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Versions of Schwarz’s Lemma for
Condenser Capacity and Inner Radius
Dimitrios Betsakos and Stamatis Pouliasis

Abstract. We prove variants of Schwarz’s lemma involving monotonicity properties of condenser ca-
pacity and inner radius. Also, we examine when a similar monotonicity property holds for the hyper-
bolic metric.

1 Introduction

Let f be a holomorphic function on the unit disk D = {z ∈ C : |z| < 1}. For
0 < r < 1, let rD = {z ∈ C : |z| < r} and

Rad
(

f (rD)
)

= sup
|z|<r
| f (z)− f (0)|.

According to the classical Schwarz lemma, the function

Φ(r) =
Rad

(
f (rD)

)
r

, 0 < r < 1,

is increasing. Schwarz’s lemma was expressed in this form in [5], where R. B. Burckel,
D. E. Marshall, D. Minda, P. Poggi-Corradini, and T. J. Ransford considered the size
of the image set f (rD), relative to several other geometric quantities, compared to
the size of rD; in particular they proved that the function

(1.1) ΦT(r) =
T
(

f (rD)
)

T(rD)
, 0 < r < 1,

is increasing, where T may be area, diameter or logarithmic capacity. D. Betsakos [3]
proved similar monotonicity properties of quasiregular mappings on the unit ball
of Rn. R. Laugesen and C. Morpurgo [13] and also T. Carroll and J. Ratzkin [6],
under the additional assumption that f is univalent, proved that the function ΦT

in (1.1) is increasing when T
(

f (rD)
)

is the first eigenvalue of the Laplacian with
Dirichlet boundary data. Related results have recently appeared in [4, 9, 16].

Earlier appearances of this idea occurred in [2, 12, 14]. In [12], G. Julia proved
that for 0 < p <∞, the function

Φp(r) =

∫ 2π
0 | f (reit )|p dt

rp
, 0 < r < 1,
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is increasing. E. F. Beckenbach [2] showed that if f is holomorphic in D and for all
r ∈ (0, 1) and all θ ∈ [−π, π], ∫ r

0
| f ′(ρeiθ)| dρ ≤ 1,

then, in fact, for all r ∈ (0, 1) and for all θ ∈ [−π, π],∫ r

0
| f ′(ρeiθ)| dρ ≤ r.

G. Pólya and G. Szegö [14, Problem 309] proved that the function

ΦL(r) =
L
(

f (|z| = r)
)

2πr
, 0 < r < 1,

(where L
(

f (|z| = r)
)

is the length of the curve f (|z| = r)) is increasing.
In the present paper, we prove an analogous monotonicity property for the capac-

ity of a condenser. A condenser in the complex plane C is a pair (D,K) where D is a
Greenian open subset of C and K is a compact subset of D. Let h be the solution of the
generalized Dirichlet problem on D \ K with boundary values 0 on ∂D and 1 on ∂K.
The function h is the equilibrium potential of the condenser (D,K). The capacity of
(D,K) is

e(D,K) =

∫
D\K
|∇h|2.

The equilibrium energy of (D,K) is the extended real number

I(D,K) =
2π

e(D,K)
.

We set
C2(D,K) = e−I(D,K).

It is easy to compute the equilibrium energy of an annulus:

(1.2) I(sD, rD) = log
s

r
, r < s.

It follows that

(1.3) C2(D, rD) = r.

We refer to [10] and [8] for more information about condenser capacities.

Theorem 1 Let f : D → C be a holomorphic function such that f (D) is a Greenian
domain. Then the function

ΦC (r) =
C2

(
f (D), f (rD)

)
r

, r ∈ (0, 1),

is increasing. If ΦC is not strictly increasing, there exists d0 ∈ (0, 1] such that ΦC is
constant on (0, d0), ΦC is strictly increasing on (d0, 1), and f is univalent on d0D.
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In fact, Theorem 1 will follow from a more general result about condenser capac-
ity. This result is Theorem 2.2 and will be proved in Section 2.

