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ON THE STATISTICAL MEASURE OF INFECTIOUSNESS.

BY M. GREENWOOD, F.R.S.

WE all recognise that some diseases are more "catching" than others. Every
mother knows that measles is very catching and most people set aside a
group of common complaints, measles, mumps, whooping-cough, scarlet fever,
diphtheria—perhaps roughly in that order—as catching complaints. Then
again, still keeping ourselves within the circle of ideas of educated non-medical
people, one has such complaints as common colds or influenza which one thinks
of as running through a house indeed but does not put quite into the measles
category, as one feels that factors determine the spread other than mere proxim-
ity to a sick person. Lastly, one has some illnesses, gonorrhoea would be a fair
example, which everybody recognises to be spread wholly by contagion, almost
always by a particular method of contagion, but does not regard as catching
at all in the sense that measles and whooping-cough are catching. When we
enquire into the reasons of these opinions they will be found, I think, to be
these.

An illness is held to be catching when it has usually been possible to explain
the existence of a case of it by close association (of some kind) with an im-
mediately pre-existing case; the notion of more or less infectiousness depends
upon some appraisement of the proportion of persons attacked to persons
exposed to the risk of attack. Mothers observe that when a child sickens with
measles most of the other children take the complaint within a period of days
or weeks, when a child sickens with scarlet fever the proportion of others
attacked is smaller, and so on.

When we are dealing practically with such complaints as measles, rough
criteria such as these are sufficient; but when we seek a deeper knowledge of
the epidemiology even of these common complaints they are inadequate, and
when we pass to the debatable region of diseases of which the infectiousness is
quite uncertain they are altogether useless. Epidemiologists without any pre-
dilections for statistical analysis have, therefore, been forced to give these
popular notions an at least quasi-statistical form. They have studied the
distribution of "multiple" cases of disease in groups—families, inmates of
houses, etc.—and sought to draw conclusions from the frequency distribution.
If, they have argued, a "case" does not breed other "cases" in the exposed to
risk, then if a number of groups have been observed through a finite interval,
we shall find but few instances in which any one group contains more than one
affected member, and in those few cases we shall be able to account for the
independent origin—independent one of another-—of the multiple cases. If,
on the other hand, one case does breed others, the more intense the effect the
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more closely will the distribution of groups tend to approximate to the opposite
extreme, viz. n cases in a group of n persons. The criterion of infectiousness is
the degree of approximation to one or other extreme J-shaped distribution,
only a single case in each group of n, n cases in each such group. Thus the fact
that in 8635 famines each containing at least one member with poliomyelitis,
96 per cent, had only one affected member, has been used as an argument against
the belief that personal contact is an important factor of dissemination of this
complaint1.

The object of this paper is to examine the statistical problem in greater
detail. There are two difficulties, one really insuperable, the other insuperable
by me.

The generally insuperable difficulty (insuperable in the present state of
knowledge) is that accurate data are scanty; a great majority of the published
records of multiple cases omit essential particulars. It is evidently futile to
apply elaborate arithmetical machinery to records of "multiple" cases which
omit any appraisement either of the characteristics (age, sex, previous history
of exposure) or even of the numbers constituting the groups. In the rare
instances when this information is afforded, the number of groups is tiny. Had
it not been for the kindness of my friend Dr Stocks, this paper must have been
wholly "in the air." The difficulty insuperable by me is that before one has
given much time to the subject—I have worked at it, off and on, for years—
—one encounters mathematical difficulties of a serious nature, the conquest
of which requires special knowledge and ability I do not possess.

These considerations are by way of preface to and apology for the report
of an investigation practically and theoretically inadequate but, as I hope,
suggestive.

