Denote by Hi

c the compact support
cohomology ofMb and h i

c = dim(Hi
c).

_eorem 6.5 IfMb is smooth, then

h0
c = 0, h1

c = 0, h2
c = 5, h3

c = 0, h4
c = 1.

Proof We haveMb ⊆ C3 as a subvariety. Since C3 is acyclic, Alexander duality [22]
gives

Hi
c(Mb)∗ ≅ H6−i−1

dR (C3 ∖Mb) for i ≤ 4, H5
c(Mb) = 0.

One then uses Macaulay2 to compute H∗

dR(C3 ∖ Mb) via the Oaku–Takayama
algorithm to obtain the above numbers [10, 18].

_e singularity ofM−2 at (0, 0, 0) is isolated. Let B be a small є-ball of (0, 0, 0).
_en for some b ∈ f (B) near but not equal to −2, f −1

1 (b) ∩ B is homotopic to a
bouquet of 2-spheres [17]. One can apply Schultze’s algorithm using the Brieskorn
lattice method to compute the monodromy of f1∣B around −2; see [1, 21].

_eorem 6.6 f −1
1 (b) ∩B consists of one 2-sphere and the monodromy action is the

−1 map.

_is means that if one goes around a small loop around −2 ∈ C, the monodromy
action on f −1

1 (b) ∩B is the antipodal map on the small sphere in f −1
1 (b) ∩B around

(0, 0, 0). Schultz implemented his algorithm in Singular; see [3]. Notice also that this
monodromy action does not arise from aDehn twist action on Σ1,1 because any Dehn
twist induced monodromy action is the identity on the above 2-sphere [9].

_ere is a natural compactiûcation via the projectivization ofMb and much more
information can be obtained from this projectivized object. Consider the projective
surface deûned by the homogeneous polynomial

Ψ(X1 , X2 , X3 ,V) = V(X2
1 + X2

2 + X2
3) − X1X2X3 − V 3(2 + b).

_en Ψ deûnes the (projective) compactiûcation M̄b ⊆ P3. A direct calculation shows
that Ψ is irreducible and that Mb is smooth if and only if ψ1(b) /= 0. We assume this
is the case for the rest of this section. Geometrically, M̄b ∖Mb consists of three copies
of P1 deûned by the equation V = 0, pairwise intersecting at a point (with a total of
three points of intersections). Macaulay2 gives us the following theorem.

_eorem 6.7 _e non-zero Hodge numbers of M̄b are

h0,0(M̄b) = h2,2(M̄b) = 1, h1,1(M̄b) = 7.

Corollary 6.8 _e Betti numbers of M̄b are

h0(M̄b) = h4(M̄b) = 1, h2(M̄b) = 7.
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Notice that one may obtain the Betti numbers using the algebraic de Rham com-
plex [22].

6.3 The Groups H0 and H1

_ealgebraic deRhamcohomology satisûesmany of the usual cohomological axioms.
_ere is an excision sequence [13, _eorem 3.3].

Proposition 6.9 (Excision) Suppose U is smooth and V ⊆ U a smooth subvariety of
codimension r. Let W = U ∖V. _en there is an exact sequence

⋅ ⋅ ⋅ Ð→ Hi−2r(V) Ð→ Hi(U) Ð→ Hi(W) Ð→ Hi−2r+1(V) Ð→ ⋅ ⋅ ⋅

Corollary 6.10 _e Euler characteristics are additive: χ(U) = χ(V) + χ(W).

Corollary 6.11 If ψ1(b) /= 0, then h0 = 1 and h1 = 0.

Proof _e locus at inûnity deûned byV = 0 consists of three P1’s pairwise intersect-
ing at one point. Let V be the disjoint union:

V = V1 ∪V2 ∪V3 , where V1 = P1 ,V2 = C,V3 = C ∖ {0},
each of which has codimension 1 in M̄b . Let U0 = M̄b and Ui+1 = Ui ∖ Vi+1 for
0 ≤ i ≤ 2. Notice that Mb = U3. Proposition 6.9 gives the exact sequence

0Ð→ H0(Ui) Ð→ H0(Ui+1) Ð→ 0.