Let D ⊂ C be a Greenian domain with a Green function GD(x, y) and z0 ∈ D. The
limit

γ = lim
z→z0

[
G(z, z0)− log

1

z − z0

]
exists. The inner radius R(D, z0) of D at z0 is [10, p. 123]

R(D, z0) = eγ .

A simple property of the inner radius is that if D is simply connected and f maps D
conformally onto D with f (0) = z0, then R(D, z0) = | f ′(0)|. It follows that
R(rD, 0) = r. In Section 3 we will prove the following monotonicity property for
the inner radius R

(
f (rD), f (0)

)
.

Theorem 2 Let f : D→ C be a holomorphic function. Then the function

ΦR(r) =
R
(

f (rD), f (0)
)

r
, 0 < r < 1,

is increasing. Moreover, if ΦR is not strictly increasing, there exists an s0 ∈ (0, 1] such
that ΦR is constant on (0, s0) and strictly increasing on (s0, 1), and f is univalent on s0D.

We next recall the definition of the hyperbolic metric (see [1, p. 41], [11, p. 682]. A
planar domain D is called hyperbolic provided that C \D contains at least two points.
Let ∆ be a disk; a holomorphic function f : ∆ → D is a universal covering map of D
if every point in D has an open neighborhood V such that f−1(V ) is a disjoint union
of open sets Ui and the restriction of f to Ui is a conformal map of Ui onto V . Let D
be a hyperbolic domain and let z ∈ D. By the uniformization theorem, there exists a
universal covering map f : D→ D with f (0) = z. The density of the hyperbolic metric
for D at the point z is defined by

λD(z) =
1

| f ′(0)|
.

Clearly, if D is simply connected, then

(1.4) λD(z) =
1

R(D, z)
.

In view of Theorem 2, one may ask whether an analogous monotonicity property
holds for the hyperbolic metric. We show that the answer is negative.

Theorem 3 Let D be a hyperbolic domain in C, let w ∈ D, and let f : D → D be a
universal covering map of D with f (0) = w. Let

ΦH(r) =
1

rλ f (rD)(w)
, 0 < r < 1.

The function ΦH is increasing if and only if D is simply connected (in which case f is
univalent and ΦH is constant).

This theorem will be proved in Section 4.
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2 Schwarz-Type Lemma for Condenser Capacity

We start by stating some known results that we will need later. It is well known that
holomorphic functions decrease the capacity of a condenser, that is

(2.1) e
(

f (D), f (K)
)
≤ e(D,K).

Moreover, equality holds only when f is univalent; see [15].
A condenser (D,K) will be called regular if the open set D \ K is regular for the

Dirichlet problem and every connected component of D \ K has boundary points
on both sets ∂D and K. Let h be the equilibrium potential of the regular condenser
(D,K). The sets

{z ∈ D \ K : h(z) = r}, 0 < r < 1,

are called equipotential curves of (D,K). We recall Grötzsch’s lemma:

Theorem 2.1 ([8, p. 9]) Let (D,K) be a condenser. Let G be an open set such that
K ⊂ G and G ⊂ D. Then

(2.2) I(D,K) ≥ I(D,G) + I(G,K).

If the condensers (D,K), (D,G) and (G,K) are regular, then equality holds in (2.2) if
and only if ∂G is an equipotential curve of (D,K).

Let (D,K) be a regular condenser and let h be its equilibrium potential. We extend
h on D by setting h = 1 on K. Then h is a continuous superharmonic function on D.
For every r ∈ (0, 1), we consider the open set

Dr = {x ∈ D : h(x) > 1− r}.

Then for 0 < r < s < 1,

K ⊂ Dr ⊂ Dr ⊂ Ds ⊂ Ds ⊂ D.

Therefore the condensers (D,Dr) and (Ds,Dr) are well defined and regular. We have
the following monotonicity theorem for condenser capacity.