The general problem is this. N households (families or groups denned in
some precise way) have been observed over a period of time T and, at the close
of observations, No of the groups have recorded no case of the disease, Nx have
recorded 1 case, 2V2 2 cases, ... Nr r cases; what light does the form of this
distribution throw upon the aetiology of the cases? The problems to be dis-
cussed fall under two classes. In both the number of members of each group
is supposed to be constant, but in one the number of cases within a group may,
in the other it may not exceed the number of persons constituting the group.
To the former class belong such problems as that of "cancer houses" where
the number of cases may exceed the number of inhabitants at a given instant,
since the record may cover some generations of inhabitants, or of the distribu-
tion of non-fatal accidents amongst employees, since one employee may sustain
many accidents; to the latter the distribution of cases of measles, scarlet fever,
etc., in families or houses when the period of observation T is short. The
distinction is clear; in the two former cases, although not more than all the
inhabitants can be sick of cancer at one and the same time, and a workman
cannot have an unlimited number of accidents, however trivial, at precisely

1 Epidem. Report, Health Section, League of Nations, March 15th, 1930, pp. 100-1.
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338 Statistical Measure of Infectiousness
the same instant of time, yet in the one case the period of observation T may
be so long that successive generations of inmates have been exposed to risk,
and in the other the period of actual happening is so short in comparison with
T that there is no real impropriety in postulating an upper limit to the possible
incidence of multiple cases far greater than the actual number of persons. But,
when, as always happens in the testing of a hypothesis and sometimes happens
in the framing of it, the observed number of cases, which I shall always denote
by n, is taken to be, bike N, an ultimate datum of observation, we must re-
member that the upper limit is really fixed. The scientific discussion of problems
of the first class was begun in 1911-12 by Maynard and Troup and by Pearson.
Pearson, discussing cancer houses, used the following argument. Supposing
the distribution of cases in houses to be absolutely random, analogous to
throwing balls at random into equally accessible pigeon holes, then the chance
that any one case will fall in any one house is 1/2V and that it will not is
(N — l)/N, therefore the distribution of the whole n cases should be given by
the terms of the binomial N [1/N + (N — l)/N]n. In comparing the observed
distribution with that required by the hypothesis, we must not use the ordinary
Goodness of Fit test, because not only N but also n is fixed; Pearson showed
that in our comparison we must not include the frequency of houses with no
cases. In 1920 Yule and I discussed the cognate problem of multiple accidents.
We pointed out a theoretical objection to Pearson's treatment, viz. that when
N and n were not large two sets of data, one recording n cases in N houses,
the other Ten cases in kN houses, would have different representative binomials
which seemed objectionable. We suggested that a better analogy than that
of throwing n balls in N pigeon holes might be to liken the exposed to risk to
targets subjected to bombardment, the time of bombardment T to be divided
into intervals so short that within each not more than one hit could be registered
on a target. On that hypothesis the distribution of 0, 1, 2, etc., hits at the end
of T should be given by the Poisson limit to the binomial with parameter n/N.
The hypotheses are slightly different and, as I still think, the second is the more
appropriate, but in practice N would usually be large and n/N always finite, so
that there would be little arithmetical difference between the results. Both the
pigeon-hole schema and the variant Yule and I favoured can be generalised (see
Greenwood and Yule (1920), pp. 259, etc.), although only in the simplest case
did we reach a form suitable for the deduction of the requisite parameters from
the moments of the statistics. The generalisation of the pigeon-hole schema is of
some interest, because it suggests a way of approach which, possibly, might
repay further mathematical treatment.

When there is no bias, i.e. when the fact that a particular pigeon hole has
already received one or more of the first r balls neither increases nor diminishes
the probability that one or more of the remaining n — r balls shall fall into it,

/ I N — l \ n

we can deduce the distribution, viz. N ( ~ H w~) > term by term, as

follows. Suppose we use the symbol rfe to denote the number of pigeon holes
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which after r balls have been distributed contain s apiece. For all values of r,
s=n
S Js = N.

Let Erfs denote the mathematical expectation of rfs, i.e. the value to
which the mean or average value of rfs will tend when deduced from a large
number of observations or experiments. Then Erfs will be a constant dependent
on N, n, r and s, and hence E (Erfs), which we may write E2

rfs, = Erfa.
When r_!/0 is known, r/0 will differ from r_xf0 by — 1 or 0 according as the

rth ball falls into an unoccupied pigeon hole or not. The probability of the first

event is r-ifojN a n d of the second 1 — r—^ • Hence the mathematical expectation

of the difference

rfs - r-lfs = (- 1) ̂ ° + (0) (l - r-^°

or ^ U - , - 1 / o ) = - ^ - i / o -

Hence E\f0 = E\_J0 ~ 1 Er_J0,

or

But

Hence En ( 1 \ n / A7 1\ re

More generally, the rth ball can fall into one of the r_1js pigeon holes which
already contain s balls each. This gives

rjs r-ljs = 1 WJ

or into one of the r_!/s_i pigeon holes which contain s — 1 balls each. This gives

or into one of the remaining N — r_i/s — r-ifs-i pigeon holes. This gives

rf.~r-J.~0
The probabilities of the three events are

r-lfJN, r-lfs-lIN, 1-^lA+J^zl .

