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Summary

ThecOntinuous-time behaviour of a model which represents certain queues
and infinite dams with correlated inputs is considered. It is shown how the
transient behaviour may be investigated, and the asymptotic behaviour is
obtained. Finally the methods are illustrated for a queue whose input
consists of two superimposed renewal processes.

1. Introduction

In a previous paper (Loynes 1961b), the stationary waiting-time distribu-
tion for certain single-server queues with non-independent inter-arrival or
service times has been investigated: with the terminology used there it
was shown that in the 'finite matrix' case, the derivation of this distribution
is straightforward if either the inter-arrival time or the service time has a
rational conditional characteristic function. Here we shall give a continuous-
time treatment of certain systems, including many of those 'finite matrix'
queues whose inter-arrival time distribution is of this type, which will
show how we may find the distribution of the waiting-time and of the
busy period at any time after starting from arbitrary initial conditions.
The particular queue EkIG/l has in fact been investigated in essentially
the same way by Takacs (1961), although in order to be able to treat the
general case, the detailed methods used are different.

The method used will be that originated by Takacs (1955) and studied
later by Bene§ (1957) (whom we shall follow quite closely), in which the
basic variable is what we shall call the potential waiting-time at time t:
this is the length of time necessary to complete the service of those in the
queue at that time.

The analogy with an infinite dam, due to Smith (1953), allows a re-
interpretation of the equations as a description of the behaviour of a dam
with a (possibly) correlated input.
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2. The Model and its Various Interpretations

We suppose that controlling the system (probabilistically) there is a
stochastic process z{t) and events associated with it. The possible values
of z(t) are finite in number, and we shall for obvious reasons refer to the
value at any time t as the state occupied. The sequence of events, when
the state occupied is known, forms a Poisson process whose parameter
depends only on that state. When an event occurs, the state of z(t) im-
mediately after is chosen in accordance with the transition probabilities
of an irreducible Markov chain (in discrete time). The process z(t) clearly
forms a finite homogeneous Markov chain in continuous time, and if the
state immediately after an event cannot be the same as that immediately
before, these events of which we are talking are merely the moments of
transition of the z(t) chain. It is necessary for our purposes to allow the
state to be the same immediately before and after an event, but we shall
nevertheless refer to such events as transitions.

The variable W(t), equal to the potential waiting-time or the dam content,
has non-negative jumps S at the transitions of z(t), the distribution of the
magnitude of the jump given the state occupied immediately before and
after the transition being independent of past history, and otherwise
decreases at a rate c[z(t)], subject to the presence of an impenetrable barrier
at W = 0.

The pair (W(t), z{t)) is itself a Markov process, and we shall use this
property to carry out the investigation of the system in the following
sections. Here we merely point out various situations which can be represent-
ed by giving suitable values to the parameters.

If we make z(t) a cyclic chain (i.e. one in which the successive states
occupied form a deterministic sequence), and make S zero except at one
transition, then we can clearly build up any inter-arrival time distribution
with a characteristic function which is the reciprocal of a polynomial with
(negative) real zeroes. By allowing complex rates of transition, giving rise
to complex probabilities (cf. Cox (1955)), and non-cyclic chains, it is
possible to construct a large class of rational characteristic functions, and
successive service times 5 need only be conditionally independent given
the values of z{t) at the transition, rather than completely independent.
The same construction can also be used to treat certain queues with bulk
service, for we may merely change the state cyclically every time a customer
arrives, but not add in the service time until the whole group is present;
this idea was applied in the reverse direction by Takacs (1961). The example
we give in section 7 arises in a slightly different way, but has in common
with the previous examples the feature that one may introduce fictitious
states (after Erlang) to obtain the structure already postulated.
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If the function c(-) is unity for all states, then service continues whenever
there is someone in the queue. By allowing c(-) to be zero for certain states,
the phenomenon of the server stopping work for a random length of time
could be simulated, though with the present model customer arrivals would
be inhibited (or at least affected) by this.