Hence, h0(Ui) = 1 for 0 ≤ i ≤ 3.
By Corollary 6.10,

χ(M̄b) = χ(Mb) +
3

∑
i=1
χ(Vi).

By Corollary 6.8, χ(M̄b) = 9. Hence,

χ(Mb) = χ(M̄b) −
3

∑
i=1
χ(Vi) = 9 − (2 + 1 + 0) = 6.

By _eorem 6.2, h2(Mb) = 5. Since h0(Mb) = 1,

h1(Mb) = (5 + 1) − χ(Mb) = 0.

Remark 6.12 All of these calculations are done in the algebraic category, and these
results parallel those in [9].

6.4 The Gauß–Manin Connection

Recall the map f1∶M→ C corresponding to the ring morphism

f ∗1 ∶C[y] Ð→ C[x], y z→ t.
Note that f1 is not smooth; however, it becomes smooth when the ûbres over

Spec(C[y]/(ψ1(y))) are removed. Let X and Y be the respective localizations de-
ûned by

OX = C[x] f ∗1 (ψ1(y)) , OY = C[y]ψ1(y) .
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_en f1∶X → Y is smooth. _e Gauß–Manin connection on H2 is

∇∶H2 Ð→ Ω1
Y ⊗ f ∗1 H2 .

Recall our choice of a basis for H2:

B = {1, x1 , x2 , x3 , x2
1 } ⊗ x1dx23 ,

dB = {1, 2x1 , x2 , x3 , 3x2
1 } ⊗ dx123 .

For each b ∈ Cwith ψ1(b) /= 0, P = (y−b) is a maximal prime ofOY . Let Φ1∶YP → Y
be the localization map. By Proposition 2.2,

Φ∗

1 (H2) ≅Ð→ R2( f1 ○Φ1)∗(ΩΦ∗1 (X)/YP).

Let ϕ1∶Spec(k(P)) → YP . _en the following diagram

Ω i
YP

d //

ϕ∗1
��

Ω i+1
YP

ϕ∗1
��

Ω i
Mb

d // Ω i+1
Mb

commutes. By Nakayama’s lemma, B generates Φ∗

1 (H2). Since this is true for every
maximal P, by the local to global principle [6, Corollary 2.9], B generates H2. Hence
B serves as a basis for H2.

Let u ∈H2. _en du is of the formw ∧ dt for somew ∈ Ω2
X and∇(u) = w⊗ f ∗1 dy.

With the global basis B, we can write ∇ = d + E(t) ⊗ f ∗1 dy, where d is the exterior
diòerential operator of (Ω●

Y , d).
We now factor each element in dB as a product of w ∧ dt and write w as a linear

combination of basis elements in B. _is is carried out with the help of Macaulay2
[10]. Let

η = (t − 2)x1dx23 + x3(x2
3 − 4)dx12 + (2x1x3 + 2x2 − tx2 − x2x2

3)dx13

2(t2 − 4) .

_en dx123 = η ∧ dt. Hence,

d(x1dx23) = η ∧ dt, d(x2
1 dx23) = 2x1η ∧ dt, d(x3

1 dx23) = 3x2
1 η ∧ dt,

d(x1x2dx23) = x2η ∧ dt, d(x1x3dx23) = x3η ∧ dt.

We need to write the elements in the set

D = {1, 2x1 , 3x2
1 , x2 , x3} ⊗ η

as linear combinations of elements in B. Let b ∈ C ∖ {±2} and consider

D ⊆H2 ⊗ f ∗1 (OY/(y − b)) ≅ H2 .
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Now we apply the algorithm in the proof of _eorem 6.2 to D. _is results in

η ∼ ( 9x1 − x3
1

6(b + 2) +
−3x1 + x3

1

6(b − 2) )dx23 ,

2x1η ∼
3x2

1

2(b − 2)dx23 , 3x2
1 η ∼

−6x1 + 2x3
1

b − 2
dx23 ,

x2η ∼
3x1x2

2(b − 2)dx23 , x3η ∼
3x1x3

2(b − 2)dx23 .