Hence E (rfs - ,_,/,) = - ^ s + r^p,

and noting again that E\fs = ETfs,

we have Erfs = (l - ^j Er_Js + 1 E^J^.

The solution of this difference equation for Erfs is

) A )
Joum. of Hyg. xxxi 23
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340 Statistical Measure of Infectiousness
Let us suppose now that the chance of the rth ball falling into an empty

pigeon hole differs from r^kP, so that the chance of falling into an occupied

f I - f \

pigeon hole is not 1 — r~p but equal say to ti 1 — r-^ ) , so that the chance of

falling into an empty pigeon hole becomes

r-lfo\ _ l _ / i / r-ljo.

we find in that event
„ . N /N-t\* . N

and the expectations of the other frequencies may be similarly deduced.
Turning to the bombardment analogy, the generalisation of the Poisson

schema for a single bias is almost as simple as that of the pigeon-hole schema
and its formal generalisation to 2, 3, ... r biasses very much easier. But, as in
the pigeon-hole schema, it only proved possible (for Yule and me; more dex-
terous or learned mathematicians might succeed) to reach a solution in terms
of moments for the case of a single bias.

Generalising in a different way, i.e. by seeking the form of the distribution
when a priori the chances of distribution are not equal, one finds the bombard-
ment schema leads to a very elegant solution. If we suppose the individuals
(in an accident distribution) or groups to present a priori differences of
accessibility to bombardment and that this a priori distribution is continuous
and of skew binomial type (Pearson's Type III) the solution is eminently
practicable for statistical work (see Greenwood and Yule, 1920, p. 273).

The corresponding generalisation of the pigeon-hole schema would be much
less suitable. We should have to divide the N pigeon holes into groups,
determine the probability that the n balls would be partitioned among the
groups in a particular way by a multinomial, then work out the distribution
within each group of pigeon holes receiving 0,1, etc., balls. Only if the number
of groups were very small would the operation be a practicable one.

On the whole, I think the methods set out in Greenwood and Yule's paper
are fairly satisfactory. Thanks to the researches of Ethel M. Newbold, they
have been improved into useful tools for the investigation of accident statistics.
The practical handling of data relating to multiple cases of disease fulfilling
the condition is more difficult because it rarely happens that the specification
of the data is complete. Even when we are concerned with the statistics of
trivial accidents it may be objected that our specification of the No frequency
is incomplete or incorrect, that we may have included workpeople who were
never at risk at all or have excluded others that were at risk. When we are
informed that in Nt houses one case of cancer was recorded, in N2 two, and so
on, we shall be in doubt as to No. If we take for that the whole number of
houses in the administrative area less the sum of those in which cases occurred,
we shall surely introduce a heterogeneity. If, on the other hand, we decide
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to deduce our Poisson constant or our binomial constants from the truncated
frequency we are using a method of low efficiency; in fact a layman might
urge that we are playing Hamlet without the Prince of Denmark for the un-
affected groups will usually much outnumber the sum of those affected. It is
perhaps worth noting, although the point is not one of very great importance,
that if we happen to have truncated data, i.e. data from which the No frequency
is wanting for groups of different sizes, some light may be thrown upon the
applicability of a binomial by the following consideration.

Suppose we were dealing with a character distributed with constant chance
p + q — 1, through groups of size m and km respectively. The proportions of
marked persons would naturally be identical (within the limits of error of
sampling), viz. p in each series. But the ratios of marked persons to the
number of members of groups of which at least one member of each was marked
would not be identical. They would in fact be respectively p/(l — qm) and
p/(l — qkm), so that the ratio would diminish as k increased. In other words
the attack rate would decrease as the size of the group increased. For instance,
suppose that some disease were really not infectious at all but fell at random
upon 10 per cent, of a population and that statistics were compiled of families
of one, two and five children, all the families having at least one affected
member. The attack rate in families of one would be 100 per cent., in famines
of two, 52-6 per cent, and in families of five, 24-4 per cent. The point is a simple
one; some arguments respecting the influence of overcrowding upon mortality
and morbidity have been weakened by failing to notice it1.

