
 

 
ARTIFICIAL INTELLIGENCE AND DATA-DRIVEN DESIGN 2297 

INTERNATIONAL DESIGN CONFERENCE – DESIGN 2024 
https://doi.org/10.1017/pds.2024.232 

Towards digital representations for brownfield factories using 
synthetic data generation and 3D object detection

Javier Villena Toro , Lars Bolin, Jacob Eriksson and Anton Wiberg 

Linköping University, Sweden 

 javvi51@liu.se 

 

Abstract 

This study emphasizes the importance of automatic synthetic data generation in data-driven applications, 

especially in the development of a 3D computer vision system for engineering contexts such as brownfield 

factory projects, where no data is readily available. Key points: (1) A successful integration of a synthetic data 

generator with the S3DIS dataset, leading to a significant enhancement in object detection of previous classes 

and enabling recognition of new ones; (2) A proposal for a CAD-based configurator for efficient and 

customizable scene reconstruction from LiDAR scanner point clouds. 
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1. Introduction 
In the pursuit of automation and the integration of new technologies, greenfield factory projects enjoy a 

distinct advantage as they can seamlessly incorporate the latest technologies and considerations right 

from the initial design phase. One notable and extensively researched topic in this context is the 

introduction of a digital twin, which serves as a model representation that seamlessly integrates with the 

factory, facilitating two-way communication between the physical entity and its digital counterpart 

(Piascik R., 2010). In contrast, brownfield factories with pre-existing structures and legacy software 

systems may not be the ideal candidates for implementing a digital twin (Sierla et al., 2020). 

As a viable solution, some authors have suggested the concept of "experimentable digital twins" 

(Schluse et al., 2018). This approach to digital twins leverages existing 3D models of the plant, and 

retrofitting is achieved by strategically placing sensors throughout the factory (Martínez et al., 2018). 

These "experimentable digital twins" offer essential benefits akin to full operational digital twins, 

including the capability for steady-state and dynamic simulations (Sierla et al., 2020). 

In many cases, an updated 3D model of the brownfield factory may not be readily available (Chen et 

al., 2018). This can happen either because there was never a model in the first place or because 

subsequent structural and equipment changes have rendered the existing model obsolete. In this 

challenging scenario, engineers face two potential alternatives: 

The first option is to manually reconstruct the factory's model, which can be a labor-intensive process 

demanding a significant amount of engineering effort (Sierla, Azangoo, et al., 2020). The second 

alternative involves creating a non-functional geometry using a 3D scanner to generate a point cloud 

representation of the factory. Modern technology, such as the LiDAR scanner found in smartphones and 

tablets, can provide reliable accuracy in capturing the macroscopic environment (Wang et al., 2020). 

However, it's important to note that this simplified geometry would limit the capabilities of the digital 

twin, primarily allowing for use cases like collision analysis (Shellshear et al., 2015). 
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Recent breakthroughs in 3D computer vision have opened exciting possibilities for employing neural 

networks in object detection and segmentation from point clouds (Qi, Su, et al., 2017). These 

advancements have the potential to revolutionize the automation of 3D models for brownfield plants 

using 3D scanners. There is still potential for improving the accuracy of predictions, and the number of 

classes available in pretrained models for 3D data is currently less than those for 2D data (Chen et al., 

2023). However, it is possible to develop specialized frameworks for training neural networks that are 

specifically designed to address the unique requirements and challenges of engineering applications in 

a 3D context. This presents a promising avenue for further innovation and automation in the field of 

brownfield plant modelling. 

This paper endeavors to address the existing gap in the utilization of high-end point cloud detectors 

within engineering contexts. The paper offers a threefold contribution. First, we introduce a synthetic 

data generator designed for indoor point clouds. Second, we present a deep learning approach that 

leverages both synthetic generated data and existing datasets, along with an analysis of the performance. 

Additionally, we introduce a configurator that facilitates the conversion of the neural network output 

into a customizable computer-aided design (CAD) environment. 

The paper's structure is as follows. In Chapter 2, we introduce deep learning in the context of 3D 

environments, as well as an exploration of various approaches to synthetic data generation. Chapter 3 

presents the developed framework divided into three sections. The first section focuses on synthetic data 

generation; the second on model training and evaluation; and the third section elaborates on the configu-

rator. Chapter 4 offers a comprehensive presentation of the insights and reflections derived from the results 

obtained through our research. Lastly, in Chapter 5, we present the conclusions drawn from our work. 

