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Abstract. We consider for each t the set K (t) of points of the circle whose forward
orbit for the doubling map does not intersect (0, t), and look at the dimension function
η(t) := H.dim K (t). We prove that at every bifurcation parameter t , the local Hölder
exponent of the dimension function equals the value of the function η(t) itself. A
similar statement holds for general expanding maps of the circle: namely, we consider
the topological entropy of the map restricted to the survival set, and obtain bounds on its
local Hölder exponent in terms of the value of the function.

1. Introduction
The theory of open dynamical systems, also known as dynamical systems ‘with holes’, was
developed to model physical phenomena with escape of mass. One of the simplest models
that can be analyzed rigorously is the case of expanding maps of the circle S := R/Z,
where the hole is an interval with a fixed point on its boundary.

More precisely, we shall fix an integer d ≥ 2 once and for all, and consider g(x) := dx
mod 1 the map given by multiplication by d on the circle S. For each t ∈ [0, 1], let us
define the set

K (t) := {x ∈ R/Z : gk(x) /∈ (0, t) ∀k ≥ 0}

of elements whose forward orbit under g does not intersect the interval (0, t). For each
t , the set K (t) is compact and forward invariant for g. One can see, immediately, that
K (0)= S and K (1)= {0}; moreover, K (t) is a decreasing family of sets, in the sense that
s < t implies K (s)⊇ K (t).

We shall consider the dimension function

η(t) := H.dim K (t),

which gives the Hausdorff dimension of the set K (t) as a function of the parameter t .
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FIGURE 1. The dimension function η(t) for d = 2.

The function η(t) was introduced by Urbański [14], who proved that it is continuous,
but not globally analytic. In fact, he showed that the dimension function is a ‘devil’s
staircase’, that is, it is locally constant almost everywhere (see Figure 1).

In order to describe the finer analytical properties of η(t), we shall call the set of
parameters t for which the set-valued function t 7→ K (t) is locally constant at t the stable
set, and the complement of the stable set will be called the bifurcation set and will be
denoted by U . Clearly, the dimension function is locally constant on the stable set (actually,
η is locally constant only on the stable set; see after Theorem 1).

We shall prove that, on the bifurcation set, the dimension function η(t) has the following
strong self-parametrizing property.

At every bifurcation parameter, the local Hölder exponent of the dimension
function equals the value of the function itself.

To state the result precisely, let us define the local Hölder exponent of a function f : I → R
at a point x ∈ I as the limit

α( f, x) := lim inf
x ′→x

log | f (x)− f (x ′)|
log |x − x ′|

.

The main theorem is the following.

THEOREM 1. Let d ≥ 2. Then, for each parameter t in the bifurcation set, the local Hölder
exponent of η at t equals η(t): that is,

α(η, t)= η(t). (1)
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As a corollary, the dimension function is always locally Hölder continuous except at
t = (d − 1)/d (where η(t)= 0) and becomes more and more regular as t tends to zero.
Actually, η is known to be differentiable at t = 0 (see [7]). At t = (d − 1)/d , the function
is not Hölder continuous, and we shall show that its modulus of continuity is of order
(log log(1/x))/log(1/x) (see Proposition 15). Moreover, the intervals where the function
is constant correspond precisely to the connected components of the stable set, and these
are characterized in terms of Lyndon words (see below).

The dimension function η is directly related to other quantities which have been widely
studied. First, if we denote the set of points which do not fall into the hole under the first n
iterates by Mn := {x ∈ S : gk(x) /∈ (0, t) for k = 0, . . . , n − 1}, we can define the escape
rate γ to be

γ := lim
n→∞

−
1
n

log |Mn|.

The escape rate is directly related to η by the formula

η = 1−
γ

log d
.

In particular, the asymptotic behaviour of γ in the ‘small hole’ case is quite well
understood (see, for example, [7] and [3]); this gives an asymptotic expansion of η(t)
as t→ 0. Moreover, if we denote the topological entropy of the restriction of the map g to
K (t) by H(t), then (see, for example, [15])

H(t)= η(t) · log d.

Actually, Urbański [14] casts the problem in the following more general setting. Recall
that a C1 map f : S→ S is called expanding if infx∈S | f ′(x)|> 1. Let f : S→ S be an
expanding map of the circle of degree d, and let us assume that zero is a fixed point of f .
He considers the survival set

K f (t) := {x ∈ S : f k(x) /∈ (0, t) ∀k ≥ 0}

and the topological entropy of f restricted to the survival set, that is, the function

H(t) := htop( f |K f (t)). (2)

As is well known, in this case f is topologically conjugate to the map g(x) := dx mod 1,
and the conjugacy is Hölder continuous. Thus we have the following corollary.