With these remarks I leave the kind of problem of which multiple non-
fatal accidents and "cancer houses" are typical; until a more expert mathe-
matician provides a better solution of the generalised Poisson series than Yule
and I obtained, the methods discussed by us 10 years ago seem to me the most
effective available.

I pass now to the other class of problem; one has groups of m individuals
each and the number of cases cannot exceed m in a group. The data of observa-
tion are restricted to groups which contain at least one marked individual.
This is much the most important type of problem for the epidemiologist. It
has been said that the solution of every statistical problem depends on the
preliminary discovery of the appropriate Urnenschema. "Professors of prob-
ability," said Mr Keynes, "have been often and justly derided for arguing as
if nature were an urn containing black and white balls in fixed proportions.
Quetelet once declared in so many words: Turne que nous interrogeons, c'est
la nature.' But again in the history of science the methods of astrology may
prove useful to the astronomer; and it may turn out to be true—reversing
Quetelet's expression—that 'la nature que, nous interrogeons, c'est une urne2.'"
I think that this deductive method, viz. to imagine a way of happening, to
express that mode quantitatively and to compare its consequences with the

1 Proc. Roy. Soc. Med. 1925. Sect, of Epidem. and State Medicine, p. 38.
2 Keynes, A Treatise on Probability, p. 428.

23-2
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342 Statistical Measure of Infectiousness
observed arithmetical facts, is the right course here. Current English statistical
methods are perhaps too inductive. One sometimes spends much labour in
"fitting" frequency formulae to observations having the, rather optimistic,
arriere-pensee that in this way one can reach not merely a neat representation
of the facts but also some insight into the mechanism which brought those
facts about. Some years ago an English statistician took a German statistician
to task because the latter had drawn some conclusions from the apparent
appropriateness of Poisson's limiting binomial for the description of certain
data. The critic remarked that as good, or better, fits could often be obtained
by using a binomial with a fractional or negative exponent and suggested that
the interpretation of such binomials needed consideration. The criticised one,
in a very heated rejoinder, poured scorn upon the " formalistic" statisticians
who trifled with such fantastic notions. Without seeking to meddle in that
quarrel, which was a very pretty quarrel as it stood, I prefer only to use
formulae here which have, or which at least I think have, a biological interpre-
tation perfectly intelligible. To make the discussion quite clear I base it upon
arithmetical examples. My friend Dr Stocks kindly provided me with Table I
and we are to try to interpret the frequency distributions it contains.

Table I. History of children aged under 10 years exposed to a case of measles in
same house during 1926 epidemic in St Pancras. (Period at risk from 4 days
after appearance of rash in first case, until an interval of 1 month has elapsed
from onset of any case without afresh case developing*.)

No. of contacts under 10 years of age (first case not included)

a 0
1
2
3
4
5
6
7

Total

1

340
164
—
—
—
—
—
—

504

2

197
104
57
—
—
—

—

358

3

84
60
57
27
—
—

—

228

4

60
29
25
11
7
—

—

132

5

25
15
9
10
1
1

.—
—

61

6

11
6
4
3
—
1
1

—

26

7

3
4
—
3
2
3

1

16

8

2
2
3
3
—
—
—
1

11

9

1
—

—
—.
—
.

—

1

10

—.
1
—.
—.
—

—

1

Total

723
384
156
57
10
5
1
2

1338

* A case developing within 3 days of first case was regarded as a simultaneous infection and
not included as a contact. Contacts developing measles more than a month from onset of a pre-
ceding case were regarded as having escaped attack for purposes of this table.

