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OPERATIONS IN GROTHENDIECK RINGS AND THE 
SYMMETRIC GROUP 

JOHN BURROUGHS 

In [1] Atiyah described how to use the complex representations of the 
symmetr ic group, Sn, to define and investigate operations in complex topologi
cal i^-theory. In this paper operations for more general Grothendieck groups 
are described in terms of the integral representations of Sn using the representa
tions directly wi thout passing to the dual as Atiyah did. The principal tool, 
which is proved in the first section, is the theorem tha t the direct sum of the 
Grothendieck groups of finite integral representations of Sn form a bialgebra 
isomorphic to a polynomial ring with a sequence of divided powers. A conse
quence of this theorem is t ha t the only operations t ha t can be constructed from 
the symmetr ic groups will be polynomials in the symmetric powers. 

The second section shows how properties of operations dealing with com
position, preservation of addition, and preservation of multiplication can be 
respectively characterized in terms of the symmetrized outer product , the 
comultiplication, and another cobinary operation in the theory of the represen
tat ions of the symmetr ic groups. Methods of verifying such properties based 
on the well-developed theory of the symmetr ic groups are described. Connec
tions to individual par ts of the definition of special X-rings are made. 

In the third section the Adams operations are defined in terms of representa
tions and the theorems of the preceding section are applied to describe their 
properties. 

Throughout this paper GR(TT), w a group, will be the abelian group generated 
by R(T) modules which are finitely generated and projective as R modules 
with the relations, [M] = [M'] + [Mf/] if there is an exact sequence 0 —» 
M' -> M -> M" -> 0. If M and M' are R(ir) modules, then M ® TM' denotes 
the tensor product over R(w). 

1. 

PROPOSITION 1.1. The homomorphism from Gz(Sn) toGQ(Sn) induced from the 
map sending [M] to [M 0 z Q] is an isomorphism. 

Proof. A theorem of Heller and Reiner [7] s tates t ha t if R is a Dedekind 
domain of characteristic zero with quot ient field K, which is a splitt ing field 
for a finite group ir, then the map given by the tensor product from GR(T) to 
GK(ir) is an isomorphism. Since the rationals are a splitt ing field for Sn, the 
proposition is jus t a special case of the theorem. 

Received October 20, 1972. This research was supported by NSF Grant GP-20298. 

543 

https://doi.org/10.4153/CJM-1974-050-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1974-050-3


544 JOHN BURROUGHS 

Let r be the graded Z-module with T0 = Z, Tn = Gz(Sn) for n > 0, and 
Tn = 0 for w < 0. For convenience T0 is sometimes denoted as GZ(SQ). Multi
plication in T is defined by the map, </>: T ® T —> T, which is the composite of 
the canonical map, h, from Gz(St) ® Gz{Sj) to Gz(St X 5̂ -) and the map of 
Gz(Si X Sy) to Gz(Si+j) induced from the inclusion of S* X 5y into SVy. 
Since St X 5^ and Sj X S* are conjugate subgroups of Si+j, T is a commuta
tive, graded ring. This product is well-known in the theory of the characters of 
Sn, where it is called the outer product [9, p. 52]. A comultiplication on T, 

A:T ^ T ® r , 

is defined as the composite of the restriction map from Gz(Si+j) to 
u z ( ^ i X O j ) , J j X Sj again considered as a subgroup of Si+j, with 
h~l'-Gz(St X 5^) - ^ G 2 ( 5 j ) ® Gz(Sj). h is an isomorphism since GZ(5W) is 
isomorphic to GQ(Sn) and Q is a splitting field for Sn. 

The image of Z with the trivial 5W action is denoted by the sumbol [n] and 
the image of Z with the action of Sn given by the sign of the permutation by 
[«]• to] = [ô] = i. 