COROLLARY 2. Let f be an expanding C1 map of the circle, of degree d, and let H(t) be
defined as above. Then H is locally Hölder continuous at points t for which H(t) > 0, and
there are positive constants C1, C2, which depend only on f , for which the local Hölder
exponent satisfies

α(H, t)≥ C1 H(t) for all t ∈ [0, 1]

and, for every t in the bifurcation set,

α(H, t)≤ C2 H(t).

As a consequence, H is not locally Hölder continuous at the point

t? := sup{t : H(t) > 0}.
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In a recent paper [1], Bandtlow and Rugh independently obtain similar results using
thermodynamic formalism. In fact, they prove an inequality of type α(H, t)≥ C H(t) for
more general expansive interval maps and more general holes.

The set K (t) is also related to the problem of diophantine approximation (see [11]): in
fact, if one considers the set

Ft := {x ∈ S : x − m/2n
≥ t/2n for all but a finite number of m, n}

of points which are not well approximable (in a suitable sense) by dyadic numbers, then,
for any t ∈ [0, 1],

η(t)= H.dim Ft .

One important tool for the proof of Theorem 1 is a formula, due to Urbański [14, p. 305]
which allows us to compute the value of η(t) given the expansion in base d of t ∈ U . In
order to state the result precisely, note that each real number t ∈ (0, 1] admits exactly one
expansion t = .ε1ε2 . . . in base d such that the sequence (εn)n∈N is not eventually zero. We
shall call such an expansion the non-degenerate expansion of t . Let t ∈ U be a bifurcation
parameter, and let t = .ε1ε2 . . . be its non-degenerate expansion in base d . Then η = η(t),
the Hausdorff dimension of K (t), is given by

η =−
log λ
log d

, (3)

where λ is a root of the equation Pt (λ)= 1, and Pt (X) is the power series

Pt (X) :=
∞∑

k=1

(d − 1− εk)X k . (4)

Let us stress that this formula is only valid for t ∈ U (see Remark 12).
The other main ingredient in our approach is an explicit characterization of the

expansions in base d of the elements of U . In particular, we will show (Proposition 5)
that the connected components of the complement of U are naturally labeled by Lyndon
words, that is, finite words which are minimal for the lexicographic order among their
cyclic permutations. This also answers the question of Nilsson [11, §6], who asks for a
characterization of the plateaux of the dimension function for d > 2; in the case d = 2, our
characterization is essentially equivalent to that given in [11]. In fact, using this description
of U we will recover, in a self-contained, elementary way, the main results of [14], using
combinatorics on words rather than thermodynamic formalism (see Remark 17). Finally,
the statement of Theorem 1 also holds for an alternative definition of local Hölder exponent
(see Theorem 16).

Note that, without any reference to dynamics, one can ask whether there exist monotone,
continuous functions f : [0, 1] → [0, 1] with the property that, for each t ∈ [0, 1], either
f is locally constant at t or the local Hölder exponent of f at t equals f (t). The functions
η(t), for varying d , provide an infinite number of such examples (hence this property does
not determine the function uniquely).

Moreover, functions with this property seem to also appear in relation to other families
of dynamical systems. In particular, if one considers the function h(θ) := htop( fθ )/log 2,
which expresses the (normalized) topological entropy of a real quadratic polynomial fθ , as
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a function of its external angle θ (or equivalently, as a function of its kneading sequence),
then it is also expected that the local Hölder exponent of h(t) at t equals the value of the
function h(t) (see, for example, [4] and [6, §4]). Note that, in this case, the kneading series
of [9] plays the same role as the power series Pt (X) in this paper. However, in this case,
the modulus of continuity at the smallest t , where h(t)= 0 (the Feigenbaum parameter),
is of order 1/(log(1/x)) (see, for example, [12, §9.1]). Another more complicated, non-
monotone case, where the local Hölder exponent is at least conjectured to equal the value of
the function at every point, is given by the (normalized) core entropy function for quadratic
polynomials introduced by W. Thurston (see, for example, [13]).

The underlying phenomenon, of which Theorem 1 and Corollary 2 provide quantitative
statements in a specific case, seems to be that systems with low entropy are less stable than
systems with high entropy, in the sense that a small perturbation leads to a large variation
in entropy. It would be of great interest to investigate to what extent this phenomenon is
universal.

2. Word combinatorics and ordering
Let d ≥ 2 be fixed once and for all. We define the alphabet as the set A := {0, 1, . . . ,
d − 1}, and (finite or infinite) sequences of elements of A will be called words. If S, T ∈
An are finite words of equal length, we write S < T to denote the lexicographical order;
moreover, we shall extend the order to a partial order on the set of all finite words in
the following way. If S = (a1, . . . , an) and T = (b1, . . . , bm) are finite words, we write
S� T (and read S is strongly less than T ) if there exists an index k ≤min{m, n} such that
ai = bi for all 1≤ i ≤ k − 1 and ak < bk . For instance, 001 is strongly less than 01 but not
strongly less than 00101.

