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1. Introduction

The present paper extends some earlier work [1] on heat flow in a
composite system, in which a central, high-temperature region loses heat
to a surrounding medium. An example of the type of situation in mind is
the intrusion of igneous rock into a mass of cooler sedimentary material.
As an idealization, spherical symmetry is assumed and the outer region
is taken to be infinite in extent. In the earlier work, the central region and
the surrounding medium were each taken to be at a constant temperature
initially. The present paper gives solutions for a number of alternative
situations. The temperature in the outer region is still taken to be constant
initially but the temperature in the central region is represented by functions
of type rn or (l/r) sin kr, where r is the distance from the centre of the
system. As the system of equations for the temperature is linear, and any
continuous function can be approximated arbitrarily closely by a poly-
nomial or a Fourier series, the solutions given here can be superposed to
give a solution for any continuous initial temperature distribution in the
central region.

2. Notation and basic equations

We take the central region as a spherical core of radius a and use
Kx, kx, T1 for the thermal conductivity, diffusivity and temperature in the
core. Similarly, K2, k2 and T2 are the corresponding quantities in the outer
region. We treat K1, K2, klt k2 as constants and 7\, T2 as functions of r
and t, with T1 and T2 specified at time t = 0. In particular, we take T2

to be zero at t = 0 in each of the solutions developed below, thus measuring
the temperature relative to the initial temperature in the outer region. The
basic equations are:
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(3, T, = T,. *

Equation (3) expresses the requirement that the temperature and the heat
flux should be continuous at the interface between the two regions. Addi-
tional conditions which must be satisfied are that 7\ is finite as r -> 0, that
T2 -> 0 as r -> oo and that Tx and T2 both tend to zero as t -> oo.

For the initial conditions, we take T2(r, 0) = 0 and consider two
alternative forms for 7\(r, 0), viz.

(4) 7\(r, 0) = ro(r/«)", n = 0, 1, 2, • • •.

(5) Tx{r, 0) = T0{sin {nrh\a)}\{nrh\a), 0 < h.

For convenience in describing the heat flow, we shall take To as a positive
constant; it serves as a scale factor for the temperature. The problem
previously considered had Tx{r, 0) = To and thus corresponds to n = 0
in (4) and to h -> 0 in (5).

As in [1], we write T^r, p) for the Laplace transform of 7\(r, t) with
respect to time. Thus

(6) 3\(r, £) = J " 7\(r, <) exp (

and in the same way T2(r,p) denotes the Laplace transform of T2(r, t).
The method of solution is to find T1 and T2 and to use contour integration
to invert these transforms. This gives 7\ and T2 as real, infinite integrals.
The general form of these integrals can be deduced by looking for separable
solutions of equations (1), (2) and (3); this is discussed in the next section
since it throws some light on the structure of the integrals.

3. Separable form of solution

Using the condition that T2 ->• 0 as t -> oo, the appropriate form for a
separable solution of equation (2) is

(7) T2 = {ljr){ax sin nr-\-a2 cos nr) exp (—k2n
2t)

where n can be taken as real and positive. The appropriate form for 7\ is
similar. If we match the two solutions at r = a, using equation (3), and
keep 7\ finite as r -> 0, we get
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(8) T1 = AF1{r,t,u), T2 = AF2(r,t, u),

where A is arbitrary, u is real and positive, and

(9) F^r, t, u) = (<?/r){sin (ur/a)} exp {-k^t/a*},

F2(r, t, u) — [(u cos u-\-L sin «) sin {u(r—a)jaa]
(10) +<?w sin u cos {w(r—«)/&«}]

X (Ijru) exp (—k^t/a2),

with the constants a, L,Q defined b y

(11) a = V(*./*i), £ = (Ki-KJIK!, Q = K2\Kxo.

Equations (8) to (11) define the separable solution corresponding to u.
The boundary condition that T2 -> 0 as r -> oo imposes no additional
restrictions on the choice of u, so we have a continuous spectrum of eigen-
values and can expect to obtain solutions of the form

(12) T^rJ) = j^A^F^rJ.^du 0 < r ̂  a,

(13) T2(r, t) = JJ0 A{u)F2(r, t, u)du r ̂  a.

