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Genetics, environment and cognitive abilities:

review and work in progress towards a genome

scan for quantitative trait locus associations

using DNA pooling

ROBERT PLOMIN and IAN CRAIG

Background Multivariate genetic
research indicates that genetic effects
on diverse cognitive abilities are general
rather than specific or modular.
General cognitive ability (g), a key
factor in learning and memory, is among

the most heritable behavioural traits.

Aims To give a briefoverview of
quantitative genetic research on gand to
describe initial results from a programme
of research that aims to identify genes
responsible for the substantial heritability

of general cognitive ability.

Method Theresearchusesanew
technique called DNA pooling, which
combines DNA from individuals within a
group and makes it feasible to screen
thousands of DNA markers for a
systematic scan of the genome for
associations between DNA markers and
g. Two independent samples of children
with very high g scores and two control
samples of children with average g scores
were compared in a systematic scan of 147
markers on chromosome 4 and 66
markers on chromosome 22.

Results Three replicated associations
on chromosome 4 were identified using
DNA pooling and confirmed using
individual genotyping.

Conclusions These first results of the
application of DNA pooling in systematic
analysis of allelic association are
encouraging.

Declaration of interest None.

BACKGROUND

More quantitative genetic research (family,
twin and adoption studies) has been re-
ported for cognitive abilities than for any
other domain of science (Plomin et al,
2001). Tests of cognitive abilities are re-
lated in a hierarchical manner in which spe-
cific tests (such as vocabulary and verbal
fluency) intercorrelate to create group fac-
tors (e.g. verbal ability) which are called
‘specific cognitive abilities’ (Carroll, 1993).
Diverse specific cognitive abilities such as
verbal and spatial abilities, processing speed
and memory intercorrelate at about 0.4.
This intercorrelation among specific cogni-
tive abilities is known as general cognitive
ability (g), a key factor in learning and
memory (Jensen, 1998). General cognitive
ability, commonly called intelligence, is best
conceptualised as a general factor (first un-
rotated principal component) among di-
verse tests of cognitive ability. Because
most tests correlate moderately on a gener-
al factor, g is also indexed by total scores
on diverse unit-weighted tests, as in IQ tests.
A new direction for genetic research on g is
to investigate other less direct measures
such as information processing (Neubauer
et al, 2001) and measures of brain function
such as evoked potentials, positron emission
tomography (PET) scans and functional mag-
netic resonance imaging (fMRI) (Vernon,
1993; Kosslyn & Plomin, 2000).

Multivariate genetic research

One of the most interesting yet little-known
findings
emerged from multivariate genetic re-

about cognitive abilities has
search, which examines the covariance
among specific cognitive abilities rather
than the variance of each cognitive ability
considered separately. Specific cognitive
abilities show substantial genetic influence,
although less than for g (Plomin & DeFries,
1998). The surprising finding from multi-
variate genetic research is that the same
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genetic factors largely influence different
abilities (Petrill, 1997). In other words,
the genetic basis of cognitive abilities is g.
What this finding means concretely is that
if a specific gene were found that was asso-
ciated with verbal ability, it would also be
expected to be associated with spatial abil-
ity and other specific cognitive abilities.
Conversely, g should be the best target for
attempts to identify genes associated with
cognitive abilities because genetic effects
are general rather than specific. This find-
ing is surprising because it goes against
the tide of the popular modular theory of
cognitive neuroscience, which assumes that
cognitive processes are specific and inde-
pendent and that genes work from the ‘bot-
tom up’; that is, genes are assumed to be
specific to elementary processes, with these
modular effects then indirectly affecting
more complex cognitive processes. How-
ever, multivariate genetic results are consis-
tent with the opposite hypothesis of a ‘top
down’ model, in which genes have their pri-
mary influence on g and these genetic ef-
fects trickle down to affect other cognitive
processes.