Let us begin with the simplest (and, of course, certainly erroneous) hypo-
thesis that measles is not an infectious disease at all, but that by picking out
the houses in which at least one case occurred we have secured groups which
were indeed exposed to some special risk. This might easily happen. A
nefarious typhoid carrier might have contaminated the sealed family milk
bottles of a particular group of families. Typhoid would be restricted to those
families, it might attack at least one member of each such family and, if they
were all persons who sedulously followed the spirit and letter of hygienic ritual
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in eating and drinking, none of the subsequent cases would be due to intra-
mural infection, the distribution must be wholly determined by personal
susceptibility and dosage. In that case what sort of a distribution should we
expect? Our old friend the simple binomial attracts us. Let us take for its
exponent the number in house and for its p the ratio of attacked to exposed
to risk. Applying this as an example to the group m = 3 we have the computed
distribution, which is the third column of Table II. Clearly it does not agree

Table II.

ndar;
ises
0
1
2
3

y
Frequency

84
60
57
27

First
binomial

76-2
100-9
44-4

6-5

Second
binomial

561
100-3
59-7
11-8

Poiason
74-6
83-3
46-6
23-5

Chain
binomial

89-7
52-7
54-4
31-2

at all with observation; there are far too many "multiple" cases observed for
the hypothesis. Not even if we base our binomial upon the individuals of
groups of TO = 3 instead of upon the whole experience of all the groups do we
reach a tolerable agreement. Certainly that hypothesis may be excluded. As
a mere matter of empiricism the methods of the Greenwood and Yule paper
were tested upon these data. The results were better than with the binomials,
for instance an uncomplicated (column 5 of Table II) Poisson gave better
results, but not sufficiently better for an empirical success to be able to justify
an absence of biologically intelligible foundation.

Now let us go to the other extreme and imagine that all the cases after the
first are due exclusively to personal infection. It has long been orthodox faith
that the period of infectiousness is very short, let us conceptually reduce it to
an instant and suppose that during an instant of time the m persons are ex-
posed to a constant risk (furnished by the primary case), that if during this
instant r are infected, then again for an instant m — r are exposed to risk.
We have the conception not of a single binomial distribution but of a chain
of binomials. Thus in the chosen illustration of m = 3 we might reach a final
score of three cases not uniquely as in the original use of the binomial through
the term p3, but by any one of the following:

(1) Three cases from the first exposure and of course no more; given as
before by p3.

(2) Two cases from the first exposure and then one case. The probability
of the former event is 3p2q, of the latter p, because since there is but one person
at risk the binomial (p + q) has unity for its exponent. Combined probability,
3j9fy

(3) One case from the first exposure and two from the second. The respective
probabilities are 2>pq2 and p2, the combined probability is 2>p3q2.

(4) One case from the first exposure, one from the second and one from the
third; the several probabilities are 3pq2, 2pq and p, their product 6p3q3.

Each term of the original binomial with exponent m is the first link of a
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344 Statistical Measure of Tnfectiousness
chain of binomials with diminishing exponents, except of course the first and
last terms since there can be no more than m cases on the one hand, while on
the other, if the initial case fails to infect any of the exposed to risk, the chain
breaks at its first link.

Evidently r cases can be generated (r $• m) in as many ways as there are
compositions of r (zero not admissible as a part), viz. in 2r~1 ways. If (rt ,ri... rs)
be a composition, we have for the frequency of rx primary, r2 secondary, ... rs

sth order cases,

- C~
,7,17,(8+1) m-[(s+l)r1+si-2+ 2rs] (\\

~(m-r)\r1lr,\...rt\
When m is a small number (1) can be used directly, but my friend Dr Isserlis
has devised a much more elegant way of approach.

Let us write
<f>m = pm + (7 ) P^Wx + (™) P - W . + - (7) Pm-Svs& + - in

(2).
This is the required distribution. For m = 1, a single exposure exhausts the
possibilities, ̂  = p + q, and there is one link.

When m= 2, there may be a second link on the chain:

<f>2 = p2 + 2pq<f>i + I2-

When m = 3, we have three possible links:

& = p3 + 3 ^ 2 # x + 3pq2<t>2 + <?,
and so on.

Now let us expand <f>m in powers of p by writing it S Am>rp
r, where Amr

is a function of q only.

(2) = Am>mp™ + A^^p™-1 + ... AmiTp* + ... Amt0 (3).

In (3) Amr is the coefficient of pr; in (2) the coefficient of pr is: ( | qm~T

multiplied by the first term of the expansion of cf>m_r omitting the factor in p,

+ ( J grm-»'+1 multiplied by the second term of the expansion of <f>m-r+1

omitting the factor in p, + ... ( ) qm~r+s multiplied by the (s + l)th

term of the expansion of <f>m_r+s omitting the factor in p; hence in the notation
of (3)

*m,r = (7) r - ' ^ . o + ( f T j) r-r+1^-r+1,1 + ••• (7) r - ^ - M - !