Turning now to the infinite dam interpretation, we have considerable
freedom of choice. The inputs S can always be considered as 'cloudbursts'
of (possibly) correlated amounts, occurring at points which are not neces-
sarily those of a Poisson process. The possibility of c(-) having different
values in different states can be regarded in two ways. Either the rate at
which water is withdrawn is made to depend on the weather, which is then
represented by the chain z(t), or c(-) is supposed to represent the difference
between the rate at which water is being withdrawn and the rate at which
rain is entering the dam: this continuous entry of rain might well represent
a prolonged shower, or even drainage after a short one, quite adequately.
With this latter interpretation there is no reason why c(-) should be positive.

3. The Basic Equations

We suppose for convenience that the possible values of z(t) are the in-
tegers 1 to k. The pair {W(t), z(t)} forms a Markov process, and the forward
equations can be written down directly. The result is an integro-differential
equation for p\W(t) 5S x; z(t) = y\ similar to that of Takacs, but in order
to solve this we shall take Laplace-Stieltjes transforms with respect to x;
since it is as easy to write down the equation for the transform (and easier
to prove the necessary differentiability properties), we shall not concern
ourselves with the probabilities, but shall begin with the transforms.

Denote by X} the transition rate for z{t) when z{t) = /, and by f{j the
conditional probability of a transition from state j to state i, given that a
transition has taken place. Let the value of c[z(t)] when z(t) = j be cjt

and (when a transition is known to have occurred at time t) let

fiu{8) = E{e-™ \z(t-) = j , z(t+) = .}

for Rd ^ 0. Finally, let

(1) 0[6, y; t) = E{er*"MI\z(t) = y]} = \e-°w™dp[W{t);z{t) = y]

for 0 with R6 ^ 0, where I [A] is the characteristic function of the set A.
Let n be the number of transitions in (t, t+ At), and c| the positive part

of ct. Then for At > 0,
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(2) 0(6, y;t + At)=2 E{e-ew«+AtU[z{t + At) = y, z(t)
i, n

= i, n, W(t) > cjAt]}

+ 2 further terms

The remaining terms are obtained from the first by replacing the con-
ditions on W(t) by c+At ^ W(t) > 0, and W(t) = 0, respectively; the first
of these does not occur if ct ^ 0.

Now the parts into which the right side of (2) is split are straightforward
to evaluate in terms of known conditional probabilities. For we know that

(3) W(t + At) = [W(t) - ctAt]+

whenever n = 0 and z(t) — i, and

(4) W{t + At) = W{t) - axtAt + S

when n.= 1 and z(t) = i, where 0 r=S a ^ 1. The operation of taking the
positive part in (3) can be omitted, and a in (4) set equal to unity, when
W(t) ^ c\At. Furthermore, such probabilities as

(5) p[n = 0 \z(t) = i] = 1 — XtAt + o(At)

are known.
After evaluating and rearranging the terms, dividing by At, and letting

At tend to zero, we find that 0(6, y; t) has a right-hand derivative every-
where with respect to t, given by

(6) d t K 0 { 6 ' y] t] + K0{d' r' V6c>tW(t) = O;z(t) = y]

The left-hand derivative gives more trouble, but we can deal with it
in the following way. By applying the same analysis to the interval (t — At, t)
it can be seen that 0(6, y; t) is continuous on the left, and that its upper
and lower left derivatives are bounded. Then according to Theorem 34.5
of McShane (1947) 0 satisfies a Lipschitz condition (in t), and is hence
absolutely continuous, which is sufficient for our purposes, for it is then the
integral of its derivative, which exists almost everywhere. If we showed
that p\W(t) = 0; z(t) = y] is continuous everywhere then we should know
directly from (6) (Titchmarsh (1939) § 11.3 Ex (vi)) that 0 is differentiable
everywhere.