Genetic influence on g

Clearly, g runs in families. Correlations for
first-degree relatives living together average
0.43 for more than 8000 parent—offspring
pairs and 0.47 for more than 25 000 pairs
of siblings. However, g might run in fa-
milies for reasons of nurture or of nature.
In studies involving more than 10 000
pairs of twins, the average g correlations
are 0.85 for identical twins and 0.60 for
same-sex fraternal twins (Plomin et al,
1997). These twin data suggest a genetic
effect size (heritability) that explains about
half of the total variance in g scores.
Although heritability could differ in differ-
ent cultures, moderate heritability of g has
been found in twin studies not only in
North America and western European
countries, but also in Moscow, former
East Germany, rural India, urban India
and Japan. Adoption studies also yield es-
timates of substantial heritability. For ex-
ample, identical twins reared apart are
almost as similar for g as are identical
twins reared together, with an average cor-
relation of 0.78 for 93 such pairs (Bou-
chard et al, 1990). Adoption studies of
other first-degree relatives also indicate
substantial heritability, as illustrated by re-
sults from the longitudinal 25-year Color-
ado Adoption Project (Plomin et al, 1997).
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Model-fitting meta-analyses based on
dozens of adoption and twin studies esti-
mate that about half of the total variance
can be attributed to genetic factors. Most
of these studies involved children. Research
during the 1990s has shown that the herit-
ability of g increases steadily from infancy
(20%) to childhood (40%), to adulthood
(60%). For example, a study of twins aged
80 years and older reported a heritability of
about 60% (McClearn et al, 1997). Studies
of identical twins reared apart suggest that
heritability may be as high as 80% in adult-
hood. Why does heritability of g increase
during the life span? It is possible that
fluctuating environmental differences are
evened out as life goes by so that genetic
differences appear to be relatively more
important. It is also possible that completely
new genes come to affect g as more sophisti-
cated cognitive processes come on line. A
possibility we favour is that relatively small
genetic effects early in life snowball during
development, creating larger and larger
phenotypic effects, perhaps as individuals
select or create environments that foster
their genetic propensities. During the 1990s
genetic research has shown substantial
evidence for such genotype—environment
correlation, in the sense that associations
between environmental measures and cog-
nitive development are mediated genetically
(Plomin, 1994).

Environmental influences on g

The same genetic research on g that provides
evidence for the important contribution of
genetics also provides the best available evi-
dence for the importance of the environ-
ment. If the heritability of g is 50%, this
means that the rest of the reliable variance
can be attributed to environmental factors.
Moreover, genetic research has shown that
the way the environment affects g is different
from our theories of socialisation. Shared fa-
mily environments, which makes siblings si-
milar, are important only until adolescence.
In the long run, environmental influences
on g, whatever they may be, make two chil-
dren growing up in the same family different
from one another: this is the ‘non-shared
environment’ (Plomin & Petrill, 1997). One
direction for research is to begin to identify
specific environmental factors responsible
for non-shared environmental influences
on cognitive development (Chipuer &
Plomin, 1992), especially in the context of
genetically sensitive designs that control
for genotype—environment correlation.
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Identifying genes associated with g

Another exciting direction for research is to
identify specific genes responsible for the
substantial heritability of g. Heritability of
complex dimensions such as g seems likely
to be due to multiple genes of varying, but
small, effect size rather than one or a few
genes with major effect. In such multiple-
gene systems each gene is called a ‘quantita-
tive trait locus’ (QTL) (Plomin et al, 1994).
Unlike single-gene effects, such as phenyl-
ketonuria, which are necessary and sufficient
for the development of a disorder, QTLs con-
tribute interchangeably and additively, ana-
logous to probabilistic risk factors. If there
are multiple genes that affect a trait, it is
likely that the trait is distributed quantita-
tively as a dimension rather than qualita-
tively as a disorder; this was the essence
of Fisher’s classic 1918 paper on quantita-
tive genetics (Fisher, 1918). From a QTL
perspective, there are no disorders, just
the extremes of quantitative traits caused
by the same genetic and environmental fac-
tors responsible for variation throughout
the dimension. In other words, the QTL
perspective predicts that genes found to be
associated with complex disorders will also
be associated with normal variation and
vice versa.

Traditional methods for identifying
single-gene effects are unlikely to succeed
in identifying QTLs because the effect
sizes of individual QTLs are likely to be
small. For a single-gene trait, the tradition-
al large-pedigree linkage design is guaran-
teed to find the chromosomal location of
a gene by tracking co-transmission of mar-
kers with a disorder. However, it does not
have the statistical power needed to detect
QTLs for quantitative traits influenced by
multiple genes of varying, but relatively
small, effect size — as well as by multiple
environmental factors. Moreover, trad-
itional linkage approaches assume that a
disorder is indeed
families with the ‘disease’ gene. Quantita-
tive traits do not fit this mould unless one

co-transmitted in

arbitrarily divides the quantitative dimen-
sions and pretends that one part is
qualitatively distinct, which is what has
been done with many presumed disorders.
Newer linkage designs such as the affected
sib-pair design (Suarez & Van Eerdewegh,
1984; Blackwelder & Elston, 1985) are
more compatible with a QTL perspective
because the selected sibs can be viewed as
being at the extreme of a quantitative
dimension. Sib-pair QTL linkage explicitly
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assumes a quantitative dimension rather
than a qualitative disorder (Fulker &
Cherny, 1996). This type of linkage was
first successfully applied to reading disabil-
ity, identifying a significant QTL linkage
on the short arm of chromosome 6
(6p21) (Cardon et al, 1994), a linkage that
has been consistently confirmed in three
subsequent studies (Grigorenko et al,
1997; Fisher, S. E., et al, 1999; Gayan et
al, 1999).