THEOREM 1.2. T is isomorphic to the graded bialgebra Z[Xi, . . . , Xn, . . .] , 
n d N, where Xn is an indeterminate of degree n, and the co-multiplication, A, is 
given by a sequence of divided powers, 

A(Xn) = Ê Xt ®Xn-h Xo= 1. 
2=0 

Proof. A homomorphism / from Z[Xi, . . . , Xn, . . .] to T can be defined by 
sending Xn to [n] and extending to a ring homomorphism. A basis for Tnj 

n > 0, is given by the irreducible representations of Sn over <2 by Proposition 
1.1. These representations are in one-to-one correspondence with the partitions 
of n [6, § 28]. A theorem based on the work of Young [9, Theorem 2.33] states 
that if x is the element of T corresponding to the partition {m, . . . , nk) of n, 
then % is equal to the determinant of the k by k matrix whose (i, j) entry is the 
element \nt — (i — j)], when i — j ^ nu and zero elsewhere. Thus / is an 
epimorphism. Since the rank of Tn equals the rank of Z[Xi, . . . , Xn, . . .]n,f is 
an isomorphism. 

Since 

n 

A([»]) = Z [i] ®[n- i] 

and {[w]|w ^ 0} generates T as a Z-algebra, to complete the proof of the 
theorem it suffices to show that V with the comultiplication A is a bialgebra. 
A straightforward calculation using the formula for induced characters [6, 
§ 38] shows that if c and d are respectively characters of Sm and Sn, then the 
induced character on Sm+n restricted to the subgroup Sk X Sm+n-k for some k is 
the same as the sum of the characters of Sk X Sm+n-k induced from the restric-
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tions of c and d to the subgroups St X Sm-t and S3- X Sn-jy i + j = k, where 
Sj X Sm-t X 5^ X Sn-j is identified with S* X Sj X Sw_* X Sn-j and con
sidered as a subgroup of S* X Sm+n-k for the induction. With Proposition 1.1 
and the insertion of h and h~l in the appropria te places, this character equat ion 
implies 

A0 = (0 ® 0 ) ( 1 ® T ® 1)(A ® A), 

where T is the twist map on T ® T. 

In [1] Atiyah has shown tha t the graded algebra associated with the Z-dual 
of the bialgebra T, T*, with the natura l filtration, is a polynomial algebra. H e 
does not discuss the algebra V. T h e nth indeterminate of the polynomial basis 
for T* is given by the sum of all elements dual to the monomials of degree 
nof r . 

In [5] Cart ier has shown t h a t Z[Xi, . . . , Xn, . . .] with the above bialgebra 
s t ruc ture is the bialgebra of distributions, in the sense of formal groups, of the 
generalized W i t t ring over Z. He does not discuss the algebra s t ructure of the 
dual . B. Pareigis and R. Morris have informed me t h a t they have recently 
shown using functorial techniques t ha t the total dual algebra is a power series 
in an infinite number of variables. 

A different isomorphism f:Z[Xi, . . . , Xn, . . . ]—> T may be constructed by 
sending xn —> [ft]. 

Let R be a commuta t ive ring (not necessarily with uni t) and {fi} = 
( / i , . . . , / j , . . . ) b e a sequence of set theoretic functions of R to R. 2) is the 
category of all pairs (R, {/*}). A morphism in 3) from (R, { fi} ) to (5, {gi}) is 
a ring homomorphism F from R to S such t ha t Fft = gtF for all i. 

Let S be a subcategory of 35. An operation a in £ assigns to each object 
(R, {fi}) a function a(R, { fi}) from R to R which commutes with all the 
morphisms in (S. Op (S) is the collection of all operations. Op (S) has an 
addit ion and a multiplication induced from addition and multiplication on R. 
These make Op (Ë) into a commuta t ive ring. If (5 includes only rings with 
uni ts and morphisms preserve units, then there is a uni t operation given by 
l(R,{fi\)(r) = 1. 

PROPOSITION 1.3. For any S, there is a ring homomorphism y from T+ to Op (S) 

Proof. Define y([n])((R, {fi})) = fn and extend to a ring homomorphism 
on T+ using Theorem 1.2. 

In the case when Op (S) has a uni t one can extend y to all of T. In the 
remainder of this paper 7(£)((i£, { / < } ) ) , £ £ I \ is abbreviated as y (J) when 
there can be no confusion. y[(0])(x)y = y = y([Ô])(x) y for all x and y in R 
even if 7 is only defined on T+ . 