Theorem 2.2 Let (D,K) be a regular condenser and let Dr, 0 < r < 1, be as above.
Also, let f be a holomorphic function which is non-constant on every connected com-
ponent of D and let G be a Greenian open set such that f (D) ⊂ G and (G, f (K)) is a
regular condenser. Then the functions

ΦK (r) =
1

e
(

f (Dr), f (K)
) − 1

e(Dr,K)
, r ∈ (0, 1),

and

ΦD(r) =
1

e(D,Dr)
− 1

e
(

G, f (Dr)
) , r ∈ (0, 1),
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are increasing. If ΦK is not strictly increasing, there exists k0 ∈ (0, 1] such that ΦK =
0 on (0, k0), ΦK is strictly increasing on (k0, 1), and f is univalent on Dk0 . If ΦD is
not strictly increasing, there exists d0 ∈ (0, 1] such that ΦD is constant on (0, d0), ΦD

is strictly increasing on (d0, 1), and f is univalent on Dd0 . Also, ΦD is constant on
(0, 1) (i.e., d0 = 1) if and only if f is univalent on D and ∂ f (Dr), r ∈ (0, 1), is an
equipotential curve of the condenser

(
G, f (K)

)
.

Proof Let 0 < r < s < 1. We will consider the functions ΦK and ΦD separately.
First we consider the function ΦK . By inequality (2.1) and Grötzsch’s lemma,

I(Ds,K)− I(Dr,K) = I(Ds,Dr)

≤ I
(

f (Ds), f (Dr)
)

≤ I
(

f (Ds), f (K)
)
− I
(

f (Dr), f (K)
)
.

(2.3)

Therefore

1

e
(

f (Dr), f (K)
) − 1

e(Dr,K)
≤ 1

e
(

f (Ds), f (K)
) − 1

e(Ds,K)
,

which means that

(2.4) ΦK (r) ≤ ΦK (s).

Suppose that equality holds in (2.4). Then the inequality (2.3) must be an equality.
By [15], f must be univalent in Ds and therefore ΦK = 0 on (0, s). Let

k0 = sup{s ∈ (0, 1) : there exists 0 < r < s such that ΦK (r) = ΦK (s)} > 0.

Then ΦK = 0 on (0, k0), ΦK is strictly increasing on (k0, 1), and f is univalent on Dk0 .
Now we consider the function ΦD. By inequality (2.1) and Grötzsch’s lemma,

I(D,Dr)− I(D,Ds) = I(Ds,Dr)

≤ I
(

f (Ds), f (Dr)
)

(2.5)

≤ I
(

G, f (Dr)
)
− I
(

G, f (Ds)
)
.(2.6)

Therefore

1

e(D,Dr)
− 1

e
(

G, f (Dr)
) ≤ 1

e(D,Ds)
− 1

e
(

G, f (Ds)
) ,

which means

(2.7) ΦD(r) ≤ ΦD(s).
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Suppose that equality holds in (2.7). Then the inequalities (2.5) and (2.6) must
be equalities. By [15] and the equality in (2.5), f must be univalent in Ds. The
equilibrium potential of the condenser (Ds,K) is the function

hs(x) =
h(x)− (1− s)

s
, x ∈ Ds \ K.

Therefore, the equilibrium potential of the condenser
(

f (Ds), f (K)
)

is the function

us(x) = hs

(
f−1(x)

)
=

h
(

f−1(x)
)
− (1− s)

s
, x ∈ f (Ds) \ f (K)

and f (∂Dr) is an equipotential curve of
(

f (Ds), f (K)
)

. By the equality case in
Grötzsch’s lemma and the equality in (2.6), ∂ f (Ds) must be an equipotential curve
of the condenser

(
G, f (Dr)

)
. Let ur be the equilibrium potential of

(
G, f (Dr)

)
and

let cs be the constant value of ur on ∂ f (Ds). Since

us(x) =
h
(

f−1(x)
)
− (1− s)

s
=

s− r

s
, x ∈ ∂ f (Dr),

by the maximum principle we obtain that

s

(s− r)
us(x) =

ur(x)− cs

1− cs
, x ∈ f (Ds) \ f (Dr),

or

ur(x) =
s(1− cs)

(s− r)
us(x) + cs, x ∈ f (Ds) \ f (Dr).

