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Abstract

‘We consider a multiclass single-server queueing network as a model of a packet switching
network. The rates packets are sent into this network are controlled by queues which act
as congestion windows. By considering a sequence of congestion controls, we analyse a
sequence of stationary queueing networks. In this asymptotic regime, the service capacity
of the network remains constant and the sequence of congestion controllers act to exploit
the network’s capacity by increasing the number of packets within the network. We show
that the stationary throughput of routes on this sequence of networks converges to an
allocation that maximises aggregate utility subject to the network’s capacity constraints.
To perform this analysis, we require that our utility functions satisfy an exponential
concavity condition. This family of utilities includes weighted «-fair utilities for o« > 1.
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1. Introduction

We are interested in proving how end-to-end control can provide a mechanism where routes
receive a transfer rate that is the solution to a network wide utility optimization problem. Using
differential equations to model network dynamics, authors have demonstrated network utility
optimization; see [ 14]. Inthis paper we consider a sequence of stationary queueing networks and
demonstrate network utility optimization. We note here that an accessible heuristic derivation
of the papers’ main results can be found in Section 2.

As a method of allocating resources and introducing fairness, Kelly [11] considered utility
optimization of the form

maximise Z Ui(A}) ()
ied

subject to Z A; = Cj, j€g, @)
{i: jei}

over A; >0, ield, 3)

where U; is an increasing strictly concave utility function with derivative satisfying U/ (A;) —
oo as A; — 0. We call this optimization problem the system problem. In words, it states that
one should maximise the aggregate utility of the transfer rate received by users of a network’s
routes (1) subject to the network’s capacity constraints (2). But, the utility preferences of users
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are separate and unknown to the functional operation of a communication network. Similarly,
users do not explicitly know the network’s topology and exact capacity. So, the network’s
behaviour and preferences of users must be decomposed.

In[11], Kelly also introduced proportional fairness as the unique solution to the optimization

problem
maximise Zﬁzi log A; 4)
ied
subject to Z A = Cj, jeg. ®)
{i: jei)
over A; >0, ield. (6)

We call this optimization problem the network problem or the proportionally fair optimization
problem. Kelly [11] considered the combined solution of the network problem and the following
user problems: for eachi € {,

. mi _
maximise U; <—> —m; (7)
qi
over m; > 0.
This combined solution was considered under the relation

m; = A;q;, ield, ®)

where g; = ) jeiqjand (gj: j € §) are the Lagrange multipliers associated with the network
problem. Theorem 2 of [11] showed that, under (8), the combined solution of the network and
user problems yielded the solution to the system problem.

This result was constructed to suggest an end-to-end argument for providing optimization
and fairness across a communication network. The result provided a method for decomposing
the system problem into a user problem that is independent of the network structure, except
through parameter ¢;, and a network problem that is independent of users’ preferences, except
through parameters m = (m; : i € J). Interpreted in the context of a communication network,
this separated the preferences of users performing end-to-end communication and the network’s
preferred optimal behaviour. In [11] the solution was interpreted as setting prices (g;: j € )
for sending traffic through the network. With these prices, each user, i € {, chooses an amount
of money, m;, he/she is willing to pay per unit of time for network resources. From this, the
user receives an amount of bandwidth A; = m; /q;.

By construction, this result considers a static model and the end-to-end argument performed
by users is implicit. Subsequent work has successfully used differential equations to add
dynamics to this notion of optimization and decomposition [7], [12], [14], [21]. Other work
has considered the form of utility optimization achieved by different protocols [15], [18], [23].
Authors have also considered stochastic models of flow across a network [2], [3], [16]. More
recently, authors have explicitly used the queue length as a mechanism to provide utility-based
fairness [5], [22]. We now describe the approach taken in this paper.

In 1979, Schweitzer [20] studied approximations of closed multiclass queueing networks
and considered how asymptotic conditions on such networks might satisfy the Kuhn-Tucker
conditions for proportionally fair optimization. In 1989, Kelly [10] studied approximations
of closed queueing networks and, by an analogous analysis, considered a similar optimization
formulation. In 1999, Massoulié and Roberts [17] studied a fluid-type queueing model and
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used these same Kuhn—Tucker conditions to deduce proportional fairness. Using large devi-
ations and heavy traffic analysis, the recent work of Walton [24] and Kelly et al. [13] have
provided rigorous formalisations of the relationship between closed queueing networks and
proportional fairness. The large deviations connection between multiclass queueing networks
and proportional fairness gives a much more literal meaning to the network problem (4)—(6).

In light of this work, the first key observation of this paper is that we can express the network
problem (4)—(6) in terms of the asymptotic behaviour of a multiclass queueing network. Given
this, (m; : i € {) must represent the number of packets on each route of this network. We let
(m;: i € J) be recorded and controlled by congestion windows. In this paper, for each route,
a congestion window sends packets along its route at a rate which is a function of the number
of packets on that route. We call this system of queues and congestion windows a queueing
system.

We wish to associate the congestion windows in a queueing system with the user prob-
lem (7). The second key observation of this paper is that the user problem (7) is reminiscent
of a Legendre-Fenchel transform. Results like the Girtner—Ellis theorem [4] relate the large
deviations behaviour of sequences of random variables to the Legendre—Fenchel transform of
their log moment generating function. So, by controlling the number of packets in transfer in
a network, under a large deviations asymptotic, this Legendre—Fenchel transform observation
can be used to associate a utility function with a sequence of congestion windows. We interpret
each congestion window in this sequence as a congestion controller’s response to the level of
congestion within the queueing system. We discuss this point further in Section 2 and, more
formally, in Section 3.

A third observation is that in our queueing system statement (8) corresponds to the statement
of Little’s law, i.e. the expected number of packets across routes equals the expected sojourn
time of packets through the multiclass queueing network multiplied by the rate packets are sent
into the multiclass queueing network. Thus, these three observations now place the work of
[11] in the context of a network of queues with congestion windowing.

The above three observations prescribe the limiting regime and theoretical approach of this
paper. We consider a sequence of stationary queueing systems. The capacity of queues within
this network is constant, but the control policy used by each congestion controller is altered
in this sequence. Controllers sequentially increase the number of packets in flight within the
network. Large deviations results are then employed to show that the corresponding sequence
of stationary distributions asymptotically concentrates probability on a point that maximises
network utility.