(4).
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<lm> s 0 (4) enables us to calculate the A's, step by step. Thus:

(7) r-^-M
(m-2)

The values up to Am>6 a re :

( m-3 )

(m~5)

+ 120?4™-10);

1203m~12

- 9

300g-3m-8 + 180g3m-7 + 120?3™-6 + 360g4™

The fractional frequency, or probabili ty, t ha t , after a complete exposure,

out of m, r will be infected, mfr say, is merely Amr multiplied by pr.

Hence the respective / ' s can be computed. If m = r, (4) becomes

Am,m = 1 + (7) 8̂ 1.1 + (2) ?A^ + - in!! l)

and we can compute 4 l i l } ^2,2' e^c-> checking the previous calculation.
In actual practice, unless a table of/'s for different values of m and p has
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346 Statistical Measure of Infectiousness
been computed, the mean number of cases will be needed; it can be calculated
without using Amm. We see from (3) that the mean, which we may denote by
(f>m, IS

Am>1p + 2Am>ip
2 + . . . ,

from (2) we have

f OT = trip™-* + (m - 1) Q ^"-2#! +

Since <f>s = 1 for all values of s, the first line = m. Hence

(2 a).
Now if we write

$ » = Bm,mP™ + Bm,m_xP™^ + ... BnAp (3 a),

and equate coefficients as before between (2 a) and (3 a), we find that

Bm,r = (;) r-^-,o + ̂  : x) r-^_r+1>1 +... (7) r*Bw

(5)
of the same form as (4). In (4) Am0 = q™, in (5) Bml = m, giving

(7) (7) -1 (»» - 1), etc.
o_ BmiJ_m Bm>2_m- 1

w-r+ 1

Hence <£m = ^ 5 m j l +

= P fk Am, o + f1 -^s=r 4«.i» e t c -

These formulae enable us to solve the problem with semi-mechanical effort
in any case. Formulae expressed in terms of p and q are not, however, suitable
for use. In order to obtain a suitable value of q from the statistics, we require
to express the mean of the statistics as a function of the p and q and, that its
accuracy may be readily checked, it is better to reduce to terms of q (or p)
only. Evidently if the reduction is correct, the sum of the coefficients of
powers of q and the constant term must vanish, for if q = 1, the mean must be
zero. Similarly, the term free of q must be equal to m, for if p = 1, the mean
must be m. The values of the frequencies and the means for values of m from
2 to 5 are given below.
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m = 2.

/ , = 2?
2 (1 _ q).

f2 = 1 - 3?
2 + 2?3.

Mean = 2 - 4ga + 2f>.

w = 3.
/o = ?3-

/ 3 = 1 - 3j2 + 5 j 3 - 12?4 + 15g5 - 6?6.

Mean = 3 - 3q2 + 3q3 - 15?4 + 18?5 - 6g6.

m = 4.

/ l = 4<

/ . = 6<

A=i
Mean = 4

? 6 ( i -
?4(1 -
j r 2 ( l -

- 4 g - 2

-iq2

- 2g + j 3 + 2
- 3? + 6#2 -
+ 12?3 - 31

+ 12g3 - 4C

\q3 - iq* ^
T?3 +12?
j 4 + iOq5

lg4 + 52?5

- 10?6

- 2 4 g 6

f + 18?' -
- 56g>7 +

- 603
7 +

- 6qs).
lO8qa - 84

132qa - 96

q* + 2iqw.
;?9 + 24?

10.

m = 5.

/o = ?5-

/ 2 = 10j« (1 - 2q + q* + 23
4 - if + 2q%

f3 = IO34 (1 - 3g + 3?2 + 2?
3 - 6j4 + 6g6 + 3 ?

7 - I858 + 18?9 - 6?

/ 4 = 5g2 (1 - iq + lOq2 - Uq3 + 5q* + lGq5 - 32?
6 + 26?

7

- 20q» + 60q9 - 132?10 + 156?" - 96?
12 + 24?