Definition 3. Let us define a finite word S to be Lyndon if it is strongly less than all its
proper suffixes: that is, if, for each decomposition S = XY into two non-empty words,

S� Y.

For instance, 011 is Lyndon because 011� 11 and 011� 1, but 01101 is not Lyndon,
because 01 is a suffix of 01101 but 01101 is not strongly less than 01. Note that words of
one letter are Lyndon by definition.

We shall call d-rational a rational number which admits a finite expansion in base d ,
and denote the set of d-rational numbers contained in the interval (0, 1) by Q(d).

Definition 4. A d-rational number r ∈ (0, 1) is called Lyndon (for a given base d) if it
admits a finite expansion r = .ε1 . . . εm in base d such that the word S = ε1 . . . εm is
Lyndon (note that such expansion is unique, because the Lyndon property implies εm 6= 0).

We shall denote the set of Lyndon rational numbers in (0, 1) by QLyn. Note that the
one letter word 0 is the only Lyndon word which does not correspond to a Lyndon rational
number.

Finally, if S = ε1 . . . εm is a finite word and x ∈ [0, 1], we shall denote by

S · x :=
m∑

i=1

εi d−i
+ xd−m (5)
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the number whose expansion in base d is S followed by the expansion of x . The affine
map x 7→ S · x is an inverse to gm and is uniformly contracting with derivative d−m .

Lyndon words appear in several contexts in combinatorics: for a reference, see, for
example, [8, p. 64]. Another equivalent definition given in the literature is that a word S is
Lyndon if it is the smallest among all its cyclic permutations: that is, if

S < Y X

whenever S = XY is a decomposition of S into two non-empty words (for the equivalence,
cf. Lemma 9).

3. The bifurcation set
Let us start by considering the function t 7→ K (t) as a function into sets. We shall call a
parameter t ∈ [0, 1] stable if the function t 7→ K (t) is locally constant at t : that is, if there
exists ε > 0 such that the equality

K (t ′)= K (t)

holds for each t ′ ∈ [t − ε, t + ε]. We call such a set of parameters the stable set. A
parameter which is not stable will be called a bifurcation parameter, and the set of all
bifurcation parameters will be called bifurcation set and denoted by U .

The set U is closed with no interior, and has the characterization given by

U = {t ∈ [0, 1] : gk(t) /∈ (0, t) ∀k ≥ 0} (6)

(for a proof, see Lemma 6). The main goal of this section is to characterize all connected
components of the complement of U ; we shall see that they are naturally labeled by Lyndon
rational numbers.

Let us define, for each d-rational r ∈Q(d), the interval

Ir := (.ε1 . . . εm, .ε1 . . . εm)

with left endpoint r and right endpoint the rational number with periodic base-d expansion
ε1 . . . εm . For instance, in the case d = 2, if r = 1/4= .01, then .01= 1/3 and hence
I1/4 = (1/4, 1/3). Note also that I1/2 = (1/2, 1).

PROPOSITION 5. The connected components of the complement of U are parametrized by
Lyndon rational numbers. Indeed, we have the identities

[0, 1]\U =
⊔

r∈QLyn

Ir =
⋃

r∈Q(d)

Ir .

The proposition will follow from the following lemmata.

LEMMA 6. Let t ∈ [0, 1). Then the following are equivalent:
(1) the element t belongs to K (t); and
(2) t is a bifurcation parameter.
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Proof of Lemma 6. If t ∈ K (t), then, for each t ′ > t , the element t belongs to K (t)\K (t ′),
proving (2).

If, instead, t /∈ K (t), then let t ′ := inf{x ∈ [t, 1] : x ∈ K (t)}> t (the inequality is strict
since K (t) is closed). We claim that K (t ′)= K (t); indeed, if x ∈ K (t) then, for each k, we
have gk(x) ∈ K (t)⊂ [t ′, 1], and hence x ∈ K (t ′). Moreover, let us show that there exists
ε > 0 such that, for t ′ ∈ (t − ε, t), we have K (t ′)= K (t). If not, then there would be a
sequence of parameters tn→ t , tn < t and a sequence of elements xn ∈ K (tn)\K (t). By
taking forward images of xn , we would then get a sequence yn = gkn (xn) ∈ K (tn) ∩ [tn, t]:
this would imply that yn→ t and

gk(yn) ∈ [tn, 1]

for each k and n. Thus, since g is continuous on S, we would have gk(t) ∈ [t, 1], which
contradicts the fact that t /∈ K (t). �

LEMMA 7. For each d-rational r ∈Q(d), the interval Ir is contained in the stable set
[0, 1]\U .