We now locate the main results of this paper. The queues and congestion windows considered
in our queueing system are quasi-reversible. Theorem 1 describes standard reversibility results
that can be applied to calculate these queueing systems’ stationary distribution. We consider a
sequence of stationary queueing systems associated with a particular sequence of congestion
windows. We study the large deviations of the stationary distribution of this sequence of
queueing systems. In this large deviations limit our above three observations are realised
and, thus, these queueing systems are asymptotically able to execute the analysis of Kelly
[11, Theorem 2]. We find in our analysis that we require each utility function to satisfy an
exponential concavity condition, that is, the map A — Uj; (e*) is concave. Theorem 3 states that
this sequence of queueing systems obeys a large deviations principle with rate function given
by the system problem

ma)i ZUi(Ai) subject to Z A <Cj, jeg.
ARy el it jei)
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From this, in Theorem 5 we prove that the stationary rate of packet transfer converges to the
solution of the system problem (1)—(3).

1.1. Organization

In Section 2 we present a heuristic derivation of the main results of this paper. This section
should be quick and accessible to most readers.

In Section 3 we define our model of a congestion window. We study its stationary distribution
when operating in isolation of a network. We study the large deviations behaviour of a sequence
of congestion windows and we consider how to associate a utility function with this sequence.

In Section 4 we consider a well-known model of a multiclass queue. We study these
queues’ stationary distribution when operating in isolation of a network and we study their
large deviations behaviour.

In Section 5 we connect the congestion windows of Section 3 with the queues of Section 4
to form a queueing system. Similarly, we study the stationary distribution of this queueing
system and the large deviations of a sequence of queueing systems. In addition, we study the
dual relationship between the state and the flow through the queueing system, and we prove
that the stationary throughput of packets in the queueing system converges to the solution of
the system problem.

1.2. Notation

Let the finite set § index the set of queues in a network. Let J = |{|. A route through
the network is a nonempty subset of queues. Let { be the set of routes, and let I = J{.
For each route i = {j{, R j,it_}, we associate an order (jf, el j,il_). This is the order in
which route-i packets traverse their route. Also, we define the set of queue-route incidences,
K={({,i)eFgxd:jei},andlet K = |K]|.

Our multiclass queueing system will process packets through a network of queues and
congestion windows. For each route, there is a congestion window. Let the window size m;
denote the number of packets in congestion window i € {. The window size is the number of
sent but not yet acknowledged packets on route i. Each queue j processes packets from routes
i € I with j €i. Letmj; denote the number of route-i packets at queue j. We also define

mj= Y mj,  jeg ©)
{i:jei}

to be the number of packets at queue j. As each congestion window records the number of
packets in transfer in the queueing network,

mi=Y mj, i€l (10)
jei

Although we will often use m = (m;: i € 4) € Z, andm = (mj;: (j,i) € X) € ZX to refer
to the numbers of packets at congestion windows and queues, in Sections 3.2, 4.2, and 5.2, when
applying large deviations results, we will use m € Ri andm € Rf to refer to the proportions
of packets in the queueing system at different congestion windows and queues.

In addition, for m € Zf , we define

( m ) _ mj! .
mjiz 3] i jeiy(mjit)
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For vectors x € Rf and ¢ € R?, we define | x| = (Zfi):] xf,)l/z, the Euclidean norm of x;
lx] = (lxql: d = 1,..., D), the low integer part of each component of x; and ¢ - x =
ZdDzl @axa, the dot product of ¢ and x.

2. A heuristic derivation of results

In this section we give a heuristic derivation of the results in this paper. The heuristic is an
adaption of the arguments of [10], [17], and [20] applied to a modified version of [11]. The
formal proof, given in subsequent sections, follows a similar approach to [24].

The Karush—Kuhn-Tucker (KKT) conditions for the system problem (1)—(3) are that there
exist positive multipliers (¢; : j € &) and positive rates (A;: i € {) such that

Uity =) g5, i€l

jei
qj<Cj— > Ai)=07 jed
{i: jei}
Y A=CL jed.

{i: jei)
Consider a queueing system with routes { and queues &, as notated in the previous section.
For each route i, packets are injected into the network, traverse the queues in their route in order
Jj i e j,i, , and then leave. Let g; denote the stationary sojourn time of a packet at queue j, let

m j; denote the stationary number of route-i packets in transfer at queue j, and let A; denote
the stationary sending rate of route-i packets into the network. By Little’s law,

Aigj =mj; foralli € fand j €i.

Summing over the queues on route i and rearranging gives

mi :

— = i foralli e {, 11

A= (1)

jei

where m; is the stationary number of packets in transfer on route i. Suppose that a congestion
window for each route i injects packets into the network at a rate that is a function of m;,

i.e. gi(m;) = A;. If we chose g; () so that

mi =g ' (A) = AiUi(A7) (12)
then (11) implies that
Uj(A) =) q;. ied. (13)
jei
Assuming that all queues are stable, we know that
> Ai=Cj foralljeg. (14)
{i: jei)

If equality (14) is strict then sojourn times will be small, i.e. g; ~ 0. Thus, approximately,

q,-<cj— > A,-):O forall j € 4. (15)

{i: jei}

https://doi.org/10.1239/jap/1300198137 Published online by Cambridge University Press


https://doi.org/10.1239/jap/1300198137

Utility optimization in queueing networks 73

Also,
qgj >0 foralljedg and A; >0 foralli € {. (16)

Interpreting (g;: j € ) as Lagrange multipliers, (13)—(16) are precisely the above KKT
conditions for the system problem. So the rates (A;: i € ) and the sojourn times (¢;: j € &),
implicitly defined by the queueing network, solve the system problem (1)—(3).

The remainder of this paper is concerned with making the above arguments rigorous. To
make conditions like (15) strict, we will require the network to have a high level of congestion.
We achieve this by considering a sequence of congestion controls gl.(c), whilst keeping C;, each
queues’ service capacity, fixed. As c increases, the controllers increase the number of packets
in transfer and, thus, more aggressively exploit the network capacity. We think of this increase
in congestion in an analogous way to the increase rules employed by the transmission control
protocol in Internet communications. We will apply large deviations techniques to a sequence
of stationary network models, indexed by ¢, and prove that probability concentrates on the
system optimal operating point.