It is natural and convenient to rewrite (6) in matrix form with the
following notation:
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0 = 0(6, t) is the column vector formed by 0(6, y; t); C = diag (c<),
and C+ = diag (c+); A = diag (A,); Q = Q{0) = [?„], where fc, = ̂ ,/So(0);
F = .F(<) is the column vector formed by P[W(t) = 0; z(t) — y] and

(7) A = A{6) = 6C + {Q{6) - I)A

The result is

(8) d± = A0- QC+F;

if we take Laplace transforms with respect to t we have finally

(9) (si-A)0* = 0(8,0)-6C+F*

where

(10) 0* = JJV"0(0, t)dt

and

(11) F*=^e-*F(t)dt,

all the transforms existing when Rs > 0.
We observe that the number of components of F actually contributing

to (8) or (9) is the same as the number of positive ct.
In order to investigate the busy period, or the wet period in a dam, we

introduce the process W'(t), which is formed by 'freezing' W(t) at zero
as soon as it reaches that value. If q is the busy period, or the time at
which W(t) first reaches zero,

(12) W'(t) = W(t) (t<q)

= 0 (t ^ q)

Similarly, let

,,„, z'(t)=z(t) (t<q)
= z(q) (t ̂  q)

so that z(t) is also 'frozen' as soon as W(t) reaches zero. Then

(14) p\W'(t) = 0; z'(t) =y]= p[q ^ t; z'(q) = y].

For

(15) W(6, y; t) = E{e-ew'^I[z'(t) = y]}

and the corresponding vector W(6, t), with Laplace transform W*, we
find in a similar way the equations
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(16)

) = 0; z'(t) = y] -2liP«P*d>[W{t) = 0; z'(t) =

(17) —

and

(18) [si - A]W* = 0(6, 0) -

where G is the vector formed by p[W'[t) = 0;z'(*) = y].
It is obvious that p[W'U) = 0; z'(0 = y] = 0 if c, ^ 0, so that the

number of unknowns other than W in (17) or (18) is just the number of
positive c{.

If we do not freeze z{t), then for

(19) Vtf, y; t) = E{e-™'wi[z{t) = y]}

we have similarly

(20) f r (0C

(21) 8Il = A ^ - [OC +(Q- P)A]G1

(writing P = (£„)), and

(22) [si - A]W* = 0(0, 0) - [0C +(Q- P)A]G*

but these are probably of less importance than (16), (17), or (18).
Our restriction that the chain be finite is unnecessary for the derivation

of the above equations, but will become necessary for the discussion of
their solution in the following sections. For the particular queue ilf/G/i,
it is possible to use an infinite chain to investigate the number of customers
in a busy period, since we may increase the number of the state by unity
each time a customer arrives, and then the quantity z'(t) is exactly the
number of customers served before the server first becomes idle. This does
not seem, possible for other queues.

4. Two Lemmas

The equations derived in the previous section all contain two unknown
functions; for instance (8) involves both 0 and F. In order to use these
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equations we need some way of finding one of the unknowns, and we shall
see below that this is possible in principle under certain conditions.

For this purpose we shall prove two similar Lemmas, in both of which
it will be found necessary to assume that all X{ are real; but it seems quite
likely that the results hold without this restriction. It is a consequence of
this restriction that any problem in which we wished to introduce complex
probabilities would need further investigation, and possibly a different
approach entirely.

LEMMA 1. If all Xt are real, then for 6 sufficiently close to the origin on
the imaginary axis, the eigenvalues of A (0) have a strictly negative real
part, unless C is a multiple of / and |/3W| = 1 for all i, j .

LEMMA 2. If all Xt are real, and all ct are positive, then for s with positive
real part the matrix si — A (0) is singular for k values of 8 inside the right
half plane.

The further restriction in Lemma 2, that all c,- should be positive, is
unfortunate, but cannot be avoided. For suppose that all f}if = 1, and that
P = I. Then if some ct are not positive, there are certainly not singularities
of si — A for k values of 6 in the right half plane. Strictly speaking this
counter-example is not valid, as the matrix P is not irreducible, but small
perturbations will clearly remedy this without affecting the number of
singularities.

