Canad. Math. Bull. Vol. **56** (2), 2013 pp. 241–250 http://dx.doi.org/10.4153/CMB-2011-189-8 © Canadian Mathematical Society 2012

Versions of Schwarz's Lemma for Condenser Capacity and Inner Radius

Dimitrios Betsakos and Stamatis Pouliasis

Abstract. We prove variants of Schwarz's lemma involving monotonicity properties of condenser capacity and inner radius. Also, we examine when a similar monotonicity property holds for the hyperbolic metric.

1 Introduction

Let *f* be a holomorphic function on the unit disk $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$. For 0 < r < 1, let $r\mathbb{D} = \{z \in \mathbb{C} : |z| < r\}$ and

$$\operatorname{Rad}(f(r\mathbb{D})) = \sup_{|z| < r} |f(z) - f(0)|.$$

According to the classical Schwarz lemma, the function

$$\Phi(r) = \frac{\operatorname{Rad}(f(r\mathbb{D}))}{r}, \quad 0 < r < 1,$$

is increasing. Schwarz's lemma was expressed in this form in [5], where R. B. Burckel, D. E. Marshall, D. Minda, P. Poggi-Corradini, and T. J. Ransford considered the size of the image set $f(r\mathbb{D})$, relative to several other geometric quantities, compared to the size of $r\mathbb{D}$; in particular they proved that the function

(1.1)
$$\Phi_T(r) = \frac{T(f(r\mathbb{D}))}{T(r\mathbb{D})}, \quad 0 < r < 1,$$

is increasing, where *T* may be area, diameter or logarithmic capacity. D. Betsakos [3] proved similar monotonicity properties of quasiregular mappings on the unit ball of \mathbb{R}^n . R. Laugesen and C. Morpurgo [13] and also T. Carroll and J. Ratzkin [6], under the additional assumption that *f* is univalent, proved that the function Φ_T in (1.1) is increasing when $T(f(r\mathbb{D}))$ is the first eigenvalue of the Laplacian with Dirichlet boundary data. Related results have recently appeared in [4,9,16].

Earlier appearances of this idea occurred in [2, 12, 14]. In [12], G. Julia proved that for 0 , the function

$$\Phi_p(r) = \frac{\int_0^{2\pi} |f(re^{it})|^p dt}{r^p}, \quad 0 < r < 1$$

Received by the editors November 26, 2010.

Published electronically January 27, 2012.

AMS subject classification: 30C80, 30F45, 31A15.

Keywords: condenser capacity, inner radius, hyperbolic metric, Schwarz's lemma.

is increasing. E. F. Beckenbach [2] showed that if f is holomorphic in \mathbb{D} and for all $r \in (0, 1)$ and all $\theta \in [-\pi, \pi]$,

$$\int_0^r |f'(\rho e^{i\theta})| \, d\rho \le 1,$$

then, in fact, for all $r \in (0, 1)$ and for all $\theta \in [-\pi, \pi]$,

$$\int_0^r |f'(\rho e^{i\theta})| \, d\rho \le r.$$

G. Pólya and G. Szegö [14, Problem 309] proved that the function

$$\Phi_L(r) = rac{L(f(|z| = r))}{2\pi r}, \quad 0 < r < 1,$$

(where L(f(|z| = r)) is the length of the curve f(|z| = r)) is increasing.

In the present paper, we prove an analogous monotonicity property for the capacity of a condenser. A *condenser* in the complex plane \mathbb{C} is a pair (D, K) where D is a Greenian open subset of \mathbb{C} and K is a compact subset of D. Let h be the solution of the generalized Dirichlet problem on $D \setminus K$ with boundary values 0 on ∂D and 1 on ∂K . The function h is the *equilibrium potential* of the condenser (D, K). The *capacity* of (D, K) is

$$\widehat{\square}(D,K) = \int_{D\setminus K} |\nabla h|^2.$$

The *equilibrium energy* of (D, K) is the extended real number

$$I(D,K) = \frac{2\pi}{\bigcap(D,K)}$$

We set

$$C_2(D,K) = e^{-I(D,K)}$$

It is easy to compute the equilibrium energy of an annulus:

(1.2)
$$I(s\mathbb{D}, \overline{r\mathbb{D}}) = \log \frac{s}{r}, \quad r < s$$

It follows that

(1.3)
$$C_2(\mathbb{D}, \overline{r\mathbb{D}}) = r.$$

We refer to [10] and [8] for more information about condenser capacities.