2. Background study 

2.1. Computer vision for point clouds 

The field of computer vision is often referred to as a domain that empowers computers to extract 

meaningful information from visual input. While traditional computer vision algorithms excel at solving 

classification, object detection, and segmentation problems in images and video recordings, the surge in 

available 3D data and the development of algorithms tailored for such formats have propelled computer 

vision into the 3D realm. 

Various strategies have been employed to address the challenge of increased dimensionality. Multiview 

Convolutional Neural Networks (CNNs) project 3D objects or scenes into 2D images, primarily for 

classification purposes (Su et al., 2015). Feature-based Deep Neural Networks (Fang et al., 2015) 

convert 3D inputs into feature vectors to extract information, while Spherical CNN (Esteves et al., 2017) 

projects data onto a sphere and processes it using spherical filters. Additionally, Volumetric CNNs 

(Maturana and Scherer, 2015) apply 3D CNNs to voxelized shapes. 

PointNet introduced a paradigm shift in 3D deep learning by pioneering a network architecture that 

operates directly on point cloud data, dispensing with the reliance on predefined grids or structures. Its 

key innovation lies in the symmetric function design, ensuring permutation invariance and enabling the 

network to process unstructured point sets (Qi, Su, et al., 2017). Subsequent developments, such as 

PointNet++ (Qi, Yi, et al., 2017) and VoteNet (Qi et al., 2019), have furthered this progress. VoteNet, 

for instance, employs a voting mechanism to iteratively refine object proposals, enhancing robustness 

and accuracy in identifying objects within complex 3D scenes. These advancements, including one of 

the latest releases, TR3D (Rukhovich et al., 2023), which has achieved state-of-the-art performance (as 

of June 2023) with improved accuracy and speed, can be trained, developed, and benchmarked using 

the openMMlab platform (MMDetection3D, 2020). 

After the background search for the most suitable algorithm to process the point clouds, the TR3D 

architecture was chosen for the deep learning component of the framework. 

2.2. Data available and synthetic data generation 

Synthetic data refers to information that, although not obtained through the measurement of physically 

existing objects, closely resembles real data (Anderson et al., 2014). The generation of synthetic data is 
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gaining increased traction within the deep learning community, particularly as the primary bottleneck 

for their architectures arises from the inadequacy of sufficiently large datasets (Nguyen et al., 2022). 

This shortage of data becomes even more conspicuous in fields like design and manufacturing, where 

the demand for highly specific data exceeds what is publicly available. 

Approaches to synthetic data generation for point cloud data can be broadly categorized as simple or 

advanced (Nguyen et al., 2022). Simple methods involve the conversion and annotation of CAD models 

into point clouds, primarily tailored for classification problems. Examples of such synthetic data 

generation include ModelNet40 (Wu et al., 2015) and ShapeNet (Chang et al., 2015). On the other hand, 

advanced techniques employ automatic scene generator frameworks meticulously crafted to generate 

scenes and record annotations with high precision (Nguyen et al., 2022). This paper introduces an 

automatic synthetic data generator aligned with these advanced methodologies. 

While instances like the Biked dataset (Regenwetter et al., 2021) demonstrate scenarios where synthetic 

data and models are co-designed, in computer vision, developers often opt for transfer learning 

strategies. In such cases, synthetic data needs adaptation to align with the format and annotation system 

of existing data and model architecture. For point cloud datasets, the absence of a standard labeling 

method necessitates synthetic data to adhere to one of the proposed annotation systems. Notably, popular 

open-source datasets for interior point clouds (or RGB-D) include ScanNet (Dai et al., 2017), Sun RGB-

D (Song et al., 2015), and S3DIS (Armeni et al., 2017). 

After evaluating these three popular datasets, the choice was made to select S3DIS over the other two 

options. The reason for choosing it over Sun RGB-D is that the latter is constructed based on 2D images 

with depth pixel information, rather than utilizing raw point cloud data. Additionally, S3DIS was 

favored over ScanNet due to its more straightforward annotation system, which enhances the efficiency 

of the data generation process. 