Linkage is systematic but not powerful.
With just 350 markers (i.e. at 10 cM inter-
vals — roughly one in every 10 million base
pairs throughout the 3.5 billion in the gen-
ome), it is possible to search the genome
for linkage because each marker can scan
millions of base pairs for a gene of large ef-
fect. However, linkage cannot detect genes
of small effect. Even sib-pair QTL linkage
with reasonable sample size cannot detect
genes that account for less than 10% of
the variance. In other words, linkage is
‘far-sighted’ in that it can detect distant
mountains, but it cannot see nearby hills.
The other major approach for identifying
genes, allelic association, sometimes confus-
ingly called ‘linkage disequilibrium’, looks
for correlation between marker alleles and
the trait in the population, rather than with-
in families. Allelic association is powerful
for detecting QTLs of small effect (Risch
& Merikangas, 1996). Although allelic asso-
ciation is simplest when functional poly-
morphisms in candidate genes are used as
markers, it is also possible to detect QTLs
employing non-functional DNA markers
that are close enough to remain associated
with the QTL for many generations. In con-
trast to linkage, allelic association is power-
ful but not systematic; it is ‘short-sighted’,
detecting nearby hills, but not distant
mountains. In the population, recombina-
tion breaks up alleles for a marker and a
QTL that happen to be close together on
the same chromosome unless the marker
and the QTL are very close, essentially in
the same gene.

In this sense, linkage and association are
complementary, but because of the power
of allelic association to detect genes of small
effect size, association has become increas-
ingly popular in the search for QTLs for
complex traits such as behaviour (Plomin
et al, 1994; Risch & Merikangas, 1996).
Unlike linkage, association is as easily ap-
plied to the study of quantitative dimen-
sions as it is to qualitative disorders.
However, because it is short-sighted, allelic
association can only be found for markers
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that are very close to the QTL. For this rea-
son, most association studies focus on mar-
kers in ‘candidate’ genes and, especially,
markers that are themselves ‘functional’ in
the sense that they result in a coding dif-
ference in amino acid sequences or show a
physiological effect. For example, we
investigated 100 DNA markers in or near
genes relevant to the nervous system, but
found no replicated QTL associations with
g (Plomin et al, 1995).

This approach does not help much to
make association systematic, because all
of the 30 000 genes expressed in the brain
could be considered to be candidate genes
for g. In order to scan the genome systema-
tically for allelic association in the same
way as scans for linkage, thousands of mar-
kers would be needed, which would seem
to be an impossible task. For example, with
200 subjects in a high g group and 200 sub-
jects in a control group, each marker would
require 400 genotypings, which means that
3500 markers needed for a 1 cM scan of
the genome would require 1.4 million
genotypings.

Work in progress

We attempted a preliminary search of this
type for DNA markers associated with g
on the long arm of chromosome 6 (Chorney
et al, 1998). For one marker, the frequency
of one of its alleles was twice as high in two
groups of children with high g compared
with two groups of children with average
g (frequencies of about 30% versus 15%,
respectively). Both samples yielded a signif-
icant difference in the same direction and
combining these results yielded a highly sig-
nificant result (y>=12.41, P<0.004). The
DNA marker happened to be in the 3’ un-
translated region of the gene for insulin-like
growth factor receptor-2 (IGF2R), which
has recently been shown to be especially ac-
tive in brain regions most involved in learn-
ing and memory (Wickelgren, 1998).
Pooling DNA from subjects within each
group and comparing the pooled DNA
across groups for a dense map of DNA
markers offers a solution to the conundrum
that linkage is systematic but not powerful,
whereas allelic association is powerful but
not systematic. Pooling can be used to
screen thousands of DNA markers for
QTL associations by creating pools of
DNA for cases and controls. For example,
only 7000 rather than 1.4 million genotyp-
ings would be needed in the previous exam-
ple to screen 3500 markers for two groups.