It is possible, however, that even if there are c( ^ 0 there are still enough
singularities to determine the unknowns, for we have already noted that the
number of unknowns occurring in (8) or (17) is equal to the number of cf

which are positive. This does not appear to be true for (21).
To prove these Lemmas, we first locate the eigenvalues of A in the

usual way (as, for instance, in Bartlett (1956) p. 52). If /j, is an eigenvalue
of A, there is a left eigenvector (tt) of A — fil, and if the component of
maximum absolute value is tm, then we have

(23) \tm\ \p - amm\ ^ 2 \t,\ K J ^ K I<J(1 - Pnm)

whenever Rd 2; 0, where

amm = dcm + (qmm - l)Xm.

For Lemma 1, we assume 6 purely imaginary. It then follows from (23)
and (24) that either the real part of fi is negative, or fi = 0cm, which can
only be true if \qim\ = pim and \tt\ = \tm\ for / such that pim # 0. It is
therefore possible to apply (23) for these particular /, and finally for all
/, since the chain is irreducible. Thus C must be a multiple of / , and |/SH| = 1
for all /, *, so that Lemma 1 is proved. It is in fact not difficult to show
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that a necessary and sufficient condition for some eigenvalue of A to have
zero real part is that C is a multiple of / and

(25) /?„ = *,/<<•

In this case the analysis of (8) is straightforward.
To prove Lemma 2, we first observe that it follows from (23) and (24)

that fj, lies inside the circle with centre Bcm — Xm and radius Xm, for some m.
The matrix si — A is singular if and only if

s = /i

or

(26) s + y - bO = p{6) +y-bd

where we choose b larger than the maximum of the c,-, and y is positive
and to be chosen later. The right side of (26) can be written as
y — Xm — (b — cm)6 + Xmv, where \v\ ^ 1, for some m. We can show
easily that on any large semi-circle in the right half plane the modulus of
the left side of (26) is greater than that of the right side, for one is ap-
proximately b\0\ and the other (b — cm)\6\, and we have supposed
0 < b — cm < b. Let us now close the semi-circle by a straight line parallel
to the imaginary axis on which

(27) 0 < bR{8) < Rs.

The difference between the square of the modulus of the left side and
the square of that of the right side on such a line will be found to involve
7(0) quadratically with a positive coefficient, so that it is bounded below
as 6 varies along the line. The coefficient of y will be found to be positive,
so that if y is chosen sufficiently large this difference will be everywhere
positive.

An argument of Rouche" type, similar to that given in Loynes (1961b),
may now be applied to show that (26) has k roots inside the contour for
every zero that the left side has there, and Lemma 2 follows.

In the next section we shall require that the matrix X, whose rows are
the left eigenvectors of si — A when 6 takes the k values assured by Lemma
2, be non-singular. We can show that except for isolated points s this is
so, unless special conditions are satisfied, in the following way. First we
observe that si — A is of rank k — 1 when 0 = 0,(s), for otherwise A has
two equal eigenvalues for this value of 6, and this cannot be true for other
than isolated values of 6 (and correspondingly isolated values of s) unless
the discriminant of the characteristic equation of A vanishes identically,
which clearly does not happen in general. It follows that we may use the
cofactors of a column of si — A (0t) as the elements of the eigenvector, and
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if the determinant of X vanishes, this gives a relationship between the
functions 8t(s) (and s), which is either true identically, or is only true for
isolated values of s. Since it is easy to construct examples for which this
does not happen identically, the result is proved for matrices in general.
Even if the discriminant of the characteristic equation of A does vanish
identically, so that si — A always has two among the 0,(s) coincident,
there may still be enough independent vectors to make X non-singular;
this situation occurs in the example in section 7.

5. The Solution of the Equations

As remarked above, some method of finding the unknown F occurring
in (8), and similarly G and Gx in (17) and (21) respectively, is needed.
If F is known, then (8) can be solved to give

(28) 0{6, t) = 6**0(8, 0) - 0

Similarly for (17), though it is usually the unknown G that is of interest,
rather than W.