Let 21 be an admissable subcategory of an abelian category with a product 
and y be some collection of short exact sequences of 21 which are preserved by 
the product . Let Tn, n > 0, be functors from the direct product of the category 
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of finitely generated Z-torsion free ZSn modules 9JJW and 21 to 21 such that for 
fixed M G ob 2ftn, Tn(M,-) takes exact sequences on ¥* to exact sequences in j ^ 7 

and for fixed A G ob 21, Tn(-, A) takes short exact sequences in Wfln to exact 
sequences in ^ . Ky (21) is the Grothendieck ring generated by isomorphism 
classes of objects in 2Ï with relations [A'] + [A"] = [A] when 0 —> A' —> A —» 
A" —» 0 is a short exact sequence in 5^. 

A:i^(2t)->iM2D 
is defined by the functor from 21 to 21 given by Tn(Z, _) . (i£<^(2l), { /w}) is an 
object in Ql. If M G ob 2Wn, then Y ( [ M ] ) is defined by the functor Tn(M, _) 
and thus y is given by T*. Here are examples of this situation. 

21 is the category of finite dimensional real vector bundles over a space X 
and y is all split short exact sequences. If M G ob 93în, M ® z R X X, R the 
real numbers, is in 21 and has an Sn action. If A G ob 21, A®n is in 21 and has an 
Sn action. Tn(M, A ) is defined to be the quotient of 

M ®ZR X X ® xA®n 

formed by moding out the submodule generated by the images of the endomor-
phisms 1 ® 0- — o- ® 1, <r Ç Sw. In this case Tn(Z, _) is given by the symmetric 
product of the bundle. 

Let 21 be an admissable subcategory of an abelian category with product and 
£f be a collection of short exact sequences preserved by the product. Suppose 
that the objects of 21 are Z-modules in a way compatible with the morphisms. 
If A G ob 21, Sn acts on A®n and M ® Sn A®n is a Z-module. If M ® Sn A®n, 
M G Tin and A G 21, is in 21 and if/ ® g,f a morphism in 9KW and g a morphism 
in 21, is a morphism in 2Ï, Tn(M, A) may be defined to be M ® sn ^4®*. If the 
exactness conditions are satisfied, fn is the symmetric product and y is given 
by jf*. The requirement that M ® #„ A®n be in 21 is not satisfied in the case 
where 21 is finitely generated torsion free Z-modules since Z ® s2 Z®71 = Z/2Z. 
If the objects in 21 are vector spaces over <2, it suffices to have Q(Sn/H) ® Sn A®n 

in 2Ï, e.g., 21 closed under coequalizers as a runs over all elements of H, H any 
subgroup of Sn, since any Q(Sn)-module is the direct summand of a direct sum 
of modules of the form Q(Sn/H). 

2. H is the subgroup of Smn, which is the image of the canonical inclusion 
of the direct sum of m copies of Sn. N(H)/H is isomorphic to Sm and N(H) = 
^(TiH, where au 1 ^ i ^ ml, is a permutation of the direct summands of H. 
M G ob 5Dîm and N G ob 2Rn. N®™ is both a Z(H) module and a Z(5m) module, 
where the action of 5m is given by permuting the tensor product. M ® z (N®m) 
is made into a Z(N(H)) module by defining 

<rtT(x ® y) = at(x) ® (o-i(r(^)), 

r G H, x G M, and y G iV®™, and extending to the whole group. Induction 
from N(H) to Smn yields a Z(Smn) module. Since all the necessary relations are 
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preserved, there is a function from Gz(Sm) X Gz{Sn) to Gz(Smn) which is 
denoted by (f, £) »-> f o £. 

This function, in the case of complex representations, is called the sym
metrized outer product and is discussed by Robinson [9, III, § 3.5] and Kerber 
[8, § 6]. Kerber makes use of the fact that the N(H) is a faithful permutation 
representation of SmlSn, the wreath product, in his discussion of the sym
metrized outer product. 

Definition 2.1. (R, {ft}) has the composition property if 7(f o£) = 
7(f) O 7 (J) for all f, f in T+, where the second circle denotes the composition of 
the functions. 

The composition property corresponds to the formula for the composite of 
exterior powers in the theory of special X-rings [3]. 

The examples at the end of the preceding section have the composition 
property. In particular GC(GL(N, C), {/*}) with/^ given by the symmetric 
power of finite dimensional complex representations of GL(N, C), has the 
composition property. 