The amplitude factor A (u) is determined by the initial conditions; essentially
we have to find a function A (u) which satisfies the equations

Tx(r, 0) = ^A{u)Fx{r, 0, u)du 0 < r ̂  a,

* ^ 1 Too

I T2(r, 0) = j o A{u)F2(r, 0, u)du r ̂  a,

with r ^ r , 0) and ra(r, 0) specified.
When the Laplace transform method is used, the integrals obtained

for 7\(r, t) and T2(r, t) are of the form given by equations (12) and (13) and
it is enough to obtain one of the two integrals. This determines A (u) and
the remaining integral can be written down immediately. In practice, it is
usually more convenient to find T2{r,p) and invert it to get T2(r, t) than
to work from Tx(r, p), so in the later working the explicit form for T^r, p)
and Tx(r, t) is usually omitted.

4. Laplace transforms of 7\ and T2

Taking the Laplace transform of equation (1),

(15) pTy-T^r, 0) = {hlrWIWHrTj,

or if we put p = k^l and U1 = rTlt the equation for U1 is

(16) PUJdr* = fiUr-irlkJT^r, 0).
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Hence

(17) rTx =U1 = Bl sinh qxr+B2 cosh q1r+U0{r, p),

where B1 and B2 are functions of p and Uo is a Particular Integral of equa-
tion (16). As r -> 0, 7\ remains finite and hence U1 = rT1 must be zero at
r = 0. This implies that C/1 = 0 at r = 0 and so

(18) Ba=-Uo(0,p).

In the same way, if C72 = rT2 and ̂ > = &222, the equation for U2 is

(19) d*U2ldr* = q\lJ2

and the appropriate solution is

(20) rT2 = U2 = C(p) exp {-qa(r-a)},

taking the real part of q2 as positive. From equation (3), the conditions at
r = a are that

(21) U1 = Ui, K^dUJd^-KzidUjdr) = {Kx-K2)(U2la)

and this leads to the relations

{22] BxG{p) = U0(0, p)[(K2q2+K) cosh q.a+K.q, sinh qxa]

CG(p)=K1[q1{Uo(a,p) cosh qia-U0(0,p)}

where K = {K2-Kx)\a and

(24) G(̂ >) = i^j^x cosh qxa-\- (K2q2-{-K) sinh

Specifying Tx(r, 0) in equation (16) allows Uo to be written down and
Blt B2 and C can then be found from equations (18), (22) and (23). If we
use equation (4), i.e. Tx{r, 0) = T0(r/a)n, then Uo can be taken as a poly-
nomial in r, namely

pan L qt ?! J

If « is even, the series ends with a term in r and Uo(0, p) is zero; if n is odd,
the series ends with a term (n-\-l)ljqx

+1 and the expressions for Bx, B2

and C are slightly more complicated. Details of the solution for C and T2

are given in section 5.
If we use equation (5) to specify Tx{r, 0), a suitable form for Uo is

(26) UW = (aTolhn){sm (nrhla)}l(p+p0),
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where p0 = k^h^ja2. In this case B2 = 0 and the equations for B1 and C
become

(27) BxG{p) = ~{T0l(p+p0)}[{(K2q2+K)(sin 7th)l(7zhla)}+K1 cos rcA],

i« c o s h

(28)
—sinh qxa cos jrA].

From these, explicit forms for Tx{r, p) and T2(r, p) can be written down but
we postpone discussion of these until section 6.

5. Solution when T^r, 0) = T0(r/a)a

For the geological problem mentioned in section 1 the only cases
likely to be of practical interest are n = 0, 1, 2 and it is easy to find Blt

B2, and C for these special cases. However, it is not too difficult to consider
the general case (guided by the pattern that emerges when n is small).
From equation (25), we have

for n = 0, 1, 2, • • •, and if we use equation (23) to form

then the right-hand side simplifies, using equation (29), and we get

G(/0[C<»+»-{(»+3)(«+2)/««?;}C<»>]

= {K1T0/p){q1a cosh q1a— (w+3) sinh q-^a).

If we change the notation slightly and write

(31) C^G(p) = (K.TJ^C^p),

then the corresponding recurrence relation is

(32) Cn+2 = {qxa cosh 9la-{n+3) sinh q1a} + {{n+Z)(n+2)la*q2
1}Cn,

for « = 0, 1, 2, • • •, with

(33) CoiP) = <7ia cosh ^a—sinh qxa,

(34) Cx(p) = (^a cosh qxa — 2 sinh 5ri«)+(2/gr
1a) (cosh q^a — l).