3. Framework 
The objective of this paper is to create a data processing pipeline that automates the reconstruction of 

factory environments. The framework we present bears a resemblance to the one proposed by Nguyen 

et al. (Nguyen et al., 2022). Figure 1 provides a flowchart illustrating the various stages discussed in 

this chapter, with distinct sections clearly demarcated using colors. Before commencing the automatic 

synthetic data generation process, two crucial decisions need to be made. These decisions have been 

already discussed in the background study. 

3.1. Synthetic data generation 

Common 3D datasets, like the S3DIS database, typically do not account for the specialized equipment 

commonly found in manufacturing or process plants. The S3DIS dataset classes mainly consist of 

structural elements (e.g., ceiling, floor, wall, beam, column, door, window) and movable elements (such 

as tables, chairs, sofas, bookcases, boards), along with a separate category for "clutter," encompassing 

the remaining points in the scene. 

While structural elements are crucial for segmentation tasks, there are alternative methods to determine 

the scene's size (as outlined in Section 3.3) that can more effectively allocate model resources towards 

the detection of movable objects. Consequently, certain authors, like the developers of TR3D, choose 

to evaluate their model against only the 5 movable objects (Rukhovich et al., 2023) to better address the 

specific needs of their application. 

To complement the S3DIS dataset, we introduced additional classes in the generated data scenes. 

Complementing classes include "table," "chair," and "sofa," which are already present in the S3DIS 

dataset. The two added classes are:  

• The ABB collaborative robot YuMI (IRB-14000) (ABB, 2015), labeled as "yumi." This class 

represents a parametric model, with the arm joint positions as parameters. 

• A highly geometrically variable product, such as 3D printers, labeled as "3dprinter." 
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Figure 1. Framework for achieving digital representations based on object detection boosted 

with synthetic data generation. "n" is the number of desired data samples 

The selection of these classes serves several purposes, with the goal of showcasing the advantages of 

using synthetic data: 

a) Demonstrating the TR3D detection algorithm's ability to learn distinctive features associated 

with the newly added classes. 

b) Providing evidence that synthetic datasets can enhance the performance metrics for existing 

classes (i.e., "table," "chair," "sofa") or, at the very least, not degrade their performance when 

new instances are included. 

c) Assessing the model's capacity to detect the newly added classes in real point clouds, thereby 

demonstrating its generalization capability. 

The 3D software employed for scene generation is Blender, a robust open-source 3D tool that offers an 

open Python application programming interface (API) for customization. At a higher level, the 

generation framework operates through a loop, receiving general parameters to control various aspects, 

including the number of scenes to be generated, point number and density (density refers to the 

distribution of points between movable objects and the background elements). 

The model collection comprises five Blender files, one for each class, and within these files, one can 

find 6-15 different instances of each class. For common movable objects like chairs, tables, and sofas, 

the source files were obtained from open-source Blender files available on BlenderKit. Instances of the 

YuMI robot were created after manually manipulating the joints within commercial CAD software, and 

3D printer models were collected in "step" files from various sources such as GrabCAD or Printables 

webpages. These files were then converted into mesh format for inclusion in the model collection. 

To ensure the generation of scenes that avoid object intersections and appear somewhat realistic (as 

depicted in Figure 2a), the following rules have been implemented: 

• Room structural elements are represented by a parametric cube that encapsulates all elements 

within the room. 

• Each object possesses a parameter governing its appearance probability. Consequently, while 

empty scenes are possible, they are highly improbable. 

• Tables and sofas are positioned along the walls, sharing this space. As a result, the maximum 

number of sofas or tables per scene is limited to four. 

• Chairs are placed within an imaginary inner boundary of the room at four specific locations. 

They have the flexibility to be rotated. 
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• 3D printers and YuMi robots can only be placed on top of tables and share the available space. 

Each table can accommodate two elements, one on each side (local left and right). 

 
Figure 2. a) Sample scene generation; b) Sensor paths and ray cast locations; c) Generated 

point cloud; Note that the colors of textured objects cannot be captured 

After the scene is generated, the point cloud generation process is initiated, drawing inspiration from 

Helios++ (Winiwarter et al., 2021), but adapted for indoor use cases. Helios++ is a software designed 

for simulating laser scanning in both static and dynamic outdoor environments. In this article, a pivotal 

role is played by a Blender function known as "Raycast." This function projects a ray from an emissary 

object, referred to as the sensor, and determines whether there was a collision or not with a target object. 