THEOREM 2.2. Let f 6 Tm, £ £ rn> araZ p £ Tmw. Suppose 7(f) 07f t ) = ?(p) 
as operations in GC(GL(N, C) {/*}), iV ^ mn. Then 7(f) 07(5) = 7(p) as 
operations in any object, (R, {/*}), of 35 that satisfies the composition property. 

Proof. It suffices to show that f o J = p in I\ A theorem of Schur [6, § 67] 
states that if V is an w-dimensional vector space over C and M is an irreducible 
complex representation of Sm, n ^ w, then i f 0 sTO F®m is isomorphic to an 
irreducible GL (w, C) submodule of V® m and that the correspondence established 
in this way is one-to-one and onto. This theorem and Proposition 1.1 combine 
to prove that the map from Ymn to GC(GL(N, C)), N ^ mn, given by 

P - > 7 ( p ) ( t 0 

is one-to-one. Since 7(f) 0 7 ^ ) = 7(p) in GC(GL(N, C)), f o £ = p in T. 
The image of Gc(Smn) in GC(GL(N, C)) lies in the subgroup generated by the 

integral representations, i.e. the coordinates of the representing matrices are 
polynomials in the coordinates of elements of GL(N, C). These representations 
are completely determined by their characters [4, V and VI, § 2], and by 
restriction it suffices to determine if 7(f) 07f t ) = 7(p) for (GCM, { ft} ), n a 
cyclic group and ft the symmetric power over C, which is easily done since 
Gc(ir) is generated by one dimensional representations. Alternatively, since 
(GC(GL(N, C), { ft} ) with the usual exterior power is a special X-ring [10], the 
splitting principle [2] may be used to answer the question. 

For any (R, { ft} ) £ ob 3) and any x, y £ R, a group homomorphism 
eXtV\ r 0 r —>• R is defined by 

**.,(r ® É) = 7(r)W7«)(y). 
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Definition 2.3. (R, {ft}) had the addition property if y([n])(x + y) = 
eXiyA([n]) for all x, y € R, i.e. 

n 

/»(* +y) = X) fi(x)fn-i(y). 

V : r —> r ® r is the function given by the composite of the function 
Gz(Sn) -^ Gz{Sn X Sn) induced from the inclusion of Sn in Sn X Sn by a •—> 
(o-, ex) and 

h-i-.GziSn X S„) -» G Z (5J ® G z(5n) . 

Definition 2.4. (7?, {/*} ) has the multiplication property if y([n])(xy) = 
^ . y V ( W ) . 

The addition formula corresponds to the formula for \t(x + y) in the defi
nition of X-rings, and the multiplication property corresponds to the formula 
for \t(xy) in the theory of special X-rings [3]. 

THEOREM 2.5. Let £ G r . If A(£) = £ ® 1 + 1 ® J, /Aew 7(£)(* + 30 = 
T(£) (X) + Y(£) M for any Ĉ > { /*} ) ^ ^ ^ a 5 ^ addition property. If V (£) = 
£ ® £, /&ew T(^) (Vy) = 7(£) (x)7(£) (3/) for any (R, { ft\ ) that has the multiplica
tion property. 

Proof. Suppose (R, { ft] ) has the addition property. Since T is a bialgebra 
under A it is easy to show that Y(£)(X + y) = eXtVA(^) for any £ which is a 
monomial in the [w]'s. These monomials are a Z-basis of T so y (£) (x + y) = 
ex>yA(£) for all £ G T. If A(£) = £ ® 1 + 1 ® £, then 

7(£)(* + 30 = **.yMê) = eXtV(è ® 1 + 1 ® £) = 7 ( f ) W + 7(«)(y). 

Suppose (i£, { /*}) has the multiplication property. It is easily verified that 
y(£)(xy) = eXiVS7 (%) for any £ which is a monomial in the [w]'s using the fact 
that the representation of a group induced from a subgroup can be constructed 
by first inducing to any intermediate subgroup and then to the group. As 
above 7 (£)(*?) = e*.yV(£) for all £ G T; and, if V(£) = £ ® £, 

7 ( 0 M = e*.y(£ ® S) = 7 f t ) W 7 ( £ ) W . 