Theorem 1 Let $f: \mathbb{D} \to \mathbb{C}$ be a holomorphic function such that $f(\mathbb{D})$ is a Greenian domain. Then the function

$$\Phi_C(r) = \frac{C_2(f(\mathbb{D}), f(\overline{r\mathbb{D}}))}{r}, \quad r \in (0, 1),$$

is increasing. If Φ_C is not strictly increasing, there exists $d_0 \in (0, 1]$ such that Φ_C is constant on $(0, d_0)$, Φ_C is strictly increasing on $(d_0, 1)$, and f is univalent on $d_0\mathbb{D}$.

https://doi.org/10.4153/CMB-2011-189-8 Published online by Cambridge University Press

In fact, Theorem 1 will follow from a more general result about condenser capacity. This result is Theorem 2.2 and will be proved in Section 2.

Let $D \subset \mathbb{C}$ be a Greenian domain with a Green function $G_D(x, y)$ and $z_0 \in D$. The limit

$$\gamma = \lim_{z \to z_0} \left[G(z, z_0) - \log \frac{1}{z - z_0} \right]$$

exists. The *inner radius* $R(D, z_0)$ of D at z_0 is [10, p. 123]

$$R(D,z_0)=e^{\gamma}.$$

A simple property of the inner radius is that if *D* is simply connected and *f* maps \mathbb{D} conformally onto *D* with $f(0) = z_0$, then $R(D, z_0) = |f'(0)|$. It follows that $R(r\mathbb{D}, 0) = r$. In Section 3 we will prove the following monotonicity property for the inner radius $R(f(r\mathbb{D}), f(0))$.

Theorem 2 Let $f: \mathbb{D} \to \mathbb{C}$ be a holomorphic function. Then the function

$$\Phi_R(r) = \frac{R(f(r\mathbb{D}), f(0))}{r}, \quad 0 < r < 1,$$

is increasing. Moreover, if Φ_R is not strictly increasing, there exists an $s_0 \in (0, 1]$ such that Φ_R is constant on $(0, s_0)$ and strictly increasing on $(s_0, 1)$, and f is univalent on $s_0\mathbb{D}$.

We next recall the definition of the hyperbolic metric (see [1, p. 41], [11, p. 682]. A planar domain *D* is called *hyperbolic* provided that $\mathbb{C} \setminus D$ contains at least two points. Let Δ be a disk; a holomorphic function $f: \Delta \to D$ is a *universal covering map of D* if every point in *D* has an open neighborhood *V* such that $f^{-1}(V)$ is a disjoint union of open sets U_i and the restriction of f to U_i is a conformal map of U_i onto *V*. Let *D* be a hyperbolic domain and let $z \in D$. By the uniformization theorem, there exists a universal covering map $f: \mathbb{D} \to D$ with f(0) = z. The *density of the hyperbolic metric* for *D* at the point *z* is defined by

$$\lambda_D(z) = \frac{1}{|f'(0)|}.$$

Clearly, if *D* is simply connected, then

(1.4)
$$\lambda_D(z) = \frac{1}{R(D,z)}.$$

In view of Theorem 2, one may ask whether an analogous monotonicity property holds for the hyperbolic metric. We show that the answer is negative.

Theorem 3 Let D be a hyperbolic domain in \mathbb{C} , let $w \in D$, and let $f: \mathbb{D} \to D$ be a universal covering map of D with f(0) = w. Let

$$\Phi_H(r) = \frac{1}{r\lambda_{f(r\mathbb{D})}(w)}, \quad 0 < r < 1.$$

The function Φ_H is increasing if and only if D is simply connected (in which case f is univalent and Φ_H is constant).

This theorem will be proved in Section 4.

D. Betsakos and S. Pouliasis

2 Schwarz-Type Lemma for Condenser Capacity

244

We start by stating some known results that we will need later. It is well known that holomorphic functions decrease the capacity of a condenser, that is

(2.1)
$$\mathbb{O}(f(D), f(K)) \leq \mathbb{O}(D, K).$$

Moreover, equality holds only when f is univalent; see [15].