Proof. Indeed, if r = .ε1 . . . εm , then the map gm is uniformly expanding of derivative dm ,
it has r = .ε1 . . . εm as its fixed point and maps (r, r) onto (0, r). Thus, if x ∈ (r, r), then
|gm(x)− r |> |x − r |, and hence gm(x) ∈ (0, x) and x /∈ U . �

LEMMA 8. Let x /∈ U . Then x belongs to some interval Ir with ∂ Ir ⊆ U .

Proof. Let x /∈ U , and k ≥ 1 be the minimum value such that

gk(x) ∈ (0, x). (7)

Let x = .ε1ε2 . . . be the non-degenerate expansion of x , let Sk := ε1 . . . εk denote its
truncation and write r := Sk · 0= .ε1 . . . εk . Note that the map gk is an orientation-
preserving bijection from Jk := Sk · (0, 1] onto (0, 1] with derivative dk , and r :=
.ε1 . . . εk is its fixed point. Now note that, by construction, x belongs to Jk ; moreover, if
x ≥ r , then gk(x)= dk(x − r)+ r ≥ x , which contradicts equation (7). Thus, x belongs
to Ir := (r, r), proving the first part of the claim.

Moreover, we claim that, for each h = {1, . . . , k − 1},

gh(Jk)⊆ (r , 1), (8)

which implies that both r and r belong to U . Thus ∂ Ir ⊆ U , as required. To prove
equation (8), let us pick y ∈ Jk ; if y ≥ r , then

gh(y)= gh(x)+ dh(y − x) > x + (y − x)= y ≥ r . (9)

Now, if there exists y ∈ Jk ∩ (0, r) such that gh(y) < r , then, by the intermediate
value theorem, there must exist z ∈ Jk ∩ (0, r) such that gh(z)= r , and hence gk(z)=
gk−h(r)≥ r , by the previous observation (equation (9) with k − h instead of h). However,
this is contradictory because gk(z) ∈ gk(Jk ∩ (0, r))= (0, r). �

LEMMA 9. Let S = ε1 . . . εm ∈Am be a word with εm 6= 0, and r = .ε1 . . . εm the
associated d-rational. Then the following are equivalent:
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(1) ∂ Ir belongs to U; and
(2) S is a Lyndon word.

Proof. If S is Lyndon, then, for each h ∈ {1, . . . , m − 1},

gh(r)= .εh+1 . . . εm0> .ε1 . . . εm0= r

and, similarly, gh(r) > r . Thus the endpoints of Ir belong to U . Conversely, if r ∈ U , then,
for each h ∈ {1, . . . , m − 1},

.ε1 . . . εm0= r ≤ gh(r)= .εh+1 . . . εm0,

and hence ε1 . . . εm � εh+1 . . . εm unless εh+1 . . . εm is a prefix of ε1 . . . εm and
εm−h+1 . . . εm is all zeros, which is not possible since εm 6= 0, by hypothesis. �

Proof of Proposition 5. It is easy to prove that the complement of U is open: namely,
if t /∈ U , then, by Lemma 6 (1), there exists k ≥ 0 such that gk(t) ∈ (0, t), and such a
condition is open in t . From Lemmas 8, 9 and 7, respectively, we have the chain of
inclusions

[0, 1]\U ⊆
⋃
∂ Ir⊆U

Ir ⊆
⋃

r∈Q(d)

Ir ⊆ [0, 1]\U ,

and thus equality must hold. Note, also, that two intervals Ir whose endpoints lie in U may
not overlap, and hence their union must be disjoint. Moreover, by Lemma 9, the set of
rationals r , for which ∂ Ir ⊆ U , coincides with the set QLyn of Lyndon rationals, and hence
we get

[0, 1]\U =
⊔

r∈QLyn

Ir =
⋃

r∈Q(d)

Ir .

As a consequence, the complement of U contains a right neighborhood of any d-rational,
and hence U has no interior. �

4. Structure and dimension of K (t)
In this chapter, we show that the set K (t) has a countable Markov partition, which we can
easily describe, and can be used to compute the Hausdorff dimension of K (t). This gives
an alternative proof of Urbański’s formula [14, p. 305].

PROPOSITION 10. Let d ≥ 2, and t ∈ U be a bifurcation parameter with non-degenerate
base-d expansion t = .ε1ε2 . . . . Then η = η(t), the Hausdorff dimension of K (t), is given
by

η =−
log λ
log d

,

where λ is a root of the equation
Pt (λ)= 1 (10)

and Pt (X) is the power series

Pt (X) :=
∞∑

k=1

(d − 1− εk)X k .
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Note that the series Pt (X) always converges inside the unit disk and, by the intermediate
value theorem, equation (10) has exactly one root in the interval (0, 1]. Whenever t has a
purely periodic expansion of period p, the series Pt (X) becomes a rational function and
λ= d−η(t) is the root of a polynomial of degree p.