By using Lemma 2, we can in fact show how to determine F*, in principle,
merely by using the analytic properties of 0, and thus by inverting the
transform (11), F itself. To do this we must and therefore shall throughout
this section assume that the conditions of Lemma 2 are satisfied; we may
then replace C+ by C.

For given s, there are therefore k values of 8, say 0,(s), for which si—A
is singular, and corresponding to these, k left eigenvectors X'f(s). Putting
these values of 8 into (9), and multiplying on the left by the appropriate
X't, we find

(29) X'&tft, 0) = 8{XtCF* (1 ^ i ^ k).

If we write F{s) for the vector whose components are X\0{8(, O)/0<, and
X for the matrix whose rows are X't, we can solve (29) in the form

(30) CF* = x-ir,
where, as we have remarked at the end of section 4, the inverse exists in
general. This can be solved for F* if required, but it would not normally
be necessary, since only CF is needed for use in (28).

We can perform a similar analysis on (18), and using (14) to express
B(s), with components

(31) B(s, y) - J* er-duj>[q ^ u; z'{q) = y]

in terms of G*, we finally obtain
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(32) B(s) = sG* = X-*A

where A has components X'i0(di, 0). B(s) is just the Laplace-Stieltjes
transform of the busy-period distribution, conditional on the state of z(t)
in which the busy-period ends, multiplied by the probability that it ends
in that particular state.

If the matrix X is not invertible, there seems no choice but to invert the
matrix (si — A), leaving the components of F as undetermined constants,
and then choose these components to ensure the analyticity of &*(d) in
the right half plane. They are certainly determined uniquely in this way in
some examples for which the approach leading to (30) does not succeed.

6. The Asymptotic Behaviour

Throughout this section we suppose the conditions of Lemma 1 satisfied;
the values of ct are not, however, restricted as they were in the previous
section. We show first that as t tends to oo the vector F in (8) converges
to a limit which is independent of initial conditions. This is easily done in
the way outlined by Smith (1955), which is to map the state {W = 0, z = y}
onto one state of a two-state Semi-Markov chain, and all other possible
values of {W,z} onto the other. According to Smith's Theorem5, p[W(t) = 0;
z(t) = y] tends to a limit as t tends to GO, the fact that a transition may
not have occurred at t = 0 being easily seen not to affect the result. The
expression for the limit given by Smith only depends on initial conditions
through the probability that the state {W = 0; z = y} ever occurs. If we
first consider all sets of initial conditions in which W(0) takes arbitrary
values but z(0) takes a single fixed value, then the inequalities

0 ^ Wx{t) - W0(t) <S W.iO) - Wo(0) = W^O),

in which the suffix 1 refers to any fixed value of W(0) and the suffix 0
refers to the particular case W(0) = 0, are easily obtained. From this it
fellows that if W0(t) never reaches zero with z(t) = y, neither does Wx(t).
Conversely, if W0(t) does reach zero with z(t) = y, with probability one, it
does so infinitely often: Wx(t) then reaches the same state provided that
the residual lifetime in state y is longer than Wx(0)lcy (assuming cy > 0),
and this clearly happens with probability one at some time. Since the z{t)
chain is irreducible, this extends at once to the case when z(0) is also ar-
bitrary, and hence it follows that either the probability is unity for all
initial conditions, or the state is transient, and therefore that the limit
obtained from Smith's Theorem is also independent of initial conditions,
for states with cy > 0. A little thought will show that this argument is in
fact also valid when cy = 0, unless no change is possible in the value of
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W(t) (i.e. unless ct = 0 for all / and the increments 5 are zero with prob-
ability one), if we consider how it is possible to reach the state {W = 0;
z = y), and as the limit is clearly zero when cy < 0, the limit is always
independent of initial conditions.