Since the Jacobson radical of OY is {0}, E(t) with respect to the basis B is

E(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

3
2(t+2) +

−1
2(t−2) 0 0 0 −1

6(t+2) +
1

6(t−2)
0 3

2(t−2) 0 0 0
0 0 3

2(t−2) 0 0
0 0 0 3

2(t−2) 0
−6
t−2 0 0 0 2

t−2

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

.

Notice the t + 2 and t − 2 terms in the denominators. _ese are the singular values
around which the monodromy of∇ is not trivial. From E(t), we see that∇ is a direct
sum of three rank-1 systems and one rank-2 system. Denote by D the Gauß–Manin
connection for the rank-2 subsystem. _en Y = C∖{−2, 2} is the three-holed sphere
and

D = d + ( A2

y − 2
+ A−2

y + 2
)dy,

where

A2 = (−
1
2

1
6

−6 2) , A−2 = (
3
2 − 1

6
0 0 ) .

_e exponential matrix at inûnity is then

A∞ = −(A2 + A−2) = (−1 0
6 −2) .

_e eigenvalues of A2 and A−2 are 0 and 3
2 . _e eigenvalues of A∞ are −1 and −2.

Since the diòerence of the two eigenvalues of A∞ is a non-zero integer, one must take
special care to compute the monodromy at∞. We make a change of variable y → 1

z .
_en

D = d + A(z)
z
dz, A(z) = −( A2

(1 − 2z) +
A−2

(1 + 2z)) .

Now we follow [16, §6] to compute the monodromy at z = 0. First we compute the
Taylor series ofA at z = 0. _is gives us A(0) = A∞ and

dA
dz

(0) = 2A−2 − 2A2 = ( 4 − 2
3

12 −4) .

Following [16, §6], we set

φ = (−2 − 2
3

0 −2) .
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_en the monodromy at z = 0 is

N∞ = e−2πiφ = (1 4πi
3

0 1 ) .

_e classical result of Riemann says that the global monodromy is determined by
the local ones at the three punctures [14]. A direct computation then shows that the
monodromy group of this rank-2 subsystem is generated by the following elements:

N−2 = (1 0
0 −1) , N2 = (1 − 4πi

3
0 −1 ) , N∞ = (1 4πi

3
0 1 ) .

Notice that Mb is not projective. Moreover, the locus at inûnity of M̄b consists
of three copies of P1, pairwise intersecting at one point. _e long exact sequence in
Proposition 6.9 then shows that the map ι∗∶H2(M̄b) → H2(Mb) has rank equal to 4,
where ι∶Mb → M̄b is the inclusion.

7 The Representation Varieties of the Four-holed Sphere

_is section computes the cohomologies H● of the smooth SL(2,C)-representation
varieties of a four-holed sphere. Let g = 0,m = 4. _en the fundamental group π
is isomorphic to F3, the free group on three generators [7]. Again we rename the
variables in Section 5.2. Let x = {x1 , x2 , x3} such that

x1 = z12 , x2 = z13 , x3 = z23 .

_e four punctures correspond to

F1 , F2 , F3 , F4 ∶= (F1F2F3)−1 .

For ρ ∈ Hom(F3 ,G), let t = {t1 , t2 , t3 , t4} with

t i = tr(ρ(Fi)), 1 ≤ i ≤ 4.

With this new notation, let

u4 = u4(t) = 4 − t21 − t22 − t23 − t1 t2 t3 t4 − t24 + t1 t2x1

+ t3 t4x1 − x2
1 + t1 t3x2 + t2 t4x2 − x2

2

+ t2 t3x3 + t1 t4x3 − x1x2x3 − x2
3 .

_en M = Spec(C[x, t]/(u4)). Let y = {y1 , y2 , y3 , y4}. _en we have a morphism

f4∶MÐ→ Spec(C[y])

induced by the ring homomorphism

f ∗4 ∶C[y] Ð→ C[x, t]/(u4), f ∗4 (y i) = t i .