As an example, in the case d = 2, if t = .001= 1/7, then

Pt (X)= X + X2
+ X4

+ X5
+ · · · =

X + X2

1− X3

so λ= 2−η(t) is a root of Pt (λ)= 1, that is, satisfies λ3
+ λ2

+ λ− 1= 0.
Let t ∈ (0, 1], and t = .ε1ε2 . . . be its non-degenerate expansion in base d. For each

k ≥ 1 and s ∈A, define the word

Sk,s(t) := ε1 . . . εk−1s

and consider the set of words

6(t) := {Sk,s(t) : εk < s}.

The following proposition characterizes precisely the elements which belong to K (t) in
terms of the set 6(t).

PROPOSITION 11. Let t ∈ U be a bifurcation parameter. Then we have the identity

K (t)= {t} ∪
⊔

S∈6(t)

S · K (t). (11)

That is, an element belongs to K (t) if and only if its (non-degenerate) expansion in base d
is a concatenation of words in 6(t).

Proof. Let x ∈ K (t). Then, by definition, x ∈ [t, 1], and hence either x = t or the
expansion of t starts with Sk,s , where k is the first digit for which the expansions of t
and x differ, and s is the kth digit of x , which must be larger than the kth digit of t . Hence
x = Sk,s · y with y ∈ [0, 1] and, since K (t) is forward invariant, y = gk(x) also belongs to
K (t), so x ∈ Sk,s · K (t).

Conversely, let x = S · y with S ∈6(t) and y ∈ K (t). We have to prove that gh(x) ∈
[t, 1] for each h ≥ 0. If h ≥ k, then gh(x)= gh−k(y) ∈ [t, 1] and the claim is proven. On
the other hand, fix h ∈ {0, . . . , k − 1} and compare the expansions of gh(x) and gh(t).
Since the expansion of gh(x) begins with .εh+1 . . . εk−1s and the expansion of gh(t)
begins with .εh+1 . . . εk−1εk and s > εk ,

gh(x) ∈ [gh(t), 1] ⊆ [t, 1],

where, in the last inequality, we used that t belongs to U . Thus the claim is proven. �

Proof of Proposition 10. Consider the set K̃ (t) := {x ∈ K (t) : gk(x) 6= t ∀k ≥ 0}. Since
K (t) and K̃ (t) differ by a countable set of preimages of t , their Hausdorff dimension is
the same; moreover, by Proposition 11,

K̃ (t)=
⊔

S∈6(t)

S · K̃ (t).
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FIGURE 2. The functions ζ(t) and η(t) for d = 2.

The set K̃ (t) is thus the attractor of a countable iterated function system; each map x 7→
Sk,s · x is an affine map of derivative d−k and, moreover, by construction, all the images
Sk,s · K̃ (t) are disjoint and satisfy the open set condition [5, 10]. Hence the Hausdorff
dimension η of K̃ (t) is determined implicitly by the formula

1=
∑

Sk,s∈6(t)

d−kη,

which, since by definition of 6(t) for each k there are d − 1− εk values of s, can also be
written as

1=
∞∑

k=1

(d − 1− εk)d−kη.

Thus taking X = d−η yields the claim. �

Remark 12. Note that the hypothesis t ∈ U in Proposition 10 is essential. Actually, one
can define for any t ∈ [0, 1] the function ζ(t)=−log λ/log d, where λ is the unique real,
positive root of the equation Pt (X)= 1. Then the function ζ(t) is no longer continuous,
but for any t ∈ [0, 1] one has the relation (see Figure 2)

η(t)=min{ζ(s), 0≤ s ≤ t}.

4.1. The local Hölder exponent. Let us recall that a function f : I → R on an interval
I is called Hölder continuous of exponent α if there exists a constant C > 0 such that, for
each x, y ∈ I ,

| f (x)− f (y)| ≤ C |x − y|α.

Given t ∈ I , we define the local Hölder exponent of f at t to be

α( f, t) := lim inf
t ′→t

log | f (t)− f (t ′)|
log |t − t ′|

.
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The goal of this section is to establish Theorem 1, namely, that

α(η, t)= η(t)

for any t ∈ U . Let us start with some preliminary remarks.
First let us note that, for t ∈ ((d − 1)/d, 1], the set K (t)= {0} is one point so η(t)= 0

and there is nothing to prove. Therefore, we shall assume t ∈ [0, (d − 1)/d]. In this case,
let us note that Pt (X)= s X +

∑
∞

k=2(d − 1− εk)X k with s ≥ 1, and hence the function
Pt (x) is strictly increasing on [0, 1). Moreover, Pt (0)= 0 and limx→1− Pt (x) > 1 unless
t = (d − 1)/d (in which case Pt (x)= x). Thus, for each t ∈ [0, (d − 1)/d], the equation
Pt (x)= 1 has a unique solution λ ∈ (0, 1], which we will denote by λ(t). Note also that,
for each x ∈ (0, 1),

1≤ P ′t (x)≤
d

(1− x)2
, (12)

and hence λ(t) is always a simple root of Pt (X).
If t ∈ [0, 1], we shall denote the kth digit of the non-degenerate expansion of t by εk(t).