2.1. Choices of g;(m;) and G; (m;)

Later, we will apply large deviations results to certain stationary distributions. For this
reason, it will be convenient to express g; through the theory of convex duality. Let G; be a
differentiable function such that g; ;) = ¢%i’™_ Then (12) gives

G 'log A)) = AUL(A) or Gl (y) = e Uj(eM). (7)

Now if F* is the Legendre-Fenchel transform of a concave differentiable function F, i.e.
F*(m) = —max,{F(A) — Am}, then, by construction, F* has a derivative that inverts the
derivative of F, i.e. the inverse of F*'(-) equals F'(-). Applying this to (17), with G;(m) =
F*(m) and F (A;) = U;(e), we have

Gi(m) = —mAaX{Ui(eA") —miAi} = —Rla)(g{Ui(Ai) —m;log A} (18)

It is precisely by this function G; that we are able to replace m; log A;, the network problem
summand, with the system user’s utility U; (A;).

So that duality can invert this operation, that is, U; (") = G7(A), we require that U; (e*) is
a concave function of A.

We note that the optimization used to derive G;, (18), is different to the user problem (7)
derived by Kelly [11]. This is, in essence, because we choose the rate packets to be injected
based on the number of packets in transfer. This is in contrast to the user problem of Kelly,
which could be interpreted as choosing the number of packets in transfer given the current
network delay (or round trip time) of packets. A theoretical advantage to our approach is that
queueing networks which inject packets based on the number of packets in transfer are more
analytically tractable. In particular, quasi-reversibility results can be applied to explicitly give
the stationary distribution of such networks.

In the next two sections we construct the components of these queueing networks: congestion
windows and multiclass queues. In Section 5 we connect these components to form a sequence
of queueing systems that will execute the above heuristic.

3. Congestion windows

Congestion windows keep a record of the number of sent but not yet acknowledged packets
in a queueing network. The models of congestion windows considered here are reversible and,
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thus, lend well to product-form results when incorporated into a network [1], [10]. We will
later connect these congestion windows to the routes of a network of multiclass single-server
queues.

When in isolation of a network, we define a congestion window at congestion level ¢ as a
continuous-time Markov chain (M © (t): t € R}) on Z with transition rates

gl o) it ] = 41,

0 otherwise.

The transition m; — m; + 1 is thought of as injecting a packet into a network, and, for m; > 0,
a transition m; +— m; — 1 is thought of as acknowledging a packet that has been transferred.
Thus, we think of m; as recording the number of packets currently in transfer. For the purposes
of this paper, it will be convenient to define

Ai=¢" and gl () = exp(G{ oh; + 1) — G (),

where A; € R and G( 9, Ry = [—00, 00) is a strictly Concave functlon Thus, a congestion
window is defined by a constant A; and a function (c, m;) +— G (m ).

3.1. Reversibility and stationary behaviour

We now collect a result about the stationary behaviour of congestion windows.

Proposition 1. A stationary congestion window is reversible with stationary distribution
7 (i) = 7 (0) expl G Giy) — Mg}, i € Zy. (19)
Proof. The result is immediate from the detail balance equations

7 (i) = exp{G(” i) — GO (i — 1) — My G — 1)

= exp{G” () — himi} ) (0).

3.2. Large deviations

We think of the pair (c, m;) as giving the state of a congestion controller, where L is a
level of congestion and m; is the number of packets in transfer. As noted above, if ¢ is fixed,
a congestion controller describes a reversible Markov chain. In this section we study the
stationary distribution of a sequence of these Markov chains as ¢ — oo. As c increases, the
stationary number of packets in transfer will increase. This can be interpreted as the congestion
controller more aggressively exploiting the network’s capacity. In this section we use large
deviation type arguments to study where the probability concentrates under this limit.

Foreachc € N, let M © bea stationary congestion window defined by A; and G(C)( ), where

G(C) (k) = cGi(k/c +d; © /c) for a strictly concave function G;, differentiable on (0, oo) with
derlvatlves taking all Values in (=00, c0) and with {d, (C)}CGN a bounded sequence with values
in R. We define a convex function G} : R — R from G; with Legendre—Fenchel transform

G} (rj) = max {G;(m;) — Ajm;}.
mi€R+
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We also define
m}. = argmax{G;(m;) — kjm;}.
! n_’l,'ER+

In the following proposition we use large deviation arguments to identify the most probable
state of the sequence of random variables M), ¢ € N,

Proposition 2. (a) We have
1 o
lim ~log ) exp{G\” (k) — Aik} = G} (hi),  Xi € Ry.
c—>00 C k:O

(b) For m; € (0, 00) and a bounded sequence {6l.(c)}ceN such that cm; + 6l.(c) €2y,

1 _
lim —logP(M© = cin; +6'9) = Gi(m;) — ki — G ().

c—>00 ¢

Proof. To prove (a), we wish to verify the principle of the largest term for this infinite sum
[6, Lemma 2.1]. First we show the upper bound. Let d = max, |di(c) |. Since G; is strictly
concave, for all § > 0, letting

1
&= gmin{Gi(n_ij{l_) — Gi(n_l;i[_ —8)+ 6, G,-(rﬁjl_) - G,-(ﬁzK'_ +38) — 8} >0,
we have, for all m € Ry,
Gi(mi) — himi < G7 () — e(m; —my,) Um; > m; + 8]+ e — m3,) 1m; < m* —8].

Therefore, applying the above inequality and comparing the following with a geometric sum,

we have
00 00 (c)
k d k
Zexp{Gl@(k) — Ak} = Zexp{c(Gi <— + ’—) - Ai—>}
k=0 k=0 ¢ ¢ ¢

< eXp{CG;k()\.l) +dl(c)}<2(6'8 +d+1)+2 Z eCS(k/C—n_'l*))
keZy

ef(céfdfl)
< exp{cGF (L) + di(c)}(Q(CB +d+1)+ 2?)' (20)

&

Hence, as the first term in the brackets dominates,

l o0
lim sup — log Y " exp{G{” (k) — Ak} < GF(1).