From equations (20) and (31),

(35) T2(r, p) = {{KxTolrp)Cn{p)lG{p)} exp {-? >(r-a)}

and the standard inversion integral [3] gives
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(36) T2(r, t) =
K T C [t>\

rpG(p)
exp {pt-q2(r-a)}dp,

where the integration is along the line &(p) = y > 0 in the complex
/>-plane and the integrand is analytic for &(p) S: y. To evaluate this integral
we follow Carslaw and Jaeger [2] and use the closed contour shown in
Figure 1, where AC and FB are arcs of a large circle F1 (centre 0, radius R)
and DE is a small circle F2 (centre 0, radius e). A and B lie on the line
&(p) = y. Because T2(r, p) has a branch point at the origin, we make a
cut along the negative real axis, complete the contour by lines CD and FE
on either side of this cut and take — n < arg^> < n. This ensures that

and ^{q2)
 a r e positive, an essential requirement.

^ 1 DV

,

—J

B

A

FIGURE 1

Carslaw and Jaeger prove that G(p) has no zeros within or on this
closed contour and as Cn(p) can have a pole only at the origin it follows
that the integrand in equation (36) has no poles within or on the contour.
Hence integration from A to B along the straight line AB can be replaced
by integration along the path ACDEFB and in the limit, as R -> oo and
s ~> 0, this gives T2(r, t). Following Carslaw and Jaeger [2], it may be shown
that the integral around Ft tends to zero as R -> oo.

It can also be shown that the integral round F2 tends to zero as s -> 0.
If we write a = q1a, then it is easy to verify that (for a ^ 0)

(37) C0(p) = a cosh a—sinh a = j "« sinh udu,
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(38) C^p) = (I/a) j*u2sinhudu,

and for general n

(39) Cn(p) = arn \a un+1 sinh udu.

(Integration by parts shows that this form for Cn(p) satisfies the recur-
rence relation (32)). Writing sinh u as a series now gives

a2m+3(40) CAP) L lCAP) L l(2m+l)!(»+2m+8)
and hence for \p\ small

(41) Cn(p) = (q1

Also, for \p\ small,

(42) G(p) =

and the remaining factor in the integrand is of order unity. The integral
round Fz is therefore of order q\ and tends to zero as e -> 0.

The integrals along CD and EF can be combined, following Carslaw
and Jaeger, to give

(43) T2(r, t) = 2<%(J),

where

(44) / = lim(~ f T2(r,p)exp(pt)dp\.

R->oo

Along EF, we can write p — k^u/a)2 exp (in), with u positive. Then
qx — i[u\a), q2 = i(ujaa) and from equation (40) Cn(p) has its real part
zero. If we write Cn(p) = —i'^'n(u), then equations (33), (34) and (32) give

(45) ^o(w) == s m u~u c o s u>

(46) ^ ( M ) = (2 sin u—ucosu) — (2/M)(1— COS M),

(47) ^K + 2(M) = {(w+3) sin u-u cos u}-{(n+3){n+2)lu2}^n{u),

for n = 0, 1, 2, • • •. Also, on EF,

[exp {/>/-g2(y-fl)}1 _ -auFt{r, t, u)

L J
where -F2(>', t, u) is the function defined in equation (10) and

(49) D2 = (u cos u+L sin w)2+ ((?M sin u)2.
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This leads to

(50) T2(r, t) = (2aTQM j™ {<?B(«)/Z>»}F8(r, t, u)du.

Comparing equation (50) with equation (13) gives

(51) A{u) =

and T^r, t) can now be written down from equation (12).
In analogy with equations (39) and (40), we can write

ftJu) = u~n f" vn+1 sin vdv
(52) _ >'

".I.
The series form is useful in obtaining information about the heat flow and
temperature for large values of t (cf. Section 7).

6. Solution when T^r, 0) = T0{sin (prrh/a)}/(nrh/a)

From equations (20) and (28), we have in this case

(53) T2(r,p) = [{K1Tolr(p-\-po)}E(h, p) exp {—q2(r—a)}]/G(p)

where

(54) E(h,p) = {qxa cosh ^^{(sin 7ih)jnh}—sinh qxa cos nh.

We can write down the inversion integral for T2(r, t) as in section 5 and a
similar contour in the ^>-plane can be used. At first sight, it looks as if the
contour should be indented at p = —p0 to allow for a pole at this point but
closer scrutiny reveals that this is not necessary. The factor E (h, p) is also
zero when p = —p0 and it can be proved that as p ~> —p0, either from
below the cut in the ^-plane or from above it, the ratio E{h,p)l{pJ

rp0)
approaches a finite limit. Hence we can use the same contour as before and
integrate along ACDEFB (Figure 1). For the large circle, the contribution
to the integral again tends to zero as R -> oo. (The argument follows the
same lines as in the previous case; for R sufficiently large, Ip+p^ > %\p\
and hence it does not matter that there is a factor p -\-p0 instead of a factor
p in the denominator.)