Moreover, if t1, t2 ∈ [0, 1], let us define m(t1, t2) to be the length of the longest common
prefix in the expansions of t1 and t2: namely,

m(t1, t2) := sup{k ≥ 0 : εh(t1)= εh(t2) ∀h ∈ {1, . . . , k}}.

LEMMA 13. For each t0 > 0, there exists a constant C1 > 0 such that, for each t1, t2 ∈
U ∩ [t0, 1],

C1d−m(t1,t2) ≤ |t1 − t2| ≤ d−m(t1,t2). (13)

Proof. Let m := m(t1, t2); the upper bound is given by |t1 − t2| = d−m
|gm(t1)−

gm(t2)| ≤ d−m . To get the lower bound, first note that, since K (t0)⊆ [t0, 1] and K (t0)
is forward invariant by g,

K (t0)⊆ g−1(K (t0))⊆ g−1([t0, 1])=
d−1⋃
k=0

Ik,

where Ik := [(t0 + k)/d, (1+ k)/d]. Now, by definition of m, the two points u1 := gm(t1)
and u2 := gm(t2) belong to two different intervals Ik , and thus |t1 − t2| = d−m

|u1 − u2| ≥

t0/d , which gives the lower bound with C1 := t0/d . �

We are now ready to prove the main theorem stated in the introduction.

Proof of Theorem 1. Monotonicity of η(t) is immediate from the definition, while
continuity follows from Rouché’s theorem. Indeed, let t ∈ U ∩ [0, (d − 1)/d] and suppose
λ= λ(t) < 1. Then, λ(t) is a simple root of Pt (X), and Pt ′(X) converges uniformly on
compact sets to Pt (X) as t ′→ t . Hence the root λ(t ′) converges to λ(t). Now suppose
that λ(t)= 1, which implies that t = (d − 1)/d . Fix δ ∈ (0, 1). Then Pt (X)− 1= X − 1
has no roots in the strip Sδ = {x + iy : 0≤ x ≤ 1− δ, |y| ≤ δ}, and hence, by Rouché’s
theorem, Pt ′(X) also has no roots in Sδ for t ′ sufficiently close to t . Hence λ(t ′)≥ δ.
This proves λ(t ′)→ 1 as t ′→ t . Since η(t)=−log λ(t)/log d, continuity of λ(t) implies
continuity of η(t).
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Let us now estimate the modulus of continuity of η(t). First note that, since η(t)=
−log λ(t)/log d and the function h(x) := −log x/log d is bi-Lipschitz on [1/d, 1], it
is equivalent to prove the claim for λ(t). Let t1, t2 ∈ U ∩ [0, (d − 1)/d]. To simplify
notation, we denote λ1 := λ(t1), λ2 := λ(t2), and also P1(X) := Pt1(X), P2(X) := Pt2(X)
and suppose that λ1, λ2 < 1.

Now, using that P2(λ2)= P1(λ1)= 1 and applying Lagrange’s theorem,

P1(λ1)− P2(λ1)= P2(λ2)− P2(λ1)= P ′2(ξ)(λ2 − λ1) (14)

for some ξ ∈ [λ1, λ2]. On the other hand, by writing out the power series we get

P1(λ1)− P2(λ1)= λ
m+1
1 R(t1, t2), (15)

where R(t1, t2) := (εm+1(t2)− εm+1(t1))+
∑
∞

j=m+2(ε j (t2)− ε j (t1))λ
j−m−1
1 and m =

m(t1, t2). By comparing the two previous equations we get

|λ1 − λ2| = λ
m+1
1
|R(t1, t2)|

P ′2(ξ)
≤ λm+1

1
d

1− λ1
.

Hence, by combining this with the upper bound for |t1 − t2| given by equation (13),
we have the following upper bound for the modulus of continuity. For each t ∈ U ∩
(0, (d − 1)/d), there exists C2 > 0 such that

|λ1 − λ2| ≤ C2|t1 − t2|−log λ1/log d
= C2|t1 − t2|η(t1) (16)

for each t1, t2 ∈ U sufficiently close to t . Since λ(t) is constant on the complement of U ,
the above upper bound actually works for any t1, t2 close to t , proving that