A condenser (D, K) will be called *regular* if the open set $D \setminus K$ is regular for the Dirichlet problem and every connected component of $D \setminus K$ has boundary points on both sets ∂D and K. Let h be the equilibrium potential of the regular condenser (D, K). The sets

$$\{z \in D \setminus K : h(z) = r\}, \quad 0 < r < 1,$$

are called *equipotential curves* of (D, K). We recall Grötzsch's lemma:

Theorem 2.1 ([8, p. 9]) Let (D, K) be a condenser. Let G be an open set such that $K \subset G$ and $\overline{G} \subset D$. Then

(2.2)
$$I(D,K) \ge I(D,\overline{G}) + I(G,K).$$

If the condensers (D, K), (D, \overline{G}) and (G, K) are regular, then equality holds in (2.2) if and only if ∂G is an equipotential curve of (D, K).

Let (D, K) be a regular condenser and let h be its equilibrium potential. We extend h on D by setting h = 1 on K. Then h is a continuous superharmonic function on D. For every $r \in (0, 1)$, we consider the open set

$$D_r = \{x \in D : h(x) > 1 - r\}.$$

Then for 0 < r < s < 1,

$$K \subset D_r \subset \overline{D_r} \subset D_s \subset \overline{D_s} \subset D.$$

Therefore the condensers $(D, \overline{D_r})$ and $(D_s, \overline{D_r})$ are well defined and regular. We have the following monotonicity theorem for condenser capacity.

Theorem 2.2 Let (D, K) be a regular condenser and let D_r , 0 < r < 1, be as above. Also, let f be a holomorphic function which is non-constant on every connected component of D and let G be a Greenian open set such that $f(D) \subset G$ and (G, f(K)) is a regular condenser. Then the functions

$$\Phi_{K}(r) = \frac{1}{\bigcap (f(D_{r}), f(K))} - \frac{1}{\bigcap (D_{r}, K)}, \quad r \in (0, 1),$$

and

$$\Phi_D(r) = \frac{1}{\bigcap(D,\overline{D_r})} - \frac{1}{\bigcap(G,f(\overline{D_r}))}, \quad r \in (0,1),$$

are increasing. If Φ_K is not strictly increasing, there exists $k_0 \in (0, 1]$ such that $\Phi_K = 0$ on $(0, k_0)$, Φ_K is strictly increasing on $(k_0, 1)$, and f is univalent on D_{k_0} . If Φ_D is not strictly increasing, there exists $d_0 \in (0, 1]$ such that Φ_D is constant on $(0, d_0)$, Φ_D is strictly increasing on $(d_0, 1)$, and f is univalent on D_{d_0} . Also, Φ_D is constant on (0, 1) (i.e., $d_0 = 1$) if and only if f is univalent on D and $\partial f(D_r)$, $r \in (0, 1)$, is an equipotential curve of the condenser (G, f(K)).

Proof Let 0 < r < s < 1. We will consider the functions Φ_K and Φ_D separately. First we consider the function Φ_K . By inequality (2.1) and Grötzsch's lemma,

(2.3)
$$I(D_s, K) - I(D_r, K) = I(D_s, \overline{D_r})$$
$$\leq I(f(D_s), f(\overline{D_r}))$$
$$\leq I(f(D_s), f(K)) - I(f(D_r), f(K)).$$

Therefore

$$\frac{1}{ \bigcap \left(f(D_r), f(K) \right)} - \frac{1}{ \bigcap (D_r, K)} \leq \frac{1}{ \bigcap \left(f(D_s), f(K) \right)} - \frac{1}{ \bigcap (D_s, K)},$$

which means that

(2.4)
$$\Phi_K(r) \le \Phi_K(s)$$

Suppose that equality holds in (2.4). Then the inequality (2.3) must be an equality. By [15], f must be univalent in D_s and therefore $\Phi_K = 0$ on (0, s). Let

$$k_0 = \sup\{s \in (0,1): \text{ there exists } 0 < r < s \text{ such that } \Phi_K(r) = \Phi_K(s)\} > 0.$$

Then $\Phi_K = 0$ on $(0, k_0)$, Φ_K is strictly increasing on $(k_0, 1)$, and f is univalent on D_{k_0} . Now we consider the function Φ_D . By inequality (2.1) and Grötzsch's lemma,