It also provides information about the local coordinates of the hit, surface normal, and the face ID. The 

function takes as input the sensor object, the target object, and the ray's direction (Blender F., n.d.). 

Like the Helios implementation, the sensor follows a predefined path, emitting rays at each step. This 

path is divided into two segments that intersect covering only 80% of the room's area, as depicted in 

Figure 2b. The height of the sensor is equivalent to 2/3 of the room's height. The direction of the path is 

determined by a random angle. The ray directions are entirely randomized, and to ensure a representative 

number of points on movable objects, the "room object" is excluded from the list of possible targets. 

Once the desired proportion of points has been reached, rays are projected into the room's structural 

elements. 

Each local coordinate and face information is recorded to facilitate the retrieval of global coordinates 

and, when possible, the material color of the face. This process results in a matrix consisting of N lines, 

representing the total number of points. Each line contains the following point information: [x, y, z, r, 

g, b, c], where the first three elements represent the point's coordinates, followed by the RGB color 

information and the object class. The point cloud data is stored in separate files and folders, following 

the same fashion as the S3DIS dataset. The point cloud is illustrated in Figure 2c. 

For the experiment detailed in this article, the generated data includes three new areas, each containing 

50 scenes. The representation of movable objects in the combined dataset (comprising both S3DIS and 

synthetic data) is summarized in Table 1. 

Table 1. S3DIS dataset and generated samples 

 

       

S3DIS 2726 910 110 1166 274 - - 

Synthetic 364 252 86 - - 200 192 

Total 3090 1162 196 1166 274 200 192 

3.2. Model training 

This section provides an overview of the experiments conducted to investigate the influence of generated 

data on the model's performance. The details of these experiments are summarized in Table 2, which 

outlines the specific training approaches employed in each experiment, including the data utilized for 

both training and evaluation. As previously mentioned in the preceding section, the dataset is divided 
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into nine distinct areas, with the final three being synthetically generated. All experiments were executed 

over five training epochs, and only the results from the best-performing epoch are presented in the 

Results section.  

Table 2. Training experiments 

Exp. ID Description Training Areas Test Areas 

1 Baseline. Original dataset, original 5 classes. 1, 2, 3, 4, 6 5 

2 Mixed dataset, 5 classes (2 synthetic) 1, 2, 3, 7, 8 9 

3 Mixed dataset, 5 classes (2 synthetic) 1, 2, 3, 4 ,6, 7, 8, 9 5 

 

Experiment 1 serves as the baseline for assessing the influence of the generated data. In contrast, 

Experiment 2 aims to demonstrate the model's capacity to learn features resembling the new classes, 

making it the only experiment involving a distinct test area. Experiment 3 utilizes the entire set of 

generated data for testing against the fifth area, allowing for a comparison of performance metrics when 

classes are swapped. 

The performance metrics employed in the experiments align with those specified in the original TR3D 

paper (Rukhovich et al., 2023). The authors utilize mean average precision (mAP) calculated under 

Intersection over Union (IoU) thresholds of 0.25 and 0.5. 

The implementation also follows the TR3D implementation details, utilizing the mmdetection3d 

framework (MMDetection3D, 2020). Both training and testing are conducted on a single Nvidia A4000 

GPU. The training settings, including losses, optimizer, learning rate, and augmentation, adhere to the 

TR3D specifications, with the only deviation being the adjustment of batch size to accommodate the 

GPU CUDA memory constraints. 

This quantitative model evaluation is complemented with a qualitative analysis in several real point 

cloud scans in the Results and discussion section. 

3.3. Digital representation and CAD configurator 

The CAD configurator employs two distinct information flow branches, both originating from the point 

cloud obtained via a LiDAR scanner and converging towards room generation (refer to Figure 1). In the 

first branch, the point cloud is input into the TR3D detector to identify the position of objects within the 

3D space. Once these objects are aligned with the global coordinate system, their respective classes are 

linked to a CAD collection library and subsequently imported into the room assembly file. 