α(η, t)≥ η(t)

for each t ∈ U .
For the lower bound, let us pick t ∈ U . Now, by Lemma 14, there exists a sequence

tn→ t with tn 6= t such that, for each k and each n, we either have εk(t)≤ εk(tn) or we
have the reverse inequality. In both cases, R(t, tn) is a power series in λ(t), the coefficients
of which are all are integers and have the same sign. Hence |R(t, tn)| ≥ 1 and

|λ(t)− λ(tn)| = λ(t)m+1 |R(t, tn)|
P ′2(ξ)

≥ λ(t)m+1
·
(1− ξ)2

d
≥ C3|t − tn|η(t),

where C3 := λ(t) infτ∈[t,tn ] ((1− λ(τ))
2)/d . This proves that the lower bound α(η, t)≤

η(t). �

LEMMA 14. Let t ∈ U . If t is not a d-rational, then there exists a sequence (tn) of elements
of U such that tn→ t , tn > t for any n, and

εk(t)≤ εk(tn) for all k, n.

If t is a d-rational, then there exists a sequence (tn) of elements of U such that tn→ t ,
tn < t for any n, and

εk(tn)≤ εk(t) for all k, n.
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Proof. Let t ∈ U not a d-rational, and let t = .ε1ε2 . . . be its (non-degenerate) expansion
in base d . For each n, let us define

tn := .ε1 . . . εn(d − 1)∞.

By construction, tn > t , tn→ t , and εk(tn)≥ εk(t) for each k. We need to check that
tn ∈ U . Let us consider gr (tn) and compare it with tn . If r ≥ n, then gr (tn)= 0 /∈ (0, tn),
as required. If, instead, r < n, then gr (tn)= .εr+1 . . . εn(d − 1)∞. Since t ∈ U , then
gr (t)= .εr+1 . . . εn . . .≥ t = .ε1 . . . εn . . . , and hence, if you set S := ε1 . . . εn and
S0 := εr+1 . . . εn , either S0� S or S0 is a prefix of S. In the first case, gr (tn)≥ tn as
required; in the second case, S0(d − 1)n−r

≥ S, so gr (tn)= .S0(d − 1)∞ ≥ .S(d − 1)∞ =
tn , as required.

Let us now deal with the case where t is a d-rational, and let t = .ε1 . . . εk(d − 1)∞ be
its non-degenerate expansion, which we can take so that ε1 6= d − 1 and εk 6= d − 1. We
claim that the number tn with base-d expansion

tn = .ε1 . . . εk(d − 1)n

satisfies the claim. Clearly, tn < t and tn→ t , while εk(tn)≤ εk(t) for any k. We need
to prove that tn ∈ U . Given r , consider gr (tn): either the first digit of gr (tn) is (d − 1),
which implies gr (tn) /∈ (0, tn) as ε1 6= d − 1, or gr (tn) is of the form gr (tn)= .εr+1 . . . εk

(d − 1)n . . . . Then, if S := ε1 . . . εn and S0 := εr+1 . . . εk , we have either S� S0 or S0

is a prefix of S. If S0 is a prefix of S, then one can write S = S0S1, where S1 is some
non-empty word, and either S1� (d − 1)n or S1 is of the form (d − 1)a for some a ≥ 1,
which contradicts the fact that εk 6= d − 1. �

Now we shall show that the function η is not Hölder continuous at t∗ = 1− 1/d (which
is the smallest t such that η(t)= 0). In fact, the modulus of continuity of η at t∗ is given
by the function

ω(x) :=
log log(1/x)

log(1/x)
,

as shown in the following proposition.

PROPOSITION 15. We have the limit

lim
t→t−∗

η(t)− η(t∗)
ω(t∗ − t)

= 1.

Proof. To begin, we shall give a precise estimate of η(tn), where tn := t∗ − 1/dn . It is
easy to check that tn ∈ U for all n ≥ 2 and Ptn (X)= X + Xn . In order to locate the unique
positive solution λn of the equation Ptn (X)= 1, let us observe that, for any fixed α > 0,

Ptn

(
1− α

log n
n

)
= 1− α

log n
n
+

1
nα

[
1+ O

(
log2 n

n

)]
as n→∞.

Therefore, using the above formula for α = 1, we get that there is n0 such that Ptn (1−
(log n/n)) < 1 for all n ≥ n0. On the other hand, for any α < 1, there is n1 = n1(α) such
that Ptn (1− α(log n/n)) > 1 for all n ≥ n1. This means that as n→∞ we have λn =

1− (log n/n)[1+ o(1)] and

η(tn)=−
log λn

log d
=

log n
n log d

[1+ o(1)].
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Recalling that log(t∗ − tn)=−n log d , we see that the modulus of continuity of η at t∗
cannot be smaller than ω: indeed,

lim
n→+∞

η(tn)− η(t∗)
ω(t∗ − tn)

= 1.