(2.5)
$$I(D,\overline{D_r}) - I(D,\overline{D_s}) = I(D_s,\overline{D_r})$$
$$\leq I(f(D_s), f(\overline{D_r}))$$

(2.6)
$$\leq I(G, f(\overline{D_r})) - I(G, f(\overline{D_s})).$$

Therefore

$$\frac{1}{\bigcap(D,\overline{D_r})} - \frac{1}{\bigcap\left(G,f(\overline{D_r})\right)} \leq \frac{1}{\bigcap(D,\overline{D_s})} - \frac{1}{\bigcap\left(G,f(\overline{D_s})\right)},$$

which means

(2.7)
$$\Phi_D(r) \le \Phi_D(s).$$

Suppose that equality holds in (2.7). Then the inequalities (2.5) and (2.6) must be equalities. By [15] and the equality in (2.5), f must be univalent in D_s . The equilibrium potential of the condenser (D_s, K) is the function

$$h_s(x) = rac{h(x) - (1-s)}{s}, \quad x \in D_s \setminus K.$$

Therefore, the equilibrium potential of the condenser $(f(D_s), f(K))$ is the function

$$u_{s}(x) = h_{s}(f^{-1}(x)) = \frac{h(f^{-1}(x)) - (1-s)}{s}, \quad x \in f(D_{s}) \setminus f(K)$$

and $f(\partial D_r)$ is an equipotential curve of $(f(D_s), f(K))$. By the equality case in Grötzsch's lemma and the equality in (2.6), $\partial f(D_s)$ must be an equipotential curve of the condenser $(G, f(\overline{D_r}))$. Let u_r be the equilibrium potential of $(G, f(\overline{D_r}))$ and let c_s be the constant value of u_r on $\partial f(D_s)$. Since

$$u_s(x) = \frac{h(f^{-1}(x)) - (1-s)}{s} = \frac{s-r}{s}, \quad x \in \partial f(D_r),$$

by the maximum principle we obtain that

$$\frac{s}{(s-r)}u_s(x)=\frac{u_r(x)-c_s}{1-c_s}, \quad x\in f(D_s)\setminus f(\overline{D_r}),$$

or

$$u_r(x) = \frac{s(1-c_s)}{(s-r)}u_s(x) + c_s, \quad x \in f(D_s) \setminus f(\overline{D_r}).$$

Let

$$a=\frac{s(1-c_s)}{(s-r)}+c_s>0.$$

Then the function

$$u(x) = \begin{cases} \frac{u_r(x)}{a}, & x \in G \setminus f(\overline{D_s}), \\ \frac{1}{a} \left(\frac{s(1-c_s)}{(s-r)} u_s(x) + c_s \right), & x \in f(\overline{D_s}) \setminus f(K) \end{cases}$$

is the equilibrium potential of the condenser (G, f(K)). Therefore $\partial f(D_t)$ is an equipotential curve of the condenser (G, f(K)) for every $t \in (0, s]$. Also, by Grötzsch's lemma and the fact that f is univalent on D_s ,

$$\begin{split} I(D,\overline{D_t}) - I(D,\overline{D_s}) &= I(D_s,\overline{D_t}) \\ &= I(f(D_s), f(\overline{D_t})) \\ &= I(f(D), f(\overline{D_t})) - I(f(D), f(\overline{D_s})) \end{split}$$

and therefore

$$\Phi_D(t)=\Phi_D(s),$$

for every $t \in (0, s)$. Let

$$d_0 = \sup\{s \in (0,1): \text{ there exists } 0 < r < s \text{ such that } \Phi_D(r) = \Phi_D(s)\} > 0$$

Then Φ_D is constant on $(0, d_0)$, Φ_D is strictly increasing on $(d_0, 1)$, and f is univalent on D_{d_0} .

Finally, if $d_0 = 1$ then f is univalent on D and $\partial f(D_t)$, $t \in (0, 1)$, is an equipotential curve of the condenser (G, f(K)). The converse is obvious.

We proceed to prove Theorem 1.