13).
fs = 1 - 5q2 + 2Oqs - 60g4 + 9%5 - 65f - 80q7 + 205qs - 125q9

+ 2Oq10 - 29Ogu + 820?12 - 960^13 + 540?14 - 12Og-15.

Mean = 5 - 5q2 + 20q3 - 70g4 + I25q5 - 115qa - 6Og7 + 230^8 - 110g9

- 80q10 - 240?11 + 96Oq12 - 1140g13 + 600?14 - 120q15.

Table III. Frequencies of secondary cases of measles, compared with Chain
Binomials (bracketed figures).

0
1
2
3

0
1
2
3
4
5

197
104
57

60
29
25
11
7

m = 2
(198-3)
(101-4)

(58-3) P = 0-75
—

m = 4
(59-54)
(28-87)
(24-45)
(14-35)
(4-79) P = 0-61

—

120 (122-4)
93 (88-2)
86 (88-4) P = 0-58

—

—
—
—
—
—
—

84
60
57
27

25
15
9

10
1
1

TO=3
(89-7)
(52-7)
(54-4)
(31-2) P=0-36

TO = 5

(26-86)
(12-42)
(10-63)
(6-90)
(3-30)
(0-89) P=0-42

37
34
42
36

(40-8)
(27-9)
(42-7)
(37-6)
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The sixth column of Table II contains the values deduced on this hypo-

thesis ; they plainly agree much better with the observations than the binomial
terms.

Table IV.

No. of children under 10 years of age, not having had measles, exposed to infection from
a case in same house during 1926 epidemic (St Pancras)

H <8

3.8

•si

ho
i

0
1
2
3
4
5
6
7

Total

Total children
in above houses

No. of these
attacked

1

322
238
—
—
—
.
—
—
560

560

238

2

120
93
86
—
—

—
—
299

598

265

3

37
34
42
36
—
—
—
—
149

447

226

4

12
10
5
9
7

—
—
43

172

75

5

3
4
5
9
2
1
—
—
24

120

54

6

1

2
2
1
1
1
—
8

48

25

7

.

1
—.

2
1
2
6

42

32

Total

495
379
141
56
10
4
2
2

1089

1987

915

In Table III the comparison is extended to all values of m up to m = 5
and to two other sets of data, for the cases of m = 2 and m = 3 derived from
Table IV (also supplied by Dr Stocks) which relates to exposed to risk some-
what more stringently selected.

Not one of the six values of P (deduced by entering Elderton's table for
n' = the number of frequencies less one, since two degrees of freedom have
been absorbed) is less than 0-35, so that the agreement between fact and fancy
is statistically respectable. One might anticipate some improvement by drop-
ping the condition that p is constant throughout the chain, i.e. the condition
that the danger of a secondary case to the exposed to risk is as great as that
of a primary. This condition seems biologically improbable, for we should,
especially in view of Dr Stocks' recent work, expect the factor of latent im-
munisation to play some part. But unless m were larger than it is likely to be
in practice, it would be futile to seek to deduce a series of p's one for each
remove from the first link. The deduction of each new p would mean the ab-
sorption of one more degree of freedom, and we should tend to reach a meaning-
less, because compulsory, concordance between theory and observation.

I think, speaking as a biological statistician, that this arithmetical device
is as successful in describing the facts of measles transmission as we can
reasonably expect, and that its application to similar data of scarlet fever,
smallpox, diphtheria and whooping-cough would be illuminating. In scarlet
fever, one would expect a similar result but with p smaller. Perhaps the ratios
of the deduced p's might be an acceptable measure of the infectiousness of
scarlet fever in terms of the standard of measles.

In diphtheria the position is more complex, since the period of infectious-
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ness of each case (assuming, of course, that the patients are not removed from
contact with the exposed to risk) is not limited to a short period of time.
Under those circumstances the conception of a series of links in a chain is
inappropriate. We should, I think, need to return to the conception of a
continuous bombardment. As, however, I have no data, speculation is idle.
I confine myself to the present, very modest, contribution to the study of
infectiousness in diseases appertaining roughly to the measles class.

The arithmetical computation from the formulae given is not difficult.
The longest stage is the approximation to q, by the use, for instance, of
Newton's approximation. Actually putting qm =f0IF, where/0 is the frequency
of groups with no secondaries and F the total number of groups, gives a first
approximation close enough for one or two applications of the Newtonian
approximation to suffice.