 
Figure 3. Corner detection steps; In (5), the parameter ε represents the normalized threshold 

for clustering points using DBSCAN; In (6), the corners are ordered in a clockwise manner 
according to the angle formed from the center of rotation 
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The second branch directly processes the point cloud data to delineate the scene's boundaries, resulting 

in an ordered array of points that can be utilized to sketch the floor within CAD software. While 

obtaining the scene's borders may appear to be a straightforward task, the Convex Hull method doesn't 

always adapt well to the room's geometry. As a result, a more intricate algorithm has been developed to 

accurately capture the blueprint's geometry. Figure 3 provides a step-by-step guide to identifying the 

room's corners sent to the configurator. It's worth noting that manual revision of the points may be 

implemented upon completion to correct any potential algorithmic discrepancies. 

The completed configurator is made available to the user, enabling them to adjust the positions of CAD 

objects or manipulate geometric parameters within the CAD model. This digital representation 

empowers the user to delve deeper, explore, and refine the current 3D layout through simulations. 

4. Results and discussion 
This chapter unveils the experimental findings after training and testing. These results are substantiated 

by quantitative metrics that gauge the impact of integrating the proposed synthetic data generation in 

S3DIS. The qualitative outcomes are based on real data instances, serving as examples of the model's 

performance in real 3D scenes. These are not only compared against the baseline TR3D model but also 

illustrate the model's efficacy in detecting new classes that were solely processed as synthetic data 

during training. The concluding paragraphs are dedicated to discussing the framework as a digital 

representation configurator, highlighting observed strengths and limitations in the approach, and 

outlining potential future directions of work. 

Table 3. Quantitative results; Testing results on S3DIS area 5 (except experiment 2 tested on 
area 9) 

 

ID 

 

Metric 

       

1 mAP@0.25 0.96 0.72 0.87 0.37 0.11 - - 

mAP@0.5 0.87 0.45 0.3 0.15 0.002 - - 

3 mAP@0.25 0.97 0.64 0.82 - - - - 

mAP@0.5 0.89 0.42 0.46 - - - - 

2 mAP@0.25 1 1 1 - - 1 1 

mAP@0.5 1 1 1 - - 1 0.99 

 

Table 3 presents quantitative results, specifically showcasing the mAP across different classes. The 

primary objective of these experiments is to evaluate the influence of synthetic data on the original 

S3DIS dataset. Experiment 1 serves as the baseline and demonstrates notably high accuracy, particularly 

in the case of chairs and tables. This heightened accuracy can likely be attributed to the substantial 

presence of elements belonging to these two classes within the dataset. 

Experiment 2 aims solely to demonstrate the model's capacity to accurately identify the YuMI robot and 

3D printers in the generated data. Impressively, it achieves perfect results for all classes in this regard. 

These results may be related to the fact that the dataset contains minimal noise, and the objects are 

exceptionally well-defined, as if the scanner used was a flawless tool.  

Experiment 3 reveals how the model's testing results respond to the inclusion of synthetic data and the 

replacement of the bookcase and board classes with new ones. When analyzing this data, it's crucial to 

consider the quantity of synthetic data per class. Notably, the mAP@0.5 scores for chairs and tables 

exhibit only minor changes, as the added synthetic data accounts for just 11% and 21% of their 

respective datasets. Therefore, variations in the results can be attributed to training aspects. 

In contrast, the mAP@0.5 for the sofa class demonstrates a noteworthy 53% improvement compared to 

the baseline model, which is a substantial increase. This improvement can be linked to the substantial 

representation of synthetic sofas (44%) in the dataset. 
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Table 4. Qualitative results; Ground truth for the number of items and those correctly (and 
incorrectly) recognized by tr3d trained on S3DIS (Baseline) and incorporating synthetic data 

(TR3D-sd); Threshold = 0.3 

Scan ID  

- 

 Quality 

 

Model 

       

1 

- 

Good 

Truth 6 1 0 0 0 0 0 

Baseline 6(0) 1(0) 0(0) 0(3) 0(0) - - 

TR3D-sd 6(0) 1(0) 0(0) - - 0(0) 0(0) 