C
c—>00 k=0

By proving the lower bound for (a) we can simultaneously verify (b). Using the terminology
of (b), for all m; € (0, 00),
1 5@ 4
G;(n;) — Aim; = lim — log exp{cGi (n’li + - 4 l—) — hicim; + 5}0)} 1)
c—00 C C C

NS TR ©
< liminf - log Z exp{GiC (k) — Ajk}.

c—>00
k=0

Taking m; = rh:i and 6[@ = Ln&j{ij — nﬁj{i verifies (a). Given (a) and (21), we have (b).
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We now emphasise the following duality between the state and the flow in congestion
windows. Suppose that, as ¢ — oo, the number of packets in transfer is approximately crm}
for some m} € (0, 00). Thus, the flow out of the congestion window is approximately
Gi(iif + 1/c) = Gi(if)

1/c

gi(c) (cm}) ~ exp{ } — G0 a5 ¢ — oo.

When stationary, the average outward flow of packets from the congestion window equals the
average inward flow. Thus, we have G; (rﬁ;") = A;, or, in other words,

m] = argmax{G; (m;) — Ajn;}.
n'1,-€R+

By this duality and the correct choice of G; (as discussed in Section 2.1), we can control the
throughput of packets from the congestion window so that it optimises a utility function.

3.3. Utility optimization

The rate packets are acknowledged by a congestion window is A; = e*; thus, the utility
associated with A; is U; (e*). If we wish to maximise the system problem, we must define G;
through the following user problem:

~Gi(m;) = max{U; ") —miki},  m; e Ry (22)
i€

Similarly, by the duality of Legendre—Fenchel transforms, we may define U; from G; by
Ui(e") = min {aim; — Gi(mi)} = —GF (), ri € R (23)

mi€R+

The function U; (e*) must be concave as G;"()\,-) is convex. Thus, in order to optimise a utility
function U;, we require the following assumption.

Assumption 1. The utility function U; is exponentially concave, that is, the map A; — U;(e*)
is strictly concave on R.

We also collect the differentiability assumptions that we make on G;.

Assumption 2. We assume that G; defined by (22) is strictly concave and (continuously)
differentiable on (0, 00) with derivatives taking all values in R.

Remark 1. (Weighted a-fairness, « > 1.) The weighted a-fair family of utility functions
considered by Mo and Walrand [18] corresponds to the aggregate utility of users with iso-
elastic utility, that is, utilities
wl'Ail_a
Ui(A)) =1 -«

wilogA; ifw; e Ry, o =1.

ifwjeRy, >0, a #1,

The weighted a-fair class has proved popular as it contains proportional fairness (¢ = w; = 1)
and transmission control protocol fairness (@ = 2, w; = 1/ Tiz), and converges to maximum
throughput (¢ — 0, w; = 1) and max—min fairness (¢ — oo, w; = 1).

We can easily verify that U; (A;) is exponentially concave for o > 1 and that

_ m; m; m; 1 mi X
Gi(m;) = ——log — — = log — dx.
l -« wi l—a 1—-aly w;
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So U; and G; satisfy the two assumptions above for @ > 1. Thus, our results apply for weighted
a-fairness for « > 1. The case @ = 1 is considered in [24]. For weighted «-fairness, o > 1,
convenient forms for g(c) and G(C)

1/(@—1) . Vi /(1)
89 0m) = sl and G010 = —(cz_u,)’” - .
(m;H1/ =1

i
4. Multiclass single-server queues

We define a multiclass single-server queue. These queues are quasi-reversible and are
described in [8]. When connected to form a network, these queues process packets over different
routes of a queueing system. Congestion windows regulate the number of packets present on
each route. After defining these multiclass queues in this section, we define this queueing
system in Section 5.

A queue j € & is fed packets from classes of the set of routes {i € £: j € i}. Packets
occupy different positions within the queue and have an exponentially distributed mean 1
service requirement. Given there are m; € Z, packets at queue j, packets occupy positions
1,...,mj. The total service devoted to these packets is C; € (0, 00). This fixed service
is then divided amongst the different positions in the queue. A proportion y;(/, m ;) of this
capacity is devoted to the packet at position [ = 1, ..., m;. Upon completing its service, a
packet at position / will depart the queue and the packets at positions / + 1, ..., m; will move
to positions /, ..., m; — 1, respectively. In this section we assume that packets of route i arrive
at queue j as a Poisson process with rate A;. Upon arrival, a packet will move to position
I =1,...,m;+ 1 with probability 6 (/, m j + 1), and packets that were in positions [, ..., m
will move to pQSitionsl +1,...,m; + 1.

Let s/ = (il . zm ) € 1”‘1 for m; > 0 give the state of queue j. Let T Gl denote the
arrival of a class-i packet to position/ in queue j, and let T(’ D). denote the departure of a class-i
packet from position /. Thus, the state of this queue forms a continuous-time Markov chain
with transition rates given by

AiSi,mj+ 1) fors’i—T}' o l=1 . mi
q(s’, sy =1Cy;l,m)) for s' = T(‘ . s/, il/ =i, l=1,...,mj,
0 otherwise.

4.1. Quasi-reversibility and stationary behaviour

Multiclass single-server queues are known to be quasi-reversible and their stationary distri-
bution is well understood [1], [8].

Proposition 3. Provided that the stability condition

Z A <Cj,  jedg,

holds, a multiclass single-server queue j € g is quasi-reversible and (Mj;: i € J, j € i), the
stationary number of route-i packets at queue j, has distribution

C; — N . A\ i
P(Mji = mys foralli 5 j) = 2 (m i ) [ (c_) 4)
ji

. ) .
Cj t=J (i jeiy 7/

formj; € Zy and eachi € I such that j € i, where m; = Z{i: jeiyMji-
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Proof. Let M be the number of packets at queue j. Since the queue does not discriminate
between different packet classes, M is a reversible Markov chain and, thus, its departures prior
to time ¢ form a Poisson process independent of the Poisson process of arrivals after time ¢. By
thinning these Poisson processes with probability A;/ > {j: rej) Ar» we obtain the arrival and
departure processes of route-i packets and, thus, deduce that the queue is quasi-reversible. The
stationary distribution of M; is geometric with parameter (1/C) Z{r: jery Ai- Combining
this with the same thinning argument and summing over states s/, giving (mj;: i € 4, j € i),
we obtain (24). For more details, see [1, Section IV.4] or [8, Theorem 3.1].