Proof of Theorem 1 Recall first the definition

$$\mathcal{C}_2(D,K) = e^{-I(D,K)}$$

which is equivalent to

$$\frac{1}{\bigcap(D,K)} = \log \frac{1}{C_2(D,K)}$$

Let $0 < \epsilon < r < s < 1$ and consider the condenser $(\mathbb{D}, \overline{\epsilon \mathbb{D}})$. Then $\partial(r\mathbb{D})$ and $\partial(s\mathbb{D})$ are equipotential curves of $(\mathbb{D}, \overline{\epsilon \mathbb{D}})$ and by (1.3) and Theorem 2.2,

$$\begin{split} \frac{\mathrm{C}_2\big(f(\mathbb{D}), f(\overline{r\mathbb{D}})\big)}{r} &= \frac{\mathrm{C}_2\big(f(\mathbb{D}), f(\overline{r\mathbb{D}})\big)}{\mathrm{C}_2(\mathbb{D}, \overline{r\mathbb{D}})} \\ &\leq \frac{\mathrm{C}_2\big(f(\mathbb{D}), f(\overline{s\mathbb{D}})\big)}{\mathrm{C}_2(\mathbb{D}, \overline{s\mathbb{D}})} \\ &= \frac{\mathrm{C}_2\big(f(\mathbb{D}), f(\overline{s\mathbb{D}})\big)}{s}. \end{split}$$

The equality statement follows from the corresponding equality statement of Theorem 2.2.

3 Schwarz-Type Lemma for the Inner Radius

We will use the following representation for the inner radius (see [10, p. 127])

$$\log R(D, z_0) = \lim_{\epsilon \to 0} \left[\frac{2\pi}{\bigcap \left(D, \overline{B(z_0, \epsilon)} \right)} - \log \frac{1}{\epsilon} \right]$$
$$= \lim_{\epsilon \to 0} \left[I\left(D, \overline{B(z_0, \epsilon)} \right) - \log \frac{1}{\epsilon} \right].$$

If f is univalent on D, then [10, p. 124] R(f(D), f(0)) = |f'(0)|. If $r \in (0, 1)$, the function

$$g(z) = f(rz), \quad z \in \mathbb{D},$$

is univalent and

$$R(f(r\mathbb{D}), f(0)) = R(g(\mathbb{D}), g(0)) = |g'(0)| = r|f'(0)|.$$

Therefore

(3.1)
$$\frac{R(f(r\mathbb{D}), f(0))}{r} = |f'(0)|$$

for all $r \in (0, 1)$.

We proceed to prove Theorem 2.

Proof of Theorem 2 Let 0 < r < s < 1. By (1.2), (2.1) and (2.2), we obtain that for every ϵ with $0 < \epsilon < r$,

$$(3.2) \quad \log \frac{s}{r} = I(s\mathbb{D}, \overline{r\mathbb{D}})$$

$$\leq I(f(s\mathbb{D}), f(\overline{r\mathbb{D}}))$$

$$\leq I(f(s\mathbb{D}), \overline{f(0) + \epsilon\mathbb{D}}) - I(f(r\mathbb{D}), \overline{f(0) + \epsilon\mathbb{D}})$$

$$= I(f(s\mathbb{D}), \overline{f(0) + \epsilon\mathbb{D}}) - \log \frac{1}{\epsilon} - \left[I(f(r\mathbb{D}), \overline{f(0) + \epsilon\mathbb{D}}) - \log \frac{1}{\epsilon}\right].$$

Therefore

$$\log \frac{s}{r} \le \lim_{\epsilon \to 0} I(f(s\mathbb{D}), \overline{f(0) + \epsilon\mathbb{D}}) - \log \frac{1}{\epsilon} - \left[I(f(r\mathbb{D}), \overline{f(0) + \epsilon\mathbb{D}}) - \log \frac{1}{\epsilon}\right]$$
$$= \log R(f(s\mathbb{D}), f(0)) - \log R(f(r\mathbb{D}), f(0))$$

and

$$\Phi_R(r) = \frac{R(f(r\mathbb{D}), f(0))}{r} \le \frac{R(f(s\mathbb{D}), f(0))}{s} = \Phi_R(s).$$

Suppose that $\Phi_R(r) = \Phi_R(s)$ for some 0 < r < s < 1. Then we must have equality in (3.2). By [15], f is univalent on $s\mathbb{D}$ and by (3.1) Φ_R is constant and equal to |f'(0)| on (0, s). Let

 $s_0 = \sup\{s \in (0,1): \text{ there exists } 0 < r < s \text{ such that } \Phi_R(r) = \Phi_R(s)\} > 0.$

Then Φ_R is constant on $(0, s_0)$ and strictly increasing on $(s_0, 1)$ and f is univalent on $s_0\mathbb{D}$.