GENETICS, ENVIRONMENT AND COGNITIVE ABILITIES

An approach to DNA pooling has been de-
veloped as part of our project on g compar-
ing the allele image patterns (AIPs) from an
automated DNA sequencer for two pools of
DNA (Daniels et al, 1998). The DNA pool-
ing method has been shown to be a reason-
ably accurate screening tool to detect the
largest allelic frequency differences between
two groups. We use a three-stage design in
which pooled DNA is compared in an
original sample and tested in a replication
sample, and then surviving markers are
individually genotyped and tested using
conventional statistics.

The goal of this programme of research
is to identify some (but certainly not all)
QTLs associated with g. We hope to identi-
fy some of the oldest and largest QTLs,
knowing that we will miss QTLs with com-
plicated linkage disequilibrium histories,
QTLs whose effect sizes are too small,
and QTLs too far away from our markers.
The premise of our approach is that it is
reasonable to begin by identifying some
QTLs of largest effect size using a reason-
ably dense map that can be made even den-
ser as more markers become available.
Pooling is a screening device that greatly re-
duces the amount of genotyping needed to
conduct a genome scan for allelic associa-
tion using a dense marker map. We have re-
ported results for chromosomes 4 (Fisher,
P. J., et al, 1999) and 22 (Hill et al, 1999)
and at the time of writing are nearly halfway
through a scan of the entire genome.

METHOD

A fuller description of the method is given by
P. J. Fisher et al (1999) and Hill et al (1999).

The sample groups of US children were
restricted to non-Hispanic children of Eur-
opean descent so that differences in marker
allele frequencies between the groups were
less likely to be due to ethnic differences.
The original high-g and control samples
were selected from children living in a six-
county area around Cleveland, Ohio, who
were aged 6-15 years. General cognitive
ability was assessed by a widely used IQ
test, the Wechsler Intelligence Scale for
Children — Revised (Wechsler, 1974). The
high-g sample included 51 children (mean
IQ 136; 5.d.=9.3) and the control group in-
cluded 51 children of average g (mean IQ
103; s.d.=5.6). A replication high-g group
was obtained from the Study of Mathema-
tically Precocious Youth (SMPY) in the
USA, which began in the 1970s as a study
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of mathematical talent but since the late
1970s has put an equal emphasis on verbal
talent (Lubinski & Benbow, 1994). The
highest-scoring SMPY individuals were
selected from the more than 1 million
seventh- and eighth-graders (i.e. aged
12-14 years) who performed in the top
3% on a standardised test administered
in their schools and were invited to take
the Scholastic Aptitude Test (SAT) college
entrance examination 4 years early, before
the age of 13 years. The SAT correlates
highly with g and with standard IQ tests in
the normal range, for example, 0.84 for the
mathematical part (SAT-M) and 0.89 for
the verbal test (SAT-V) corrected for un-
reliability (Brodnick & Ree, 1995); using
the SAT at age 13 years instead of the usual
age of 17 years makes it possible to esti-
mate IQ scores even though standard IQ
tests do not cover scores as high as these.
Fifty of the highest-scoring individuals were
targeted for the high-replication sample.
These participants earned scores of at least
SAT-V=630 and SAT-M>630, or SAT-
V=550 and SAT-M >700. They were re-
quired to have ‘flat’® SAT profiles in the
sense that their SAT-V and SAT-M scores
were required to be within 1 standard de-
viation of each other. These participants re-
present a selection intensity of about 1 in
30 000 as indicated by scores 4 s.d. above
the mean (equivalent to an IQ score of
160),
(V+M) SAT scores. A replication control
group consisting of 50 individuals (mean
IQ 101; s.d.=7.2) was selected in the same
manner (same geographical area, same age)

estimated from their composite

as the original control group. Informed
consent was obtained from all participants.

Three-stage replication design

A three-stage strategy was used in order to
provide a balance between false-positive
and false-negative results by permitting a
lenient criterion for significance in the first
stage (which does not correct for multiple
testing but reduces false negatives) and then
removing false positives in the second and
third stages. In the first stage, differences
in allele image patterns (see below) were
compared for the two groups (high and
average g) in the original sample for 213
markers across chromosomes 4 and 22. In
the second stage, markers that yielded sig-
nificant differences in allele-image patterns
and a significant allele-specific difference
(see below) in the first stage were replicated
in independent pooled samples by testing an

s43


https://doi.org/10.1192/bjp.178.40.s41

PLOMIN & CRAIG

allele-specific directional hypothesis derived
from the original sample. In the third stage,
markers that were significant in the two
DNA-pooling stages were genotyped indivi-
dually for all subjects in order to confirm the
results of DNA pooling using conventional
statistics.