For a ûxed elementb = (b1 , b2 , b3 , b4) ∈ C4, representing the (ûxed)monodromies
at the punctures, we renameMC as Mb. _en Mb is deûned by the ideal

Ib = (t1 − b1 , t2 − b2 , t3 − b3 , t4 − b4 , u4) ⊆ C[x, t].
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Remark 7.1 Mb is a subvariety of C3 deûned by the principal ideal

Lb ∶= (u4(b)) = Ib ∩C[x] ⊆ C[x]
for a ûxed b ∈ C4. Let O = C[x].

Introducing the symmetric coordinates, let s = {s1 , s2 , s3 , s4} be the elementary
symmetric polynomials in C[y], i.e.,

s i = ∑
∣a∣=i ,a j≤1

ya , 1 ≤ i ≤ 4.

Let

∆(y) = (y4
1 + y4

2 + y4
3 + y4

4) − 2(y2
1 y2

2 + y2
1 y2

3 + y2
1 y2

4 + y2
2 y2

3 + y2
2 y2

4) + 8y1 y2 y3 y4

+ (y2
1 y2

2 y2
3 + y2

1 y2
3 y2

4 + y2
2 y2

3 y2
4)

− (y3
1 y2 y3 y4 + y1 y3

2 y3 y4 + y1 y2 y3
3 y4 + y1 y2 y3 y3

4)
= s41 − (4s21 s2 + s21 s4 + s4s21 ) + (8s1s3 + s23).

Let ψ4(y) ∈ C[s] ⊆ C[y] be the symmetric polynomial

ψ4(y) = ∆(y)2
4
∏
i=1

(y2
i − 4).

_eorem 7.2 _e singularity locus is deûned by the symmetric polynomial ψ4. _is
is to say that Mb is singular if and only if ψ4(b) = 0.

Proof Let J(Lb) be the Jacobian ideal of Lb. For the Gröbner basis computation, we
treat b as variables and use monomial order

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 1 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 1 1 1 1
0 0 0 1 1 1 0
0 0 0 1 1 0 0
0 0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

on variables {x3 , x2 , x1 , b4 , b3 , b2 , b1}. Denote by JG the resulting Gröbner basis of
J(Lb). _e (constant) term in JG that contains only b is ψ4(b). In other words,
ψ4(b) /= 0 if and only if J(Lb) = O if and only ifMb is smooth by Proposition 3.5.

_e SL(2,C)-representation variety of the 4-holed sphere is of importance. As far
as the author is aware, this is the ûrst explicit computation of the singularity locus.
_e factor∏4

i=1(b2
i −4) corresponds to the representation varieties of the three-holed

sphere. _e three-fold deûned by ∆ is worthy of further analysis.

7.1 Computing H●

dR

_eorem 7.3 IfMb is smooth, then H2 has dimension h2 = 5 and a C-basis

B = {1, x1 , x2 , x3 , x2
1 } ⊗ (x1dx23).
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Proof All (smooth)Mb have isomorphic H● forψ4(b) /= 0. Let b = (1, 0, 0, 0). _en
ψ4(b) = 1 /= 0. Hence f −1

4 (b) is a smooth ûbre.
Recall the function f1 and the objects b and t(x) from Section 6. Let b = 1; make a

change of coordinates x → −x and consider the ideal (t(−x) − b) ⊆ O. _en a direct
calculation shows

Ib ≅ (t(−x) − b) = Lb

as ideals of O. Hence,Mb ≅Mb . _e result then follows from _eorem 6.2 (compare
[9]).

Remark 7.4 One can similarly prove that h0 = 1 and h1 = 0.

7.2 The Limit of Computer Power

Recall the morphism f4∶M→ C4 corresponding to the ring morphism

f ∗4 ∶C[y] Ð→ C[x, t], y i z→ t i .
Note that f4 is not smooth; however, it becomes smooth when the ûbres over
Spec(C[y]/(ψ4(y))) are removed. Let X and Y be the respective localizations de-
ûned by

OX = C[x, t] f ∗4 (ψ4(y)) , OY = C[y]ψ4(y) .