4.2. Large deviations

We study the stationary distribution (24) when the number of packets of each class is increased
proportionately, but all other queueing parameters are kept constant. We collect some large
deviations results on these queues in this regime [19], [24].

Proposition 4. For j € ¢, let (Mj;: i € 4, j € i) have distribution (24).
(a) Let m/ = (mji:i € d,j€i)and ol (C)—(U(‘) ie€ed, jei), ceN, be such that

mj; € Ry, sup oy o/ (C)|| < 00, and cm j; + a( € Zy foralli with j € i. Then

1 .
lim —logP(M;; =cmj; +a( )foralll 5 j) =—Bj(m?),

c—>00 ¢
where c.
m;
j — 1 Ji ].
IBJ(m ) = Z mjj 10g Az
{i: jei}
m;>0

(b) The function B; (m?) is continuous, convex, and such that

inf B (m]) N {O ifZ{i:jei}Ai =Cj, (25)

mi>0 —00 otherwise.
Proof. (a) Define o}c) = Z{i: jei} a;f). By Stirling’s formula,
lim L1 Oy =mji1 ; ;
Cl)rgoz og(cm +0jl. N=mjlogmj —mj.
Thus,

1
hm —logP(Mj, =cmj; +0]l , i3 7])

1

. ©yy _ (c) ()

Cli)m —(log(cm, +oj )! E log(cm; + o; SN+ E (cm +o ) log C >
{i: jei) it jei) i

(mj; + O'( )/c)C
| (mj + a}”/c)A,-

(b) Taking x logx = 0 for x = 0, x log x is continuous on R ; thus, ; is continuous. We
now prove (25). For two probability distributions p and ¢ with the same support on K, we
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define their relative entropy to be D(p|lg) = Y, pslog(ps/qs). In particular, we can verify
that

H}Hin D(pllg) =0, (26)

which is minimised when p = ¢q. Thus, taking p = (mj;/mj:i € {, j € i)and g =
(A,-/Z{r: jery Arii €4, j €,

. y mij o A loF
inf B;(m’) = inf m,»< > ﬂlogM>+mﬂog—-’
m/ >0 (

mi >0 i jeil m; m/Al Z{r: jer} Ay
C.
= inf m;log =————
mi >0 ! Z{r: jer} Ar

0 if Z{r: jer} A” = Cj’
—o0 otherwise.

Finally, to show that 8;(-) is convex, we can verify that

,Bj(mj) = max Z mji¢; subjectto Z A,-e‘pi <C; overg; eR,i>j. (27)
{i: jei} {i: jei}

Thus, B;(-) is expressible as a Legendre—Fenchel transform and so is convex.

5. A queueing system

We now connect the queues and congestion windows discussed in the last two sections to
form a network. The interior of this network consists of a set of multiclass queues with routes
defined over these queues. We think of this as a simple model of a packet switching network.
The number of packets in transfer on a route are determined by congestion windows, as defined
in Section 3. The queueing system, defined by these queues and congestion windows, models
the congestion control of a packet-switched communication network with a fixed number of
document transfers in progress.

In this section, using quasi-reversibility results and fixed ¢, we calculate the stationary
distribution of this queueing system. For these stationary distributions, we increase c, the
congestion level of each congestion window, and, using large deviation techniques, we calculate
where the probability concentrates. We show that the most likely state is given an entropy
optimization and its dual is the system problem. In particular, we prove that A (), the stationary
rate packets traverse the network, converges to the solution of the system problem (1)—(3).

We consider a network of queues indexed by the set ¢ and congestion windows indexed
by the set of routes {. Each queue j € & will process packets as described in Section 4,
but transitions between queues will be prompted by transitions within the queueing system
(rather than by a Poisson process). Similarly, each congestion window will send packets into
the network as described in Section 3, but transitions m; +— m; — 1 will be prompted by the
successful transfer of a packet in the queueing network.

If we associate the route order ( j{, e j,ii) to route i, a packet injected by congestion
window i will prompt an arrival at queue j;. Also, the departure of a route-i packet from queue
Jy» k =1,....k — 1, will prompt an arrival at queue j;, |, and, similarly, a departure of a
route-i packet from the final queue jli,- will prompt a transition m; — m; — 1 at congestion
window i. In this way, packets are sent into the network, transferred along their route, and
finally acknowledged.
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We more explicitly describe the state of our queueing system as follows. As in Section 4,
we let s/ = (i { e i/,,j) record the state of queue j and s = (s/: Jj € &) record the state
of our queueing system. Also, we let m; record the state of congestion window i and let
m = (m;: i € J) record the state of our congestion windows. Finally, let s = (s, m) record
the explicit state of our queueing system. We define the transitions in our queueing network
as follows. Let s — T GbS define the transition corresponding to a route-i packet injected
by congestion window i and arriving at position / in queue j. Let s — T ) IS denote the
departure of a route-i packet from position / of queue j which arrives at posmon " in queue j'.
Finally, let s — T'. . s denote the departure of a route-i packet from position [ of queue j
which is then acknowledged at congestion window i.

We define our queueing system corresponding to congestion level ¢ to be a continuous-time
Markov chain with the following transition rates:

g s, mj+1) for s’ _T( S d =g l=1 my
Ciyj,mp)éyl',mjy +1) fors’ —T( DG l,s,jzjli,
J = k=1 =,

(s,8) =
K il =i, U=1,...,mp+1,
Cjyjl,mj) fors' =T¢,) s, j=Ji, il =i,
0 otherwise.

(28)

Asin Section 4, weletm = (m ; : (j, i) € K) record the number of route-i packets at queue ;.

Also, recall the expressions for m ; and m;, (9) and (10), the numbers of packets in each queue

and in each congestion window. Finally, recall that we defined G ) from g by the relation
89 () = exp{G\” (i + 1) — G (my)).