Let

a =
s(1− cs)

(s− r)
+ cs > 0.

Then the function

u(x) =

{
ur(x)

a , x ∈ G \ f (Ds),
1
a

(
s(1−cs)
(s−r) us(x) + cs

)
, x ∈ f (Ds) \ f (K)

is the equilibrium potential of the condenser
(

G, f (K)
)

. Therefore ∂ f (Dt ) is an

equipotential curve of the condenser
(

G, f (K)
)

for every t ∈ (0, s]. Also, by
Grötzsch’s lemma and the fact that f is univalent on Ds,

I(D,Dt )− I(D,Ds) = I(Ds,Dt )

= I
(

f (Ds), f (Dt )
)

= I
(

f (D), f (Dt )
)
− I
(

f (D), f (Ds)
)

and therefore
ΦD(t) = ΦD(s),
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for every t ∈ (0, s). Let

d0 = sup{s ∈ (0, 1) : there exists 0 < r < s such that ΦD(r) = ΦD(s)} > 0.

Then ΦD is constant on (0, d0), ΦD is strictly increasing on (d0, 1), and f is univalent
on Dd0 .

Finally, if d0 = 1 then f is univalent on D and ∂ f (Dt ), t ∈ (0, 1), is an equipoten-
tial curve of the condenser

(
G, f (K)

)
. The converse is obvious.

We proceed to prove Theorem 1.

Proof of Theorem 1 Recall first the definition

C2(D,K) = e−I(D,K)

which is equivalent to
1

e(D,K)
= log

1

C2(D,K)
.

Let 0 < ε < r < s < 1 and consider the condenser (D, εD). Then ∂(rD) and ∂(sD)
are equipotential curves of (D, εD) and by (1.3) and Theorem 2.2,

C2

(
f (D), f (rD)

)
r

=
C2

(
f (D), f (rD)

)
C2(D, rD)

≤
C2

(
f (D), f (sD)

)
C2(D, sD)

=
C2

(
f (D), f (sD)

)
s

.

The equality statement follows from the corresponding equality statement of The-
orem 2.2.

3 Schwarz-Type Lemma for the Inner Radius

We will use the following representation for the inner radius (see [10, p. 127])

log R(D, z0) = lim
ε→0

[ 2π

e
(

D,B(z0, ε)
) − log

1

ε

]
= lim

ε→0

[
I
(

D,B(z0, ε)
)
− log

1

ε

]
.

If f is univalent on D, then [10, p. 124] R
(

f (D), f (0)
)

= | f ′(0)|. If r ∈ (0, 1),
the function

g(z) = f (rz), z ∈ D,

is univalent and

R
(

f (rD), f (0)
)

= R
(

g(D), g(0)
)

= |g ′(0)| = r| f ′(0)|.
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Therefore

(3.1)
R
(

f (rD), f (0)
)

r
= | f ′(0)|,

for all r ∈ (0, 1).
We proceed to prove Theorem 2.

Proof of Theorem 2 Let 0 < r < s < 1. By (1.2), (2.1) and (2.2), we obtain that for
every ε with 0 < ε < r,

log
s

r
= I(sD, rD)

≤ I
(

f (sD), f (rD)
)

≤ I
(

f (sD), f (0) + εD
)
− I
(

f (rD), f (0) + εD
)

= I
(

f (sD), f (0) + εD
)
− log

1

ε
−
[

I
(

f (rD), f (0) + εD
)
− log

1

ε

]
.

(3.2)

Therefore

log
s

r
≤ lim

ε→0
I
(

f (sD), f (0) + εD
)
− log

1

ε
−
[

I
(

f (rD) f (0) + εD
)
− log

1

ε

]
= log R

(
f (sD), f (0)

)
− log R

(
f (rD), f (0)

)
and

ΦR(r) =
R
(

f (rD), f (0)
)

r
≤

R
(

f (sD), f (0)
)

s
= ΦR(s).