2 

- 

Poor 

Truth 1 3 0 0 1 1 0 

Baseline 1(0) 1(0) 0(0) 0(4) 0(0) - - 

TR3D-sd 1(0) 2(0) 0(1) - - 1(0) 0(0) 

3 

- 

Medium 

Truth 0 2 0 1 0 1 1 

Baseline 0(0) 2(0) 0(0) 1(0) 0(0) - - 

TR3D-sd 0(0) 2(0) 0(0) - - 1(0) 0(0) 

4 

- 

Medium 

Truth 8 1 0 0 0 0 0 

Baseline 8(0) 1(0) 0(0) 0(3) 0(0) - - 

TR3D-sd 8(0) 1(0) 0(0) - - 0(0) 0(0) 

5 

- 

Poor 

Truth 3 6 0 0 0 0 3 

Baseline 3(2) 3(0) 0(0) 0(0) 0(0) - - 

TR3D-sd 3(3) 4(0) 0(0) - - 0(0) 0(2) 

6 

- 

Good 

Truth 33 8 0 0 2 0 0 

Baseline 23(0) 8(0) 0(0) 0(3) 0(0) - - 

TR3D-sd 33(0) 8(0) 0(0) - - 0(0) 0(0) 

 

At a broader level, three key conclusions can be drawn from the qualitative results: 

1. The quality of the scans significantly influences all objects detection. Without the support of 

colors, certain objects may go unnoticed to the human eye, such as the 3D printers in room 5. 

2. Both algorithms exhibit strong performance in detecting tables and chairs, underscoring the 

model's potential when trained on a dataset with over 1000 samples. Enhancing the 

representation of other objects through synthetic data has the potential to further improve the 

model's performance. 

3. The model augmented with synthetic data demonstrates remarkable accuracy in identifying the 

YuMI robot, likely due to its distinctive shape. Conversely, the model struggles to identify 3D 

printers in real point clouds, while achieving perfect accuracy in the generated dataset. This 

discrepancy suggests a clear case of overfitting, which may necessitate improvements in the 

generator or training on real samples for resolution. 

Regarding the room configurator, it has the capability to identify detected objects and place them within 

an automatically generated room. It's important to note that the concept of room recreation is not new, 

and commercial solutions like Polycam already offer integrated solutions for this purpose. However, 

our proposal involves the development of such a system within a CAD configurator, which offers 

dynamic, customizable, and parametric geometries. This system can be further manipulated to replicate 

real factory layouts, thus significantly reducing the need for manual reconstruction. 

Future directions for research primarily revolve around the development of the automatic synthetic data 

generator. Enhancing this generator could play a pivotal role in advancing the training and overall 

progress of 3D computer vision. Potential avenues for improving synthetic data generation may 

encompass deliberate noise injection, the integration of additional artificial samples and objects to 

simulate "clutter," adjustments to the objects-to-background point proportion, inclusion of more object 

models, and establishing connections with projects like ShapeNet or ModelNet40 to enhance 

generalization. Other possibilities include the release of an API and expansion to encompass outdoor 

environments and scenery incorporating Helios++ (Winiwarter et al., 2021) simulation framework. 

https://doi.org/10.1017/pds.2024.232 Published online by Cambridge University Press

https://poly.cam/
https://doi.org/10.1017/pds.2024.232


 
ARTIFICIAL INTELLIGENCE AND DATA-DRIVEN DESIGN 2305 

5. Conclusion 
The presented research emphasizes the significance of employing automatic synthetic data generation 

in data-driven applications. Specifically, the paper focuses on the development and assessment of a 3D 

computer vision system for constructing digital representations of 3D environments within engineering 

contexts, such as brownfield factory projects. Key facets of this work include: 

• The utilization of synthetic data to enhance the performance of 3D object detection and 

recognition. 

• The successful development of an automatic synthetic data generator and its integration with 

the S3DIS dataset, showcasing notable improvements in object detection. 

• Experiments to assess the impact of synthetic data, including the identification of specific object 

classes. 

• The significance of high-quality scans and their influence on object detection. 

• Potential areas for improvement and future research, such as refining the synthetic data 

generator, introducing noise, enhancing generalization, and exploring outdoor scenarios. 

• The proposal of a room configurator within a CAD environment for efficient and customizable 

room recreation. 