4 On the Hyperbolic Metric

For the proof of Theorem 3, we will need two fundamental theorems for the hyperbolic metric and the universal covering maps. The first is the *principle of the hyperbolic metric*.

Theorem 4.1 ([11, p. 682] or [1, p. 43]) Let Δ be a disk, D be a hyperbolic domain, and $f: \Delta \rightarrow D$ be a holomorphic function. Then for all $z \in \Delta$,

(4.1)
$$\lambda_D(f(z))|f'(z)| \le \lambda_\Delta(z).$$

If there exists a point in Δ such that equality holds in (4.1), then f is a universal covering map.

248

Let *D* be a hyperbolic domain and let $f: \mathbb{D} \to D$ be a universal covering map of *D*. Also, let γ be a curve in *D*. A curve $\tilde{\gamma}$ in \mathbb{D} is called a *lifting* of γ if $f \circ \tilde{\gamma} = \gamma$. We need the following theorem.

Theorem 4.2 ([7, p. 246]) Let $D \subset \mathbb{C}$ be a hyperbolic domain with $w_0 \in D$ and let $f: \mathbb{D} \to D$ be a universal covering map of D. If γ is a curve in D with initial point w_0 and $f(z_0) = w_0$, then there is a unique lifting $\tilde{\gamma}$ of γ with initial point z_0 .

We proceed to prove Theorem 3.

Proof of Theorem 3 If *D* is simply connected, then *f* is a Riemann map and by (3.1) and (1.4), Φ_H is constant.

Conversely, assume that *D* is not simply connected. Then there exists a point *a* in the complement of *D* and a simple closed curve $\gamma \colon [0,1] \to D$ such that $\gamma(0) = \gamma(1) = w$ and the winding number of γ around *a* is 1. Let $\tilde{\gamma}$ be the lifting of γ with $\tilde{\gamma}(0) = 0$. Since $\tilde{\gamma}([0,1])$ is a compact subset of \mathbb{D} , there exists $r_o \in (0,1)$ such that $\tilde{\gamma}([0,1]) \subset r_o \mathbb{D}$.

For $n \in \mathbb{N}$, let γ_n : $[0, 1] \to D$ be the curve obtained by tracing the curve γn times and let $\tilde{\gamma}_n$ be the lifting of γ_n with $\tilde{\gamma}_n(0) = 0$. Let $0 = t_1 < t_2 < \cdots < t_n < 1$ be the points in [0, 1] with $\gamma_n(t_i) = w$, $i = 1, 2, \dots, n$. Since $f \circ \tilde{\gamma}_n = \gamma_n$, we have $f(\tilde{\gamma}_n(t_i)) = w$, *i.e.*, the points $\tilde{\gamma}_n(t_i) \in \mathbb{D}$, $i = 1, 2, \dots, n$, are zeros of the function f - w. We claim that

$$\tilde{\gamma}_n(t_i) \neq \tilde{\gamma}_n(t_j), \quad i \neq j.$$

Suppose that $\tilde{\gamma}_n(t_i) = \tilde{\gamma}_n(t_i)$, for some i < j. Consider the closed curve

$$\tilde{\delta}(t) = \tilde{\gamma}_n(t), \quad t \in [t_i, t_i]$$

which lies in \mathbb{D} and note that the number of the zeros of the function f - a in the interior of $\tilde{\delta}$ is $N_{f-a} = 0$. On the other hand, the winding number of $\delta = f \circ \tilde{\delta}$ around the point *a* is $\text{Ind}_{\delta}(a) = j - i > 0$. By the argument principle,

$$0 = N_{f-a} = \frac{1}{2\pi i} \int_{\bar{\delta}} \frac{f'}{f-a} = \text{Ind}_{\delta}(a) = j - i > 0.$$

This contradiction proves the claim above.