5.1. Quasi-reversibility and stationary behaviour

From Proposition 1 and Proposition 3, our queueing system consists of a network of
quasi-reversible nodes. Thus, as considered in [9], networks of quasi-reversible nodes have
a stationary distribution that is described by multiplying distributions (19) and (24). We prove
this in the following theorem.

Theorem 1. For a stationary queueing system defined by rates (28), let M = (Mj;: (j, i) €
K) record the stationary number of packets of each route at each queue. Then M has distribution

G<‘>(m, K
H(m]z lBJ) mjl_[ m €2y, (29)

P(M =m) = —
G ey Ci" s

where

(c)
BG(C)_Zn<mﬂ,19]> "”JHG (m)

meZK JjEd ied

Note that the distribution P(M = m) is not a product-form stationary distribution because
we require the constraint i; = ) ;.; mj; foralli € 1.

Proof of Theorem 1. A good candidate for the time reversal of this queueing system is
defined by rates g (-, -), where packets follow route i in reverse order, i.e. (j Jk RN l) where
queues j € § operate at capacity C; with §(/,m;) = y;(I,m;) and 7;(, m]) =6, mj),
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and where, as before congestlon WlndOW i € J sends packets into the network at rate

(m )= exp{G (ml 1) — (m )}. We show that
( ) G(r)
=[] g []e
]eg ied

forms an invariant measure for our explicit Markov chain description. We verify Kelly’s lemma
[8, Theorem 1.13] for our three types of transition: packet injections from congestion windows,
transitions between queues, and acknowledgements at congestion windows.

For a packet injected by a congestion window,

q(s, T-f(j,l)i) _ g;c)(ﬁ’ti)aj(l,m]' +1) _ ”(C)(Tf(j,l)ﬁ)
é(Tf(j,l)iy s) Cjyil,mj+1) m(O(s)

for j = jf and/ =1,...,m; + 1. For a transition between queues,

q(s, T, (j NG ) _ ijj(la mj)(sj’(l/a m/] +1 _ n(c)(T(ljyl)’(j/’l/)ﬁ)

QT gy rnsss)  Cpppdmy + 18U m)) 7 (s)
forj:j]i, j/=j,i+1, k=1,...,k —1, ilj =i,and!’=1,...,mj + 1. For an acknowl-
edgement at a congestion window i,
q(ﬁa T(lj’])’.i) _ ijj {, mj) _ T[(C)(T(lj,l),-i)
QT899 g —1D3;,m)) 7 (s)

for j = j,ii andi =i 11 . We note that the transition intensity of the reversed process agrees with
that of the forward process

G(s) = Zq(ss)—Zg“)(mH Y. Ci=q.

ied {j:m;>0}

This verifies Kelly’s lemma and, thus, 7(°)(s) is an invariant measure. Note that By is
expressible as

hi \ Mji
Bgo= Y H[(m” 191) I1 <eC]) }HGXP{G()(m)—Am}

EZK Jjed {i: jei} ied

for all A € R!. By Assumption 2, the function rz; > G(C) (m;) — A;m; is bounded from above
for all A;. Applying this upper bound and choosing 1 € R’ such that Z i er j» the sum
for B is finite. Thus, summing over states of invariant measure, 7(© (s) gives the stationary
distribution (29).

5.2. Large deviations

We now study the large deviations behaviour of our stationary queueing systems as ¢ — oo.
As c increases, the congestion windows increase the number of packets within the queueing
system, and we study its large deviations behaviour. Once again, we think of each congestion
controller as attempting to exploit the network capacity by increasing ¢ and congesting the
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network. We will relate the most likely state in our queueing system to the solution of the
system problem.

We use the same notation from Sections 3 and 4. We also suppose that Assumptions 1 and 2
hold. As in Section 3, we consider a sequence of congestion windows defined by

d(c)
G k) = cG-<— + ’—> fori € fandc € N
! "\¢ c '
Here G; is expressible in terms of the utility function U; given in (23). We define the function
7) = log M1 G, ; 30
BG(m,m) = > m ji log mch > {GiGiy) — hirmii) (30)

{(j,))eXK : mj;>0} ied

for m € Rf, m e Rfr, and A; € R!. We use the shorthand B = Bg. for A = 0 and the
shorthand B (m) = Bg(m,m) whenm; =Y ., mj; foralli € 4. We define

Jei
Br=min > mjlog mjiCi _ 3" Gt 31)
G JU mj i i
(e : mji>0) icl
subject to iji =m;, i € J,overm € Rf, m € Ri. (32)

J

For each fixed c, consider a stationary queueing system defined by rates (28) with congestion
windows defined by ch)(-), i e . Let MO = (M](.?): (j,i) € KX) record the stationary
distribution of the number of packets on each route at each queue in our queueing system, (29).
In the following theorem we characterise the large deviations of our sequence of queueing
systems.

Theorem 2. The sequence M) /c, ¢ € N, obeys a large deviations principle with good rate
function B (-) — Bg. Thatis, for all D C RX,

M©
— inf (Bg(m) — BE) < liminf P(C)( € D)
meD° c—>00 [

) © M©
<limsupP*| — e D
c

c—>00

< — inf (Bg(m) — Bg).
meD
Proof. Assuming that A € R satisfies

Z e < C; forallje g,
{i: jei)

we define a product-form stationary distribution on ZX x Z! with

ﬁ(C)(M(C) —m M(C) _ rh) _ 1 1—[ < m] > 1—[ e}\imji
- -1} miiiisj i
B g Nt 120 ey €
x [TexplGI (i) — i}y m e ZK . m ezl (33)
ied

https://doi.org/10.1239/jap/1300198137 Published online by Cambridge University Press


https://doi.org/10.1239/jap/1300198137

Utility optimization in queueing networks 83

where

e Y )

J Eg ied
Note that, by (20), B(© is finite. Note that P©) is expressible in terms of P © through the
conditional probability

P(C)(M(C) =m) = ﬁ(c)(M(C) —m ‘ Ml.(c) = ZM(C), | 1)
jei

form € ZK By proving large deviations results about P we are able to prove a large deviations
principle for P©_ First, by Proposition 4, Proposition 2(a), and the definition of U;, (23), we
have