_en f4∶X → Y is smooth. _e Gauß-Manin connection on H2 is

∇∶H2 Ð→ Ω1
Y ⊗ f ∗4 H2 .

Again as in the case of 1-holed torus, the ûbre over b ∈ Y ofH2 is isomorphic to H2

as a C-vector space and generated by B. In theory, one then follows the method of
Section 6 and factors du as

du =
4

∑
i=1

w i ∧ dt i

for u ∈ B. We then have

∇(u) = du =
4

∑
i=1

w i ⊗ f ∗4 dy i

for each u ∈ B to obtain the connection matrices E i(t) for 1 ≤ i ≤ 4 so that

∇ = d +
4

∑
i=1
E i(t) ⊗ f ∗4 dy i .

Unfortunately, the computation involved in this factorization overwhelmed the com-
puters in our possession and is likely to overwhelm any currently available computers.

8 The Representation Varieties of the Two-holed Torus

Let g = 1,m = 2. _en the fundamental group π is again isomorphic to F3, the free
group on three generators [7]. Change z to x as before,

x i = z i , 1 ≤ i ≤ 3; x i j = z i j , 1 ≤ i < j ≤ 3,
x = {x i , 1 ≤ i ≤ 3; x i j , 1 ≤ i < j ≤ 3}, y = {y1 , y2}
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_e two punctures correspond to F1F2F3 and F1F3F2, respectively. For ρ ∈
Hom(F3 , SL(2,C)), let t = {t1 , t2} with

t1 = z123 = tr(ρ(F1F2F3)), t2 = tr(ρ(F1F3F2))

i.e., t represents the monodromies at the two punctures. Let

up = up(t) = t1 t2
− (x2

1 + x2
2 + x2

3 + x2
12 + x2

13 + x2
23 − x1x12x2 − x1x13x3 − x2x23x3 + x12x13x23 − 4)

us = us(t) = t1 + t2 − (x3x12 + x2x13 + x1x23 − x1x2x3).

_en M = Spec(C[x, t]/(up , us)) and we have a morphism

f2∶MÐ→ Spec(C[y])

induced by the ring homomorphism

f ∗2 ∶C[y] Ð→ C[x, t]/(up , us), f ∗2 (y1) = t1 , f ∗2 (y2) = t2 .

For a ûxed element b ∈ C2, representing the (ûxed) monodromies at the punctures,
we renameMC as Mb. _en Mb is deûned by the ideal

Ib = (t1 − b1 , t2 − b2 , up , us) ⊆ C[x, t].

For an elaborate exposition of the above calculations, see [7].

Remark 8.1 Mb can be considered as a subvariety of C6 deûned by the ideal

Lb ∶= (up(b), us(b)) = Ib ∩C[x] ⊆ C[x]

for a ûxed b ∈ C2. Let O = C[x].

Let ψ2(y) ∈ C[y] be the symmetric polynomial

ψ2(y) = (y2
1 − 4)(y2

2 − 4)(y1 − y2)2 .

_eorem 8.2 For ûxed b ∈ C2,Mb is singular if and only if ψ2(b) = 0.

Proof Let J(Lb) be the Jacobian ideal of Lb. For the Gröbner basis computation, we
treat b as variables and use the monomial order

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 1 1 1 1 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

on variables {x23 , x13 , x12 , x3 , x2 , x1 , b2 , b1}. Denote by JG the resulting Gröbner basis
of J(Lb). _e (constant) term in JG that contains only b is ψ2(b). In other words,
ψ2(b) /= 0 if and only if J(Lb) = O if and only ifMb is smooth by Proposition 3.5.

https://doi.org/10.4153/CJM-2017-010-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-010-8


_e Algebraic de Rham Cohomology of Representation Varieties 719

In this situation, there is no mystery of the singular locus. _e cases of b i = ±2
mean the monodromy around the i-th puncture is central in SL(2,C); i.e.,Mb con-
tains the representation varieties of one-holed torus. _e case of b1 = b2 means the
moduli spaceMb contains abelian representations.
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