Let N be the number of zeros of f - w in $\overline{r_o \mathbb{D}}$. If n > N, then our claim above implies that $\tilde{\gamma}_n([0,1]) \not\subseteq r_o \mathbb{D}$. This shows that the restriction of f on $r_o \mathbb{D}$ is *not* a universal covering map for the domain $f(r_o \mathbb{D})$. The principle of the hyperbolic metric gives

$$\lambda_{f(r_o\mathbb{D})}(w)|f'(0)| < \lambda_{r_o\mathbb{D}}(0).$$

Since $|f'(0)| = \frac{1}{\lambda_{f(\mathbb{D})}(w)}$ and $\lambda_{r_o\mathbb{D}}(0) = \frac{1}{r_o}$, we have

(4.2)
$$\Phi_H(r_o) > \frac{1}{\lambda_{f(\mathbb{D})}(w)}$$

If Φ_H were increasing, then for every $s > r_o$

$$\Phi_H(r_o) \le \Phi_H(s) = \frac{1}{s\lambda_{f(s\mathbb{D})}(w)} \le \frac{1}{s\lambda_{f(\mathbb{D})}(w)}$$

D. Betsakos and S. Pouliasis

and therefore

$$\Phi_H(r_o) \leq \lim_{s \to 1} \frac{1}{s\lambda_{f(\mathbb{D})}(w)} = \frac{1}{\lambda_{f(\mathbb{D})}(w)}$$

contradicting (4.2).

References

- A. F. Beardon and D. Minda, *The hyperbolic metric and geometric function theory*. In: Proceedings of the International Workshop on Quasiconformal Mappings and their Applications, Narosa Publishing House, New Delhi, 2007, 9–56.
- [2] E. F. Beckenbach, A relative of the lemma of Schwarz. Bull. Amer. Math. Soc. 44(1938), 698–707. http://dx.doi.org/10.1090/S0002-9904-1938-06845-0
- D. Betsakos, Geometric versions of Schwarz's lemma for quasiregular mappings. Proc. Amer. Math. Soc. 139(2011), 1397–1407. http://dx.doi.org/10.1090/S0002-9939-2010-10604-4
- [4] _____, Multi-point variations of Schwarz lemma with diameter and width conditions. Proc. Amer. Math. Soc. 139(2011), no. 11, 4041–4052. http://dx.doi.org/10.1090/S0002-9939-2011-10954-7
- [5] R. B. Burckel, D. E. Marshall, D. Minda, P. Poggi-Corradini and T. J. Ransford, Area, capacity and diameter versions of Schwarz's lemma. Conform. Geom. Dyn. 12(2008), 133–152. http://dx.doi.org/10.1090/S1088-4173-08-00181-1
- [6] T. Carroll and J. Ratzkin, *Isoperimetric inequalities and variations on Schwarz's lemma*. Preprint, 2010.
- [7] J. B. Conway, Functions of One Complex Variable. Graduate Texts in Mathematics 11, Springer-Verlag, New York–Heidelberg, 1973.
- [8] V. N. Dubinin, Symmetrization in the geometric theory of functions of a complex variable. (Russian) Uspekhi Mat. Nauk 49(1994), 3–76; translation in Russian Math. Surveys 49(1994), 1–79.
- [9] _____, Geometric versions of the Schwarz lemma and symmetrization. (Russian) Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 383(2010), Analiticheskaya Teoriya Chisel i Teoriya Funktsii. 25, 63–76, 205–206.
- [10] W. K. Hayman, *Multivalent Functions*. Second edition, Cambridge Tracts in Mathematics 110, Cambridge University Press, Cambridge, 1994.
- [11] _____, Subharmonic Functions, Vol. 2. London Mathematical Society Monographs 20, Academic Press, London, 1989.
- [12] G. Julia, Sur les moyennes des modules de fonctions analytiques. Bull. Sci. Math. 51(1927), 198–214.
- R. Laugesen and C. Morpurgo, Extremals for eigenvalues of Laplacians under conformal mappings. J. Funct. Anal. 155(1998), 64–108. http://dx.doi.org/10.1006/jfan.1997.3222
- [14] G. Pólya and G. Szegö, *Problems and Theorems in Analysis. I.* Springer, 1978.
- [15] S. Pouliasis, Condenser capacity and meromorphic functions. Comput. Methods Funct. Theory 11(2011), 237–245.
- [16] J. Xiao and K. Zhu, Volume integral means of holomorphic functions. Proc. Amer. Math. Soc. 139(2011), 1455–1465. http://dx.doi.org/10.1090/S0002-9939-2010-10797-9

Department of Mathematics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece e-mail: betsakos@math.auth.gr spoulias@math.auth.gr

250