Since this is so, we may consider initial conditions determined by prob-
ability distributions, and use any of these which may be convenient to
investigate the limits in more detail; let us therefore suppose that W(0) = 0,
and that z(0) has the equilibrium distribution of the z(t) chain, say the
vector (Mt). Then we may apply a continuous-time analogue of the ar-
gument given in Loynes (1961a) to prove that with these initial conditions
a proper limiting distribution of W(t) exists if and only if either

(33) J.ciMi>^XiMipiitxH
i i, i

or

(33a) ct = fifj = 0 for all i, j ,

where fxit is the mean of the distribution corresponding to p(j; the right
side of (33) is infinite if any mean does not exist. The left side of (33) is the
average rate at which W(t) decreases, and the right side the average rate at
which it increases, or in. other words the drifts to and from the boundary
W = 0. The critical situation in which equality holds in (33) needs a
slightly more delicate argument than the others: if a proper limiting distribu-
tion exists, then it must be such that no overshoot over the boundary
occurs (cf. equation (7) of Loynes (1961a)), and this can clearly only be
true if each ct 5S 0; this and the version of (33) with equality together
imply (33a).

If we let t tend to oo in (28), then it follows by Lemma 1 that for 0 close
to the origin on the imaginary axis, 0(0, t) tends to a limit 0(0) satisfying

(34) A0(O) = OC+F,

where F is the limiting value of F(t). The limit 0(0) is a fortiori also in-
dependent of initial conditions.

Now suppose that condition (33) is satisfied, and that the process starts
from the particular initial conditions used above, so that the distribution
of W(t) tends to a proper limit. Then the Laplace-Stieltjes transform of
the distribution of W(t) also tends to a limit, which is continuous on the
imaginary axis at the origin, and this limiting transform is of course just
the sum of the components of 0(0). The latter sum can be regarded as a
weighted sum of conditional characteristic functions, and by considering
the real and imaginary parts separately, it is easy to see that each com-
ponent of 0(0) is continuous at the origin. It now follows by a result of
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Zygmund (1951) that the limit of 0(6, t) exists and satisfies (34) for all 6
with R6 ^ 0, that p[W{t) ^ x; z(t) = y] tends to a limit, and that these
two limits correspond in the sense of equation (1).

If, on the other hand, condition (33) is not satisfied, it is clear that no
proper limit can exist for the joint distribution of W(t) and z(t), since this
would imply a proper limit for the distribution of W(t).

We have therefore shown that as t tends to oo the joint distribution
of W(t) and z(t) tends to a proper limit (which is independent of initial
conditions) if and only if (33) is satisfied, and that the transform of this
limit satisfies (34). By comparison of (34) and (8) it follows that this limit
is an equilibrium distribution, and since any other equilibrium distribution
would clearly have itself as a limit, it must in fact be the unique equilibrium
distribution.

In order to use (34) to find the limiting distribution we need to know
the unknown C+F. It should usually be possible to do this by using the fact
that 0(6) must be analytic in the right half plane, since it seems likely that
Lemma 2 remains valid when s = 0, and carrying out an analysis similar
to that giving rise to (30); it might be necessary to add the further hypoth-
esis that each ^it be analytic at the origin. If this were not so, and yet
C+F*(s) could be found, C+F is clearly then determined by

(35) C+F = lim sC+F*(s).

From (34) we can deduce a formula which may be useful. We multiply
on the left by the vector t' = (1, 1, . . ., 1) (or in other words add the
equations together), divide by d, and let 6 tend to zero along the positive
real axis; then the continuity of 0(6), and the fact that t' (Q — I)jd tends
to t'B, where B is the matrix (/>o^«) imply that

(36) 2 cMi - 2 tiiPi<liMt = 2 c\Ft

The connection of the left side of this and (33) is clear. If there is only
one c,- > 0, the right side of (34) is completely determined by this.