In conclusion, this work demonstrates the potential of synthetic data in enhancing 3D computer vision 

applications in an engineering context. It highlights the importance of data quality and presents 

promising avenues for further research and development, particularly in the realm of synthetic data 

generation and its broader applications. 

Acknowledgements 

This work was supported by Vinnova under grant 2021-02481, iPROD project; and grant 2023-02694, Twin 

Generator project. The authors would like to thank Vinnova for making this research project possible. 

References 

ABB. (2015), “Dual-arm YuMi - IRB 14000”, ABB. 

Anderson, J.W., Kennedy, K.E., Ngo, L.B., Luckow, A. and Apon, A.W. (2014), “Synthetic data generation for 

the internet of things”, 2014 IEEE Big Data, pp. 171–176, https://dx.doi.org/10.1109/BigData.2014.7004228. 

Armeni, I., Sax, A., Zamir, A.R. and Savarese, S. (2017), “Joint 2D-3D-Semantic Data for Indoor Scene 

Understanding”, 2017 IEEE CVPR, https://dx.doi.org/10.48550/arXiv.1702.01105. 

Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., Savarese, S., et al. (2015), “ShapeNet: 

An Information-Rich 3D Model Repository”, arXiv, https://dx.doi.org/10.48550/arXiv.1512.03012. 

Chen, B., Wan, J., Shu, L., Li, P., Mukherjee, M. and Yin, B. (2018), “Smart Factory of Industry 4.0: Key 

Technologies, Application Case, and Challenges”, IEEE Access, Vol. 6, pp. 6505–6519, 

https://dx.doi.org/10.1109/ACCESS.2017.2783682. 

Chen, W., Li, Y., Tian, Z. and Zhang, F. (2023), “2D and 3D object detection algorithms from images: A Survey”, 

Array, Vol. 19, p. 100305, https://doi.org/10.1016/j.array.2023.100305. 

MMDetection3D, C. (2020), “MMDetection3D: OpenMMLab next-generation platform for general 3D object 

detection”. 

Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T. and Nießner, M. (2017), “ScanNet: Richly-annotated 

3D Reconstructions of Indoor Scenes”, 2017 IEEE CVPR, https://dx.doi.org/10.48550/arXiv.1702.04405. 

Esteves, C., Allen-Blanchette, C., Makadia, A. and Daniilidis, K. (2017), “Learning SO(3) Equivariant 

Representations with Spherical CNNs”, 2017 IEEE CVPR, https://dx.doi.org/10.48550/ARXIV.1711.06721. 

Fang, Y., Xie, J., Dai, G., Wang, M., Zhu, F., Xu, T. and Wong, E. (2015), “3D deep shape descriptor”, 2015 IEEE 

CVPR, pp. 2319–2328, https://dx.doi.org/10.1109/CVPR.2015.7298845. 

Blender, F. (n.d.). “Raycast Node”, Blender 3.6 Manual. 

Martínez, G.S., Karhela, T.A., Ruusu, R.J., Sierla, S.A. and Vyatkin, V. (2018), “An Integrated Implementation 

Methodology of a Lifecycle-Wide Tracking Simulation Architecture”, IEEE Access, Vol. 6, pp. 15391–15407, 

https://dx.doi.org/10.1109/ACCESS.2018.2811845. 

Maturana, D. and Scherer, S. (2015), “VoxNet: A 3D Convolutional Neural Network for real-time object 

recognition”, 2015 IEEE/RSJ IROS, pp. 922–928, https://dx.doi.org/10.1109/IROS.2015.7353481. 

https://doi.org/10.1017/pds.2024.232 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2024.232


 
2306 ARTIFICIAL INTELLIGENCE AND DATA-DRIVEN DESIGN 

Nguyen, H.G., Habiboglu, R. and Franke, J. (2022), “Enabling deep learning using synthetic data: A case study 

for the automotive wiring harness manufacturing”, Procedia CIRP, Vol. 107, pp. 1263–1268, 

https://doi.org/10.1016/j.procir.2022.05.142. 

Piascik R., et al. (2010), “Technology Area 12: Materials, Structures, Mechanical Systems, and Manufacturing 

Road Map”, NASA Office of Chief Technologist. 