On the small circle F2,

(55) E(h, p) = ft«{— cos nh+ (sin nh)lnh}+O{q\)

and {E(h, p)/G(p)} approaches a finite limit as |<h| -*-0, from equations
(42) and (55). The differential dp gives a factor e and the remaining factors
are of order unity; hence the integral round F2 tends to zero as e -> 0.
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[9] A diffusion problem 411

This leaves only the contribution from integration along CD and EF
and these can be combined, as in section 5, to give

(56) T2(r, t) = 29HJJ

where Jx is the limit, as s -> 0 and R -> oo, of the contribution from EF.
Along EF, qt = im = m/a and hence

(57) E(h, p) = i(u cos u sin nh—nh sin M COS 7th)jnh = i<

(58) +̂j!>0 = -k^+k^nh/a)2 = (kJa^^W—u2),

(59) (dp)l{p+p0) = —2k1mdml(p+p0) = — 2udu\{n2h2—u2).

Using the above equations and equations (48) and (49) gives

(60) 2aT0 p
^ Jo

, u)F2{r, t, u)du

In this case, the amplitude factor A(u) of equation (13) is

(61) A(u) =

and this allows Tx(r, t) to be written down.
We may note, as a check, that as h tends to zero S(h, u) -> —^0(u)

and A(u) ̂  (2aTolji){
(^'o(u)ID2}, which agrees with the form of A(u)

obtained for n = 0 in section 5 and with the results obtained in [1] for this
special case.

7. Temperature and heat flow at interface

The temperature at the interface between the core and the outer region
can be obtained by putting r = a in either Tx{r,t) or T2(r,t). Similarly,
the heat flux from the core can be obtained from

H'(t) = heat flux across surface r = a
( 6 2 )

Integrating H'(t) from 0 to t gives the heat loss from the core after time t
and this will be denoted by H(t). As t -> oo, 7\(r, t) -> 0 and hence H{t)
must approach a limiting value, namely the total amount of heat energy
initially available in the core. If we use Ho for the latter quantity, then

(63) Ho = \" 4t7ir2psT1(r, 0)dr,

where p is the density of the core material and s is its specific heat. Since
k1 = K-^jps, we can replace ps in equation (63) by KJ^.
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If we apply these ideas to the case where Tx{r, 0) = T0(rja)n, equations
(10) and (50) give

(64) T2(a, t) = (2QTj7i) J " {Vn(u)/D*} sin u X(t, u)du,

(65) H'(t) = {tyToaKj) H {^JD2}{sin u~u cos u)X(t, u)du,
J 0

(66) H{t) = (SQTQ^KJ^) JO°° {^JD2}{(sm u—u cos u) (l-X)/u2}du,

where X(t, u) denotes the exponential factor exp (—kxtu
2\a2). For u > 0,

X -> 0 as t -> oo and hence

j°° {^J£>a}{(sin « - « cos u)ju2}du

The second line in this equation comes from equation (63). From this, we
obtain the incidental result that

(68)

and the more important result that

(69) / = {2Q(n+3)l7t} j™ {

where / = {H0—H(t)}IH0 is the fraction of the total heat flux from the core
that has still to occur at time t.

For the case where T±(r, 0) = ro{sin {nrhja)}j{nrhja), equation (63)
gives

(70) Ho = (4na3K1 TJkj) (sin nh—nh cos nh)j{nhf.

The expressions for Tz(a, t), H'(t) and H(t) have the same structure as
before; if we replace ^n{u) by u2S>(h,u)l(n2h2—u2) in equations (64), (65)
and (66) we get the appropriate forms. This can be seen by comparing
equations (50) and (60). The expression for / is more complicated in this
case but can be written as

2Q(nh)* r°°V0(u)<?(h,u)X(t,u)
[ ' ' 7i^0{nh))0 (7i2h*-u2)D2 U'

For large values of t, the main contribution to the integrals in equations
(69) and (71) comes from the neighbourhood of u = 0, because of the
exponential factor X(t, u). For u small, the leading term in *ifn(w) is
u3/(n-{-3), from equation (52), and this leads to

(72) / = (a*l6Vn)(KJKakiy/ka)t-*+O(t-l),
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independent of n. Similarly, for u small,

(73)

and the corresponding expression for / is again given by equation (72).
Thus the leading term in / is independent of 7\(r, 0) for the forms of 7\(r, 0)
that have been examined here. Presumably this would also hold for any
linear combination of these initial conditions.

I should like to thank the referee for some helpful suggestions. In
particular, his suggestions have led to a more general presentation of the
material in section 5.
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