DNA pooling

The DNA pooling technique is described by
Daniels et al (1998). The DNA was ob-
tained from permanent cell lines derived
from lymphocytes in blood using a stand-
ard protocol. Each individual DNA sample
was diluted to 8 ng/pl. Quantification of
DNA prior to pooling was performed in tri-
plicate using a Fluoroskan Ascent fluorom-
eter (Dynex Laboratory Systems, Ashford,
Middlesex, UK). Three replicate DNA
pools were constructed for individuals in
each of the two original groups (the high-
g group and the average-g control group)
and in each of the two replication groups.

Primer selection

Markers containing di-, tri- and tetra-
nucleotide repeats at roughly 1 cM intervals
(which means that a QTL is no more than
0.5 cM from a marker) were selected for
chromosomes 4 and 22 from databases on
the internet. Primers with fluorescent 5’
ends were purchased from MWG-Biotech
(Ebersberg, Germany). An average density
of 1.2 cM was obtained for the successfully
amplified 147 markers on chromosome 4
and 66 markers on chromosome 22.

PCR amplification of pooled DNA
samples

Rather than optimising each primer pair, a
touchdown polymerase
(PCR) protocol was used to amplify pooled
DNA for each marker. Markers that were
not successfully amplified using these
standard conditions were submitted to a
second amplification protocol, and markers
that continued to fail to amplify were re-
placed with other markers in the region.
Each of the three DNA pools for each
group was amplified twice, resulting in six

chain reaction

PCR products for each group.

Gel electrophoresis using an
automated DNA sequencer
Allele image patterns were generated on
an ABI 377 DNA sequencer (Applied
Biosystems, Foster City, CA, USA) for each
pool’s six PCR products for each marker.
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Up to four fluorescently labelled markers
with distinct ranges of allele sizes underwent
electrophoresis in each gel lane.

Analysis of AlPs

Other approaches to DNA pooling have at-
tempted to estimate absolute allelic fre-
quencies, which requires adjustments for
technical problems such as differential am-
plification and stutter banding (LeDuc et
al, 1995; Perlin et al, 1995; Barcellos et
al, 1997). The essence of our approach to
DNA pooling is that comparison of two
groups only requires an estimate of relative
allelic frequencies, which largely eliminates
such artefactual differences between the
two groups. That is, any perturbations to
allele patterns due to such artefacts will
be reproducible under standard conditions
in both groups, thus allowing comparative
differences between the groups to be identi-
fied. We focus on the difference in AIPs
(AAIP) for the two groups seen when their
AlIPs are overlaid (Daniels et al, 1998). The
six unmodified AIPs for each marker for
each group were overlaid using Applied
Biosystems’ GENOTYPER software and
imported into DeBabelizer (Equlibrium Tech-
nologies, Sausolito, CA, USA). The consen-
sus AIP was taken to represent the relative
allele frequencies. Markers were tested for
significant differences in allele patterns
between groups using a programme that
simulates allele patterns from AAIP scores,
heights of the peaks and the number of
peaks. For markers vyielding significant
AAIPs in the original sample, the allele with
the largest difference between the high-g and
control group in the original sample was
tested in order to establish an allele-specific
directional hypothesis to be tested in the re-
plication sample. The height of the allele’s
peak for each group was converted to a per-
centage of the total of all the peak heights
for the group, and tested for significance
using Pearson x> comparing that peak
against all others. Markers can yield
significant AAIPs because small differences
between groups emerge for several alleles,
or because a relatively large difference occurs
for a specific allele. Unless a marker shows a
significant difference for a specific allele in
the original sample, it is unlikely that the
allele-specific directional test will be signif-
icant in the replication sample. For this
reason, we limit replication to markers that
meet two criteria in the original sample: a
significant AAIP and a significant specific
allele difference between the two groups.
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Individual genotyping

For markers with significant AAIPs in the
original sample and significant y? for the
allele-specific directional test in the repli-
cation sample, all subjects were genotyped
individually. The PCR procedure was per-
formed using a standard protocol with
30 ng of an individual’s DNA used per
PCR. For the original sample, the signifi-
cance of the differences between the two
groups was estimated for all of a marker’s
alleles using the CLUMP program, which
is based on Monte Carlo simulations
(Vallada et al, 1995). For the replication
sample, the allele-specific directional hy-
pothesis derived from the original sample
was tested for significance using Pearson
¥* comparing that allele against all others.