1
— ) _ i
ClggoclogB ZU(e ).
ied
Thus, by Proposition 2 and Proposition 4, for m € RX and i € R with bounded sequences

0@ eRK and6© e R, ¢ € N, such that cm + 0(© € ZK and cm + 6© € Z! , we have

1 ~ -
—Bc.(m, m) + Z U;(e") = lim — logP(C)(M(C) =cm+c9, MO = cin +69).
cC—>X0 C
iel
Take E C RX x R., either open or, more generally, such that, for all (m,m) € E, there
exists a sequence as described above with cm + (@ € ZX and cim 4+ 6(© € ZL for which
(m+09/c,m+59/c) e E eventually as ¢ — oo. Then

1
— inf Bga(m,m)=— inf lim —logP (M(C) =em+09, MO =cm+5©)
(m,m)eE (m,m)eE ¢c—>00 ¢
1 () M© M(C)
< liminf - logP << , — ) € E) (34)
c—0o0 ¢ c c

This gives us a large deviations lower bound for 13(6). We prove the upper bound by using the
Girtner—Ellis theorem [4, p. 44]. We study the moment generating function of P “ for6 € R¥
and ¢ € R!:

Eexp{d - M + ¢ - M}

H( Ci =Y jei & )
jes Cj— 2 jeiy xpiri + 0i}
= 0 ,exp{G (k) — (A — pi)k
Xl‘[(Zk_OOO P{ i ((C)) ( i ¢t) }> if Z exp{)»,' +9ji} < Cja ] c g’
iel > ko xp{G;" (k) — Ak} {i: jei}
00 otherwise.

Thus, combining Proposition 2(a) and Proposition 4(b),

1 M© w©
F,¢)= lim —logEexp{Q - +¢.? }
Z Ui(e ) — Uj(exp{r; — ¢i}) if Z{i: jei) ehitlji Cj,jed,
=\ ied
S otherwise.
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Thus, F has Legendre—Fenchel transform

F*(m,m) = max Zmﬂeﬂ - Zm $i + Z(U (expl; — i) — Ui(e"))

0eR, K peR!

(subjectto } ;. ;c; expiri +0;i} < Cj, j € F)

= max{Zm], it Zexp{A +0ji}<Cj, j ef,’}

feRK

+Z(rglaﬂ)§{U,(exp{)» + @) — i (9 + i)} +Z)\m, ZUi(eM)

iefd "t
Z(G(m)—xm)—ZU(e')

= Zm,, log

In the second equality we collected terms and substituted ¢; = —¢; for i € 4. In the third
equality we applied (27) to the first maximisation and the user problem (22) to the second
maximisation. From this, the Gértner—Ellis theorem [4, p. 44] proves that, for all closed sets

E C R_Iﬁ X Ri,
~(c) M(C) M(C)
hrnsup—logP << — > € E> < — inf <,3G a(m,m) — E Ui(e l)) 35)
c—>oo C c c (m,m)e

In particular, we are interested in the closed set E = {(m, i) : > jei™Mji =mi, i € 4}. Note
that ifm e RI and the sequence o ¢ RI , c € N,issuchthatem + o© ¢ Z’ , and deﬁnlng
o, © _ ZIE! ), then (em 4+ 0©, cm + a(c)) € E. So we may apply lower bound (B4)to E
and also upper bound (35) to this choice of E. Hence, we have

. ~(c) (c) (c) _px (i
ClggoclogP <ZM =M ie 1) =B Zul(e ). (36)
JEIL i

Put otherwise, we have, for the normalising constant B (),

lim — log Bgo = —Bg. (37)

c—> 00

From (33), combining (36) with the large deviations upper bound (35), for all closed sets
D € RX, letting D’ = {(m, m) : m € D} C E, we have

M ©
lim Sup — log P(C)< € D)
C

Cc—> 00

(©)
1. - M© M 1. -
= limsup( logP(C)<< , — > € D/) — —logP(ZM(C) M(C), i € 1))
c c c

c—>00 ;
< — inf Bg(m) + B¢.
meD

This proves the large deviations upper bound for P¢). The lower bound follows similarly by
combining (36) with lower bound (34).
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5.3. Duality between state and flow

An important phenomenon we find from our large deviation analysis is that the limiting
state of our queueing system and the limiting flow through our queueing system are dual. We
demonstrate here that the dual form of the optimization problem (31)—(32) found in our large
deviations analysis is exactly the system problem (1)—(3).

Theorem 3. We have

ﬂz} = Igllr_l , Z m j; log Mty
mERLMERY 1 (j.he X : m;>0) J
— Y GiGi))  (subject 10y ;c;mji =i, i € 1) (38)
ied
= I{n%x ZU,(A ) (subject10Y ;. jeyy Ai < Cj, j € §). (39)
€

ied

Moreover, the vector (m*, m*) € R_IE X Rfr optimises (38) and A* € Ri optimises (39) if and

only if
ij'i:"_ﬁ foralli € 4, Z A7 <Cj forall jed,
I li: jei)
miA; =m};C; forall (j,i) € X, (40)
G0 = A foralli € 1. 41

Here G/ is the derivative of the function G;.

Proof. Note that the Lagrangian of optimization problem (38) with Lagrange multipliers
A= (A;:i € d)isexactly Bg., defined in (30). Minimising this Lagrangian we have

ZG (m)+ZA (ml iji)

min BG.a(m, m) = mmZmJ, log

K - 1
meRY, meRy

ield jei
m;
= min m;ilo 5i€ } max{G (M) — rimi}
meRK {; g & e)‘ Z
ZU(e Ny if Z et < Cj,
= : jei) (42)
—00 otherwme.

In the final equality we used Proposition 4(b) and definition (23). Thus, the dual of optimization
problem (38) is

max U; e*) subject to ehi <Cji, jed.
CPNCEICRT SEETTE
ied {i: jei}

By the strong duality of optimization problem (38) and (39), expressions (38) and (39) are
equal.