On the other hand, if tn ≤ t ≤ tn+1 then, using the monotonicity of η(t) and ω(t) and the
fact that ω(t∗ − tn)/ω(t∗ − tn+1)→ 1, we get

lim
t→t−∗

η(t)− η(t∗)
ω(t∗ − t)

= 1. �

Let us now turn to the proof of Corollary 2 stated in the introduction, namely, the
extension of these results to general expanding circle maps.

Proof of Corollary 2. Since f is an expanding C1 map, then it is conjugate to the linear
map g(x) := dx mod 1, and the conjugacy is Hölder continuous: that is, there exists a
Hölder continuous homeomorphism ϕ : S→ S with Hölder continuous inverse such that
ϕ ◦ f = g ◦ ϕ (see, for example, [2, §II.2]). Since topological entropy is invariant by
conjugacy,

htop( f |K f (t))= htop(g|K (τ )),

where τ = ϕ(t). Then, since ϕ and its inverse are Hölder continuous, there exists C > 0
such that, for any t ,

C−1
≤ lim inf

t ′→t

log |τ ′ − τ |
log |t ′ − t |

≤ lim sup
t ′→t

log |τ ′ − τ |
log |t ′ − t |

≤ C,

where τ ′ = ϕ(t ′). Let us denote H f (t)= htop( f |K f (t)) and Hg(τ )= htop(g|K (τ )). Then,
putting the estimates together, we get

α(H f , t) = lim inf
t ′→t

log |H f (t ′)− H f (t)|
log |t ′ − t |

≥ C lim inf
τ ′→τ

log |Hg(τ
′)− Hg(τ )|

log |τ ′ − τ |
= C Hg(τ )= C H f (t)

and, similarly, for the lower bound. Therefore we get, for any t ∈ U ′ = ϕ(U), the bounds

C−1 H f (t)≤ α(H f , t)≤ C H f (t).

As a consequence, if t? := sup{t : H f (t) > 0}, we have H f (t?)= 0, so α(H f , t?)= 0 and
hence H f is not locally Hölder continuous at t?. �

Note that an alternative way to define the local Hölder exponent of f at t is as the
supremum of all values s for which f is Hölder continuous of exponent s on some
neighborhood of t : that is, as

α̃( f, t) := sup
{

s : lim
ε→0

sup
x,y∈B(t,ε)

x 6=y

| f (x)− f (y)|
|x − y|s

<∞

}
,

where B(t, ε) is the open ball of radius ε and center t . Note that α̃( f, t) > 0 if and only if
f is locally Hölder continuous at t . While, in general, α̃( f, t)≤ α( f, t), the two quantities
need not be the same. However, in our case the same argument as in the proof of Theorem 1
shows the following theorem.
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THEOREM 16. For each t ∈ U ,

α̃( f, t)= α( f, t)= η(t).

Proof. Since α̃(η, t)≤ α(η, t)= η(t), we only have to check that α̃(η, t)≥ η(t). Since
the claim is trivial if η(t)= 0, we can assume that t ∈ [0, (d − 1)/d). Then, by equation
(16), there exists a constant C2 and a neighborhood V of t such that, for any t1, t2 in V ,

|λ(t1)− λ(t2)| ≤ C2|t1 − t2|η(t1),

which implies that, for any ε > 0,

α̃(η, t)≥ η(t + ε).

Since η(t + ε)→ η(t) as ε→ 0, it follows that α̃(η, t)≥ η(t), as required. �

Remark 17. Using the characterization of U we can also give an elementary proof of the
result of Urbański [14, Theorem 2] that states that

H.dim K (t)= H.dim (U ∩ [t, 1]) for all t ∈ [0, 1].

Proof. Indeed, if we denote by P ⊂ U the set of elements in U with a purely periodic
base-d expansion, it is easy to check that η(P) is dense in [0, 1]. Therefore, since both
the function η(t) and η̃(t) := H.dim (U ∩ [t, 1]) are decreasing, to prove our claim it is
enough to check that the equality η(t)= η̃(t) holds for all t ∈ P .

Since U ∩ [t, 1] ⊆ K (t) for any t (see equation (6)), the inequality η(t)≥ η̃(t) is
straightforward, so we only have to prove η(t)≤ η̃(t). If t0 ∈ P , then t0 = .ε1 . . . εm is
a fixed point of the affine contraction associated with the Lyndon word W := ε1 . . . εm

(see equation (5)). Given any t1 > t0, we can fix `≥ 1 such that W `
· 1< t1, and define

the set
S :=W `

· K (t1).

It is easy to check that S ⊂ U ∩ [t0, 1] so H.dim S ≤ H.dim (U ∩ [t0, 1]). Moreover, since
S is an affine copy of K (t1), H.dim S = H.dim K (t1).

Thus we have proved that η̃(t0)≥ η(t1) for all t1 > t0, so our claim follows by taking
the limit for t1→ t0 and using the continuity of η(t). �
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