Suppose that ΦR(r) = ΦR(s) for some 0 < r < s < 1. Then we must have equality
in (3.2). By [15], f is univalent on sD and by (3.1) ΦR is constant and equal to | f ′(0)|
on (0, s). Let

s0 = sup{s ∈ (0, 1) : there exists 0 < r < s such that ΦR(r) = ΦR(s)} > 0.

Then ΦR is constant on (0, s0) and strictly increasing on (s0, 1) and f is univalent
on s0D.

4 On the Hyperbolic Metric

For the proof of Theorem 3, we will need two fundamental theorems for the hyper-
bolic metric and the universal covering maps. The first is the principle of the hyperbolic
metric.

Theorem 4.1 ([11, p. 682] or [1, p. 43]) Let ∆ be a disk, D be a hyperbolic domain,
and f : ∆→ D be a holomorphic function. Then for all z ∈ ∆,

(4.1) λD

(
f (z)

)
| f ′(z)| ≤ λ∆(z).

If there exists a point in ∆ such that equality holds in (4.1), then f is a universal covering
map.
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Let D be a hyperbolic domain and let f : D→ D be a universal covering map of D.
Also, let γ be a curve in D. A curve γ̃ in D is called a lifting of γ if f ◦ γ̃ = γ. We need
the following theorem.

Theorem 4.2 ([7, p. 246]) Let D ⊂ C be a hyperbolic domain with w0 ∈ D and let
f : D → D be a universal covering map of D. If γ is a curve in D with initial point w0

and f (z0) = w0, then there is a unique lifting γ̃ of γ with initial point z0.

We proceed to prove Theorem 3.

Proof of Theorem 3 If D is simply connected, then f is a Riemann map and by (3.1)
and (1.4), ΦH is constant.

Conversely, assume that D is not simply connected. Then there exists a point a
in the complement of D and a simple closed curve γ : [0, 1] → D such that γ(0) =
γ(1) = w and the winding number of γ around a is 1. Let γ̃ be the lifting of γ with
γ̃(0) = 0. Since γ̃([0, 1]) is a compact subset of D, there exists ro ∈ (0, 1) such that
γ̃([0, 1]) ⊂ roD.

For n ∈ N, let γn : [0, 1]→ D be the curve obtained by tracing the curve γ n times
and let γ̃n be the lifting of γn with γ̃n(0) = 0. Let 0 = t1 < t2 < · · · < tn < 1
be the points in [0, 1] with γn(ti) = w, i = 1, 2, . . . , n. Since f ◦ γ̃n = γn, we have
f
(
γ̃n(ti)

)
= w, i.e., the points γ̃n(ti) ∈ D, i = 1, 2, . . . , n, are zeros of the function

f − w. We claim that
γ̃n(ti) 6= γ̃n(t j), i 6= j.

Suppose that γ̃n(ti) = γ̃n(t j), for some i < j. Consider the closed curve

δ̃(t) = γ̃n(t), t ∈ [ti , t j]

which lies in D and note that the number of the zeros of the function f − a in the
interior of δ̃ is N f−a = 0. On the other hand, the winding number of δ = f ◦ δ̃
around the point a is Indδ(a) = j − i > 0. By the argument principle,

0 = N f−a =
1

2πi

∫
δ̃

f ′

f − a
= Indδ(a) = j − i > 0.

This contradiction proves the claim above.
Let N be the number of zeros of f − w in roD. If n > N, then our claim above

implies that γ̃n([0, 1]) * roD. This shows that the restriction of f on roD is not
a universal covering map for the domain f (roD). The principle of the hyperbolic
metric gives

λ f (roD)(w)| f ′(0)| < λroD(0).

Since | f ′(0)| = 1
λ f (D)(w) and λroD(0) = 1

ro
, we have

(4.2) ΦH(ro) >
1

λ f (D)(w)
.

If ΦH were increasing, then for every s > ro

ΦH(ro) ≤ ΦH(s) =
1

sλ f (sD)(w)
≤ 1

sλ f (D)(w)
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and therefore

ΦH(ro) ≤ lim
s→1

1

sλ f (D)(w)
=

1

λ f (D)(w)
,

contradicting (4.2).
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