It is easy to determine if A(£) = £ ® 1 + 1 ® £ or V(£) = £ ® £ using 
characters as is shown by the example in the next section. 

3. 

Definition 3.1. \pn = ]C/t-o( —l)*x*> where x* is the image in T of the 
irreducible rational representation of Sn which is given by the partition of n, 
\n — k, 1, . . . , 1}. For (R, {fi}) G ob 3), y(\pn) is the nth Adams operation. 

* . = £ ( - i )*(«-*)[»-*][*] 
fc=0 
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as a consequence of the theorem on representing the irreducible representations 
in terms of [n] quoted in the proof of Theorem 1.2. 

m n—1 

where hn_k is the homogeneous symmetric polynomial of degree n — k in the m 
variables, tt, and ek is the elementary symmetric polynomial. Substitution of 
[n — k] for hn_k and [k] for ek shows that Definition 3.1 corresponds to the 
original definition of Adams. 

For £ Ç Tn, c(£) denotes the class function of Sn constructed from £. 

PROPOSITION 3.2. c(fa)(a) = n iî a is a cycle of length n. c(fa)(a) = 0 for 
all other a in Sn. 

Proof. L e t / be the class function on Sn which is n on cycles of length n and 
zero elsewhere. In order to show t h a t / = c(fa) it suffices to show that ( / , 
£(x*)) = (~"1)* a n d (/, c(x)) = 0 for all other images, x, of irreducible 
representation of Sn. For all x> (f, c(x)) = c(x)(o")> <r an n-cycle. c(x*)(°") = 
(- l )*andc(x)(<r) = 0 if x = X* [9, Lemma 4.11]. 

THEOREM 3.3. Le* (R, {ft}) £ SD. 

(a) If (R, { ft}) has the composition property, y (fa) o y (fa) = y (fan)-
(b) If (R, {ft}) has the addition property, y(fa)(x + y) = y(fa)(x) + 

y(fa)(y). 
(c) If(R,{ft}) has the multiplication property, y (fa) (xy) = y (fa) (x)y(fa) (y). 
(d) y (fa) = fip mod p R for all prime integers p. 

Proof. Suppose (R, { ft}) has the composition property. By Theorem 2.2 it 
suffices to show y (fa) o y (fa) = y(fan) for (GC(GL(N, C), {/<}), which is a 
special case of a result of Swan [10]. 

Suppose (R, { ft}) has the addition property. c(fa) restricted to St X Sn-U 

1 ^ i < n, is zero, so A (fa) = fa 0 1 + 1 ® fa. By Theorem 2.5, 
y(fa)(x + y) = y(fa)(x) + y(fa)(y). 

Suppose (R, { ft}) has the multiplication property. Let a = (<ru a2) £ Sn X 
Sn. The formula for induced characters shows that c(hV(fa))(<r) = n2 if both 
o-iand(T2aren-cyclesandc(ÂV(^w))(o-) = 0 otherwise. Thus V (fa) = fa® fa 
and by Theorem 2.5, y(fa)(xy) = y (fa) (x)y (fa) (y). 

Let p be a. prime. 6P is the image in T of the representation of Sp induced 
from the trivial representation of a cyclic subgroup of order p of Sp. c(6p) (a) = 
p — 1 if a is a ^-cycle, c(0p) (e) = (£ — 1) !, and c(Bv) (a) = 0 if a is any other 
element of Sp. A character computation shows that (p — I) fa = pdp — [l]p in 
T. Thus 

hp = 7([1?) ^ y (fa) mod pR. 

The verification that y (fa) o TOAJ = 7 (fan) in the case GC(GL(N, C)) can 
be done without reference to the work of Swan. By the remark at the end of 
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Theorem 2.2 it suffices to consider the case GCM, T a cyclic group. Using the 
formula 

* .= £ (-l)\n - k)[n - k][k] 

and the fact that Y ( M ) is the &th exterior power, it is easy to see that for the 
image, x, of a one-dimensional representations of T, Y G / O M = xn. Since the 
images of the one-dimensional representations span GCM and the hypothesis 
of part b of Theorem 3.3 is valid, YG^OY WO = YG/W) for GC(TT). 
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