Now we demonstrate the only if part of the equivalence using (41). Suppose that A* optimises
(39). We now consider how our Lagrangian behaves for A = (log AY: i € {). From (42) we
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see that (m™, m™) must solve

mi%{Gi("_ﬁ) —milog Af} = —Ui (X)), i€, (43)
mi>
min m 2: @logmLCj —0 jeg (44)
{meR: m;>0} / S~ mj mink ’ '
{i: jei} l

From (43) we see that eGilmy) — A¥. We now consider (44). If m* = 0 then (44) is satisfied
and so is (40). If m;‘ > 0 then, given the relative entropy result (26), (44) can only hold if
Z{i: jeiy Ai = C; and mji/m;‘. = A;/Cj foralli € { such that j € i. Thus, both (40) and
(41) hold.

Conversely, if (40) and (41) hold, then substituting m* and m* into the objective function of
optimization problem (38) gives

> log =Y Gi(ny) = mrlogAf =Y Gi(m}) =Y Ui(A}).

(j,i)eJC,mj‘.>O ied ied ied ied

In the final equality, we used the Legendre—Fenchel transform expression, (23). Thus, m}
attains the value Zi U; (A;“) for A* feasible and, thus, by the Lagrangian sufficiency theorem,
our solutions are optimal for (38) and (39).

5.4. Most likely state and convergence of throughput

We now study the most likely behaviour of our stationary sequence of queueing systems
M©/c, ¢ € N. Section 5.2 suggests that our sequence of queueing systems implicitly solves
the system problem (1)—(3). This section formalizes this assertion. We show that the sequence
of stationary queueing systems M‘©)/c, ¢ € N, concentrates on the solutions of the primal
optimization problem (31)—(32). From this, we show that the stationary rate which packets
traverse the network converges to the allocation, solving the system problem. We define the
manifold by

={m eRE:m;;C; =m;A}, (j,i) € X, Gi(m;) =log A}, i € 4},

where (A;‘ : i € J) is the optimal solution to the system problem (1)—(3). From Theorem 3 we
know that M is the set of solutions to the primal optimization problem (31)—(32). The stationary
sequence of queues M) /c, ¢ € N, considered in Section 5.2 converges in probability to the
set of solutions M.

Theorem 4. We have

: M©
P(°)<inf —m Zs)—)O as c — oo.
meM || C
Proof. For e > 0, let M, ={m € Rf: infep|lm—m'|| <e}. As M is closed and
compact,
BG.e:= Ilpin . Z mj; log ——
meRe meRy(j,ek : m;>0) j

— Y Gi(n;)  (subjecttom ¢ M. Y mji =i, i € 4)

> Bé,
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where ﬂg is given by (31)—(32). Thus, by Theorem 2, for all ¢ > 0,

M(C)
—m

lim sup — log p© ( inf

c—oo C meM

> s) < =BG+ BG-

C

Thus, for all ¢’ € (0, ,358 — B), eventually as ¢ — oo,

P(")< inf
meM

M ©
—m

> 5) <exp{—c(Bs ., — BE) +cg'} > 0 asc — oo
- :

The stationary throughput of route-i packets in our queueing system can be expressed as
A = EQexp{GOM +1) - GOy, ied.

That is, the stationary rate packets are sent into the queueing network by the ith congestion
window when it is at congestion level c. We now show that this rate converges to the solution
to the system problem (A : i € {). In this sense our sequence of queueing systems implicitly
solves the system problem.

Theorem 5. We have, fori € J,
A;C) — A} asc— oo.

Proof. We first describe a modification of measure P that will be useful. For fixed i € J,
let P( ° denote the stationary distribution of a queueing system defined by the same rates as
PO, except that the ith congestion window is defined by G (m )= ( (m; 4+ 1). Observe
that, for all m € ZK

E@exp(GO M + 1) = GO MO} 1UM = m])]

1 1—[ G
- r(my)
" B ! 1<m,r'r51> '.”’
JE

red

Bso o
_ G() (c)(M(C) m). (45)

BG(L)
Also, by definition, G(‘)(m ) = G;(mj/c+ d(‘)/c) thus G( ) corresponds to taking d(‘)
d © 4 1. The precise values of the bounded sequence {d }LeN do not determine any of the large
dev1at10ns behaviour of P; thus, both P© and P'“’ exhibit exactly the same large deviations
behaviour. Hence, given (37) and Theorem 2, we have
M©

—m

1 B .
lim -log =22 —0,  lim P(C)( inf
C

c—>00 ¢ G© c—>00 meM

> 8) =0. (46)

Now let (m*, m™*) be an optimal solution to the primal optimization problem (31)-(32). By
assumption, G; is differentiable with a continuous derivative at n"ij‘ Thus, by the mean value
theorem, for all ¢’ > 0, there exista & > 0 and ¢’ € N such that, for all ¢ > ¢’ and m; > 0 with
|m; —m}| < Je, we have

1expl{G9 (i + 1) — G (y)} — 510D

{ Gi(ni +1/c+d /) — Gi(n; +d°/c) } _ G
1/c

exp

<.
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We can now show that, eventually as ¢ — oo,

{7 — ATl
< E | exp{GEC)(Mi(C) + 1) _ GI(C)(MI(C))} _ eG,’»(ﬁl?)|
7(0) 7(0)
< e/P(c)(’—Mi —mf| < Je) + eGi0m) P(c)<’—Mi —mj| > Je
C C
i} i} Vi
+E©Qexp(GOM + 1) - GO (M)} 1[ - k| > Js]

- M©
58/+eGi(mi)P(c)<inf — —m ZS)
meM || ¢C
B «(c M©
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&' +eCi) exp{—c(BE , — BE) + ce”} + e exp(—c (B, — BE) + ce)

/
— & as ¢ — OQ.

In the second inequality we used substitution (45), and in the third inequality we applied (46)
and let 2¢” < BG.e — BG- As &’ is arbitrary, the result holds.

6. Conclusion

Previous work has considered the solution of the system problem by analysing differential
equations. In this paper we have shown that this same notion of utility optimization can be
solved by considering queueing networks with end-to-end control. This leads us to consider
different interpretations of Kelly’s decomposition results where pricing is determined by delay.
This work emphasises the duality between the flow through a network and its state, and also
emphasises a wide variety of fairness that are provably achievable by end-to-end control.
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