RESULTS

Figure 1 illustrates DNA pooling results in
the first stage for one of the markers
(D4S2943) that showed significant AAIPs.
Because the DNA is pooled, the AIPs gener-
ated by the DNA sequencer show all six
alleles for D4S2943 rather than just one or
two alleles which would be seen in indivi-
dual genotyping. The relative height of each
allele is taken as a measure of its frequency.
The overlaid AIPs for the original high-g
group and the original control group indi-
cate that differences between the AIPs for
the two groups are due primarily to the
fourth allele.

Seventeen of the 213 markers on chro-
mosomes 4 and 22 yielded significant
(P<0.05) AAIPs for the high-g and control
groups in the original sample. With P set at
<0.05, only 10 markers were expected to
be significant by chance alone. The AAIPs
and P values for these 17 markers are listed
in Table 1, together with the y? and P values
for the allele-specific test in the original sam-
ple. Of the 17 markers with significant
AAIPs in the original sample, eight showed
a significant difference for a specific allele.
In addition, D452943 and D22S1170
showed trends (P <0.07) that together with
their significant AAIPs warranted further
exploration in the replication sample.

These 10 markers were tested for repli-
cation in stage 2 DNA pooling — where
none of the markers would be expected to
be significant by chance alone. Four of
the 10 markers yielded a significant allele-
specific difference in the replication sample
that was in the same direction as the original
sample (see Table 1).
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Overlaid AlPs

Control pool AIP

401 1000 3221

High-g pool AIP

160 1217 3381

Fig. |
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975 350 250

1945 460 477

Allele image patterns (AlPs) for D452943, showing the overlaid images (top), and separate patterns for

the original control group (middle) and the original high-g group (bottom). The numbers represent peak heights

expressed in fluorescence units. Although fluorescence units differ between the two groups because of

polymerase chain reaction differences in the amount of amplification and differences in loading the wells for the

sequencer, the overlaid AlPs calibrate the AIPs for the two groups by equating their peak heights.

These four markers were therefore se-
lected for the third stage of the design, in
which each high-g and control individual
was genotyped separately. Results for the
individual genotyping are summarised in
Table 2. Individual genotyping confirmed
the DNA pooling observations for two mar-
kers (D4S1607, D452943) using CLUMP
analysis to test all allelic differences between
the two groups simultaneously. The other
two markers nominated by DNA pooling
yielded trends in the CLUMP analysis
(MSX1 and D22S51170). The allele-specific
directional test for individual genotyping
results showed even stronger confirmation
of DNA pooling. Three of the four markers
showed significant differences between the
groups in the original sample for the same
alleles in the same direction as identified
by DNA pooling. For three markers
(MSX1, D451607, D4S2943), the indivi-
dual genotyping allele-specific directional
test reached significance in the original
sample. All three markers were also signifi-
cant in the replication sample for the allele-
specific directional test.

In summary, one marker (D451607)
met all of the criteria for a significant
QTL: stage 1 DNA pooling significance
in the original sample for both AAIP
and the allele-specific test; stage 2 DNA
pooling significance in the replication

sample for the allele-specific test; and
stage 3 individual genotyping significance
for the CLUMP test comparing all alleles,
as well as for the allele-specific directional
test in the original sample and for the
allele-specific test in the replication sam-
ple. Two other markers just missed the
criterion of P<0.05 for one of these six
hurdles: MSX1 (where P<0.12 for the
CLUMP test in stage 3) and D4S2943
(where P<0.07 for the allele-specific test
in stage 1). Because the ultimate test of
the allele-specific hypothesis using indivi-
dual genotyping was significant for all
three of these markers in both the original
sample and replication sample, we nomi-
nate all three markers as QTLs for g
(Fisher, P. J., et al, 1999). We have subse-
quently doubled our sample sizes and will
look again with greater power at other
markers that show replicable trends, such
as D2251170.

CONCLUSION

This first application of DNA pooling to
screen for allelic association in a systematic
genome scan at 1cM marker density
yielded one QTL (D4S1607) that met all
six criteria for significance in our multi-
stage replication design. Two other QTLs
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(MSX1 and D452943) met five of the six
criteria and just missed the sixth criterion.
We conclude that DNA pooling for associa-
tion using a dense map of markers can iden-
tify some, although certainly not all, QTLs
for g, one of the most heritable dimensions
of behaviour and of greatest relevance to
cognitive neuroscience. Although none of
these QTLs individually is expected to
account for a large portion of the genetic
variance for g, we expect that a systematic
genome scan will yield QTLs that together
account for a substantial portion of the
variance.