If the system is a queue, with C = I, then (36) can be rewritten as

(37) Pr {Server is unemployed} = 1 — 2 '̂

7. Examples

Various queues of some interest can be formulated in this way with a
suitable choice of z(t) by using Erlang's device in connection with distribu-
tions of En type.
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If a queue whose service-time is of general independent type is put in
series with, first, a queue of the type En[Emll with a finite waiting-room
(a condition imposed to ensure a finite upper bound to the number of
customers in the first queue), then the triple of numbers giving (for the
first queue) the phase of the input, the phase of the service, and the
number of customers present, is a suitable z(t) process for the second queue.
It is hardly ever possible to find the transient behaviour of the queue
because of the difficulty of finding, as explicit functions of s, the values of
0 which make si — A singular, but it is usually true that the stationary
state can be found from (34). This seems to be true even in the simpler
situation treated by Bene§, and will be illustrated in somewhat greater
detail in the example below. If the restriction to a finite waiting-room is
dropped, it becomes necessary to use an infinite chain, and our methods
of solution fail. For instance, when the first queue is MjE2\\, then if F
on the right side of (34) were known, the complete solution could be readily
obtained by a generating function procedure; but there seems no way of
finding F.

The example we shall treat may perhaps be described as £8+£2/Af/ l ;
the service time is independent and negative exponential, and the arrival
instants are those events belonging to either of two superimposed renewal
processes, both of which have an E2 life-time distribution. This type of
arrival pattern arises naturally when two sources of customers feed into
the same queue. The equations generalise immediately to include
En + EJG/1.

Let us introduce Erlang's fictitious states into the constituent renewal
processes. Then in each process we have two states, 1 and 2, such that the
transition rate from one to the other is constant, and equal to A (say), a
customer arriving only on the transition from 2 to 1. If we now form the
four compound states (i,j) where i (=1,2) represents the state of one
component process, and j (— 1, 2) that of the other, we may analyse the
queue using the process z(t) = (i(t), j(t))- We take these states in the order
(1,1), (1, 2), (2, 1), (2, 2), and for simplicity choose the time scale so that
the service-time transform is 1/1 + 0.

Then the matrices we need are

(38)

and

(39) A =

r 0

_

- 2 A

A
A
0

C+ =

A/1 + 0
0 - 2 A

0

A

C = I,

A/1

0 -

+ 0
0

- 2 A

A

A/1

A/1

e -

0

+ 0
+ 0

- 2 A -
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For the analysis given in section 5, the values of d making the matrix
si — A singular are needed: the determinant is

(40) det (si -A)= {6-2X- s)2{(l + 0) (0 - 2A - s)2 - 4A2}/(1 + 0)

This has two coincident zeroes at 0 = 2X -f- s, and two linearly' independent
left eigenvectors corresponding to them, and according to Lemma 2 two
of the three zeroes of the other factor must have positive real parts. However,
although this implies that in principle the solution may be obtained by the
methods of section 5, the explicit expression for the two roots is too com-
plicated to be of use, even ignoring the difficulty of deciding which is
which. For this reason we consider the limiting distribution, given by (34).

The condition (33) for valid limits here reduces to the obvious one

(41) X < 1,

and we shall assume this to be satisfied. The determinant of A has the
following zeroes: 2A, 2A, 0, £(4A - 1 + VC1 + 8A)), £(4A — l~y/(l + 8X)),
the last of which is negative and therefore irrelevant.

There are three independent eigenvectors corresponding to the positive
roots, and a fourth relation between the components of F is obtained from
(36). Carrying out the solution in this way we find for the components of F,

Fx = {1 - SX - 8X2 + (4A + l)a}/8(2A2 + 2A + 1)
(42) F2 = F3 = {16A2 + 11A + 3 - {X + 1)(4A + l)a}/8(2A« + 2X + 1)

F, = (1 + 2X)F1.

where

(43) a = V( l + 8A).

Finally, for the components of 0{Q), we obtain

0^6) = {82?!02 + ft + 1 + a - 4A}/4(1 + 0)(20 + a + 1 - 4A)
(44) O2{d) = 0,(0) = {8F20 + 1 + a - 4A}/4(20 + a + 1 - 4X)

$4(0) = {8Ftd + 1 + a - 4A}/4(20 + a + 1 - 4X),

where

(45) 0 = 2(1 - X){1 - 2X + (1 + 2A)a}/(l + 2X + 2P).
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