Qi, C.R., Litany, O., He, K. and Guibas, L.J. (2019), “Deep Hough Voting for 3D Object Detection in Point 

Clouds”, 2019 ICCV, https://dx.doi.org/10.48550/arXiv.1904.09664. 

Qi, C.R., Su, H., Mo, K. and Guibas, L.J. (2017), “PointNet: Deep Learning on Point Sets for 3D Classification 

and Segmentation”, 2017 IEEE CVPR, https://dx.doi.org/10.48550/ARXIV.2302.02858. 

Qi, C.R., Yi, L., Su, H. and Guibas, L.J. (2017), “PointNet++: Deep Hierarchical Feature Learning on Point Sets 

in a Metric Space”, ArXiv CVPR, arXiv, https://dx.doi.org/10.48550/ARXIV.2302.02858. 

Regenwetter, L., Curry, B. and Ahmed, F. (2021), “BIKED: A Dataset for Computational Bicycle Design With 

Machine Learning Benchmarks”, Journal of Mechanical Design, Vol. 144 No. 3, p. 31706, 

https://dx.doi.org/10.1115/1.4052585. 

Rukhovich, D., Vorontsova, A. and Konushin, A. (2023), “TR3D: Towards Real-Time Indoor 3D Object 

Detection”, ArXiv CVPR, https://dx.doi.org/10.48550/ARXIV.2302.02858. 

Schluse, M., Priggemeyer, M., Atorf, L. and Rossmann, J. (2018), “Experimentable Digital Twins—Streamlining 

Simulation-Based Systems Engineering for Industry 4.0”, IEEE TII, Vol. 14 No. 4, pp. 1722–1731, 

https://dx.doi.org/10.1109/TII.2018.2804917. 

Shellshear, E., Berlin, R. and Carlson, J.S. (2015), “Maximizing Smart Factory Systems by Incrementally 

Updating Point Clouds”, IEEE CGA, Vol. 35 No. 2, pp. 62–69, https://dx.doi.org/10.1109/MCG.2015.38. 

Sierla, S., Azangoo, M., Fay, A., Vyatkin, V. and Papakonstantinou, N. (2020), “Integrating 2D and 3D Digital 

Plant Information Towards Automatic Generation of Digital Twins”, 2020 IEEE ISIE, pp. 460–467, 

https://dx.doi.org/10.1109/ISIE45063.2020.9152371. 

Sierla, S., Sorsamäki, L., Azangoo, M., Villberg, A., Hytönen, E. and Vyatkin, V. (2020), “Towards Semi-

Automatic Generation of a Steady State Digital Twin of a Brownfield Process Plant”, Applied Sciences, Vol. 

10 No. 19, https://dx.doi.org/10.3390/app10196959. 

Song, S., Lichtenberg, S.P. and Xiao, J. (2015), “SUN RGB-D: A RGB-D scene understanding benchmark suite”, 

2015 IEEE CVPR, pp. 567–576, https://dx.doi.org/10.1109/CVPR.2015.7298655. 

Su, H., Maji, S., Kalogerakis, E. and Learned-Miller, E. (2015), “Multi-view Convolutional Neural Networks for 

3D Shape Recognition”, ArXiv CVPR, arXiv, https://dx.doi.org/10.48550/ARXIV.1505.00880. 

Wang, X., Pan, H., Guo, K., Yang, X. and Luo, S. (2020), “The evolution of LiDAR and its application in high 

precision measurement”, IOP EES, IOP Publishing, Vol. 502 No. 1, p. 12008, 

https://dx.doi.org/10.1088/1755-1315/502/1/012008. 

Winiwarter, L., Pena, A.M.E., Weiser, H., Anders, K., Sanchez, J.M., Searle, M. and Höfle, B. (2021), “Virtual 

laser scanning with HELIOS++: A novel take on ray tracing-based simulation of topographic 3D laser 

scanning”, arXiv CVPR, https://dx.doi.org/10.48550/arXiv.2101.09154. 

Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X. and Xiao, J. (2015), “3D ShapeNets: A deep 

representation for volumetric shapes”, 2015 IEEE CVPR, pp. 1912–1920, 

https://dx.doi.org/10.1109/CVPR.2015.7298801. 

https://doi.org/10.1017/pds.2024.232 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2024.232