Allelic association based on linkage
disequilibrium (that is, the presence of
specific alleles at marker loci contiguous to
QTLs at higher frequencies than expected
by chance) is inherently limited to detecting
mutations that occurred many generations
ago very near the QTL and which have
not been randomised in their association
with the QTL through recombination as
they spread through the population. The
power of association analysis to detect a
QTL depends not only on the magnitude
of the effect of the QTL on the trait, but
also on the magnitude of linkage disequili-
brium between the QTL and a marker. The
latter issue is complicated because drift,
mutation, selection and migration may
operate in different ways to determine the
levels of linkage disequilibrium in different
populations (Guo, 1997). More powerful
approaches based on haplotypes across
markers are being developed that will
improve this situation (Schork et al, 1998).

A specific limitation of case—control as-
sociation studies is the possibility that spur-
ious associations can be caused by ethnic
differences within the sample. Our ap-
proach is to find associations using case—
control comparisons that exclude ethnic
minority groups in order to minimise the
possibility of ethnic stratification, and then
to test for association using within-family
designs which remove possibility of ethnic
differences. We are currently collecting
DNA from parents of the high-g children
in order to test for within-family associa-
tion (Ewens & Spielman, 1995; Sham &
Curtis, 1995a,b) which will also provide
an additional test of replication.

Although denser maps are desirable, an
interval of 1 ¢cM (which means that a QTL
is within 0.5 cM of a marker) appears to
be a reasonable starting point for a genome
screen, although it is generally accepted that
a density at least 10 times greater would be
needed to ensure linkage disequilibrium.
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Table |

Markers yielding significant (P <0.05) differences in allele image patterns (AAIPs) in the original

sample based on DNA pooling of 213 markers for high-g and control groups. These markers were also tested in

the original sample for the significance of a specific allele showing the greatest frequency difference between the

high-g and control groups. Significant allele-specific differences in the original sample were used as hypotheses

to be tested in the replication sample

Marker Original sample Replication sample
Allele-specific test Allele-specific test
AAIP P< 2 P< 2 P<

Chromosome 4

MSXI 0.21 0.02 4.68 0.03 3.04 0.04

DA4S3027 0.28 001 4.51 0.03 NT'

D4S3001 0.25 0.02 4.26 0.04 0.93 0.17

DA4S1559 0.23 0.01 4.50 0.03 NT'

D452986 0.24 0.05 1.19 0.28 NT?

DA4S1524 0.36 001 3.86 0.05 NT'

DA4S1565 0.21 0.03 1.52 0.22 NT?

D4S52967 0.22 0.01 1.78 0.18 NT?

D4S1607 0.22 0.05 6.34 0.02 3.29 0.03

D4S52943 0.20 0.03 3.25 0.07 2.62 0.05

D4S2921 0.24 0.02 4.6l 0.03 0.47 0.25
Chromosome 22

D22S1154 0.25 0.03 2.6l 0.11 NT?

D225685 0.26 0.01 3.69 0.05 0.10 0.75

D225684 0.29 001 2.68 0.10 NT?

D22S1151 0.19 0.04 1.45 0.23 NT?

D22S1170 0.27 0.04 3.37 0.07 7.8l 0.01

D225944 0.27 0.02 1.91 0.17 NT?

I. Not tested in the replication sample because the difference in allele frequencies for the tested allele in the high-g and
control groups was not in the same direction in the replication sample as in the original sample.
2. Not tested in the replication sample because the allele-specific test was not significant in the original sample.

Table 2 Results for individual genotyping of markers screened by DNA pooling as significant in the original

sample (significant difference in allele image patterns (AAIP) plus significant allele-specific test) and in the

replication sample (allele-specific directional test).

Original sample

Replication sample

CLUMP Allele-specific test Allele-specific test
Ve P< Ve P< Ve P<
Chromosome 4
MSXI 5.45 0.12 4.83 0.03 3.50 0.03
D4s1607 17.90 0.05 7.46 001 3.84 0.03
D452943 13.50 0.01 5.09 0.02 5.16 0.01
Chromosome 22
D22s1170 10.26 0.17 1.00 0.32 2.63 0.11

We estimate that 75% of the genome is
currently covered with a map density of
1 cM or greater and this coverage is increas-
ing rapidly, especially for single nucleotide
polymorphisms (SNPs). The goal of a 1 cM
density will be a reality in the near future
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(Collins et al, 1997), and intense effort to
identify several hundred thousand SNPs will
facilitate a density of 0.1 cM or greater.
Our current 1 cM average density for
the regions identified can be considered a
framework for subsequent research that
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adds markers to fill in the map. In addition,
we intend to test more markers in close
proximity to those that yielded positive re-
sults. The distribution of QTL effect sizes
is not known for any complex trait (Tanks-
ley, 1993). Although it is possible that there
are one or two large effects, we assume that
there is a continuous distribution of effect
sizes skewed towards large effects with a
long tail going out to infinitesimally small,
undetectable effects. A systematic scan of
the genome using allelic association will
address this issue empirically. A reasonable
goal for allelic association designs is to de-
tect QTL associations that account for
1% of the variance in an unselected popu-
lation. Although our present sample sizes
are modest, they provide experimental
power by selecting high-g subjects at the ex-
treme of the distribution (Van Gestel et al,
2000). We are currently doubling our sam-
ple sizes in order to reach our goal of de-
tecting effects that account for 1% of the
variance. We are also obtaining large unse-
lected samples of subjects assessed on g in
order to test the hypothesis that QTLs iden-
tified at the high extreme of the distribution
have similar effects throughout the distribu-
tion. One of these unselected samples in-
volves older subjects, which will make it
possible to test the hypothesis that the mag-
nitude of genetic effects on g increases
throughout the life span.

Identifying QTLs associated with g will
provide discrete windows through which
to view brain pathways between genes and
learning and memory. In a few years, when
the entire DNA sequence and its variants
are known, we predict that we will be awash
with QTLs for complex traits, including
QTLs for cognitive abilities and disabilities.
Research will increasingly be directed to-
wards understanding the function of such
QTLs. Although attention is focused now
on finding genes associated with behaviour,
few behavioural scientists are likely to join
the hunt for genes, because it is difficult and
expensive. However, once genes are identi-
fied, it is easy and inexpensive to use them
to ask questions at the behavioural level
of analysis (Plomin & Rutter, 1998). The
term ‘functional genomics’ usually connotes
‘bottom-up’ molecular biological research
that identifies gene products and investigates
their function at a cellular level. However,
other higher levels of analysis will also be
profitable in understanding the pathways
between genes and behaviour. For example,
cognitive neuroscience represents a middle-
way level of analysis that would benefit
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enormously from identification of QTLs for
g- The ‘top-down’ behavioural level of ana-
lysis represented by psychology is also
likely to make important contributions
towards understanding the functions of
QTLs. In order to highlight this top-down
level of analyses, the term ‘behavioural
genomics’ has been suggested (Plomin &
Crabbe, 2000). Knowledge of specific genes
related to cognitive abilities will greatly
improve our ability to ask more refined
and powerful questions about development,
heterogeneity and comorbidity, and gene—
environment interplay (Plomin & Rutter,
1998). Do the effects of genes change during
development? Do the genes correlate with
some aspects of a trait but not others
(heterogeneity), or do their effects extend
across several traits (comorbidity)? Are
genes for disorders also associated with
normal dimensions, and vice versa? Do
the genetic effects interact or correlate with
the environment? The answers will open up
new scientific horizons of immense potential
for the behavioural sciences.

As is the case with most important ad-
vances in human genetics, identifying genes
for g will confirm some people’s worst fears
about DNA, especially in relation to g
(Newson & Williamson, 1999). They fear
that finding out about genetic risk when
no prevention or cure is available will label
people in ways that might lead to discrimi-
nation for insurance and employment,
without being able to help them. Knowing
about genetic risk might also become a
self-fulfilling prophecy, for example if a
child is labelled as at risk of learning disor-
ders. Parents using in vitro fertilisation
might select embryos with fewer genetic
risks and more genetic strengths. These
are serious problems, but some of the fears
derive from misunderstandings about what
genetics can and cannot do (Rutter & Plo-
min, 1997; Sherman et al, 1997). The main
misunderstanding is to think that genes de-
termine outcomes in a hard-wired, there-is-
nothing-we-can-do-about-it way. For thou-
sands of rare single-gene disorders, such as
the gene on chromosome 4 that causes
Huntington’s disease, genes do determine
outcomes in this hard-wired way, but such
knowledge may also enable therapeutic in-
tervention, as is the case for phenylketonur-
ia. However, behavioural disorders and
dimensions are complex traits influenced
by many genes as well as by many environ-
mental factors. For complex traits, genetic
factors operate like risk factors rather than
determining outcomes. For these reasons, it

GENETICS, ENVIRONMENT AND COGNITIVE ABILITIES

is crucial that behavioural scientists should
not be afraid of molecular genetics and that
they should take advantage of the exciting
developments in this field. Students in the
behavioural sciences must be taught about
genetics in order to prepare them for the
future. Otherwise, the opportunity will slip
away by default to geneticists — and genet-
ics is much too important a topic to be left
to geneticists!
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