Taking as an illustration the most difficult case, we have:

Cases
0
1
2
3
4
5

Frequency
25 (26-86)
15 (12-42)
9 (10-62)

10 (6-90)
1 (3-30)
1 (0-89)

61

The mean is 1-1803279, so that the equation for q is

- 6OO514 + lUOq13 - 960j12 + 240gn + 80qw + HOq9 - 230?8 + 60g-7

+ 115?6 - 125?5 + 70g4 - 20q3 + 5q2 - 3-8196721 = 0.
25/61 = 0-409836 must be approximately equal to qs and 0-836608 is

approximately equal to \IXo-4O9836. Hence 0-84 may be taken as a first
approximation to the value of q.

Substituting in the equation and in its first differential we have

f(x) = -0-0877237,

f'(x)= 10-102029,

giving / (x)/f (x) = - 0-0086838.

A second approximation is 0-84868, and proceeding as before we reach
0-84873 as a sufficiently near approximation for our purpose. Substituting this
value of q in the formulae, one reaches the values given in parentheses.

For purposes of rough estimation a table of values such as Table V will be
found useful. The intervals, however, are too large for it to be possible by
interpolation to reach accurate results. Thus, taking the example just worked
out, interpolating for the values of the mean by taking 0-5086 of the terms of
the series for q = 0-9 and 0-4914 times the values corresponding in the series
for q = 0-8, one reaches 28-1, 11-7, 9-5, 6-6, 3-8 and 1-3 which are not close
approximations to the correct values although, perhaps, sufficient for rough
estimations. Since, as already stated, I have no other data than those
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provided by Dr Stocks, which reach a respectable standard of accuracy, I can-
not myself test the value of the method on the findings in other diseases. But
a single, only half-serious experiment, is worth mentioning. Table VI is taken

Table V.
?= ...

f/o

Mean

f/o
) /m~ I/au

Mean

f/o
/ 1

1/4
Mean

(/o
/ l

1 f
™ Kt J27fl — O \ «

1 ft
\ fb

Mean

•1

•01
•018
•972

1-962

•001
•0003
•0248
•9739

2-9717

•0001
•0000
•0005
•0301
•9693

3-9685

•0000
•0000
•0000
•0007
•0343
•9649

4-9641

•2

•04
•064
•896

1-856

•008
•0038
•0829
•9052

2-8854

•0016
•0002
•0062
•0939
•8981

3-8866

•0003
•0000
•0004
•0084
•0999
•8910

4-8804

Households having cases
No. of households
No. of persons
Average no. ofpersons

•3
•09
•126
•784

1-694

•027
•0170
•1561
•7999

2-7289

•0081
•0020
•0251
•1686
•7961

3-7427

•0024
•0002
•0036
•0307
•1724
•7906

4-7422

1
234

.. 1083
per house 4-63

•4
•16
•192
•648

1-488

•064
•0461
•2281
•6618

2-4877

•0256
•0098
•0624
•2396
•6626

3-5037

•0102
•0020
•0155
•0707
•2410
•6606

4-5120

Table
2

101
513
5-01

•5
•25
•25
•50

1-25

•125
•0938
•2813
•5000

21563

•0625
•0313
•1172
•2891
•5000

3-1328

•0313
•0098
•0439
•1257
•2893
•5000

41321

VI.
3
57

326
5-72

•6
•36
•288
•352
•992

•216
•1555
•2972
•3313

1-7437

•1296
•0746
•1782
•2944
•3232

2-6069

•0778
•0336
•0940
•1829
•2915
•3203

3-5376

4
30

186
6-2

•7
•49
•294
•216
•726

•343
•2161
•2620
•1790

1-2769

•2401
•1412
•2186
•2385
•1616

1-9403

•1681
•0865
•1567
•2103
•2255
•1530

2-6975

5
12
78
6-5

•8
•64
•256
•104
•464

•512
•2458
•1751
•0671
•7974

•4096
•2097
•1990
•1315
•0502

1-2030

•3277
•1678
•1908
•1646
•1080
•0412

1-6811

6
4

32
8

7
2

19
9-5

•9
•81
•162
•028
•218

•729
•1968
•0637
•0105
•3557

•6561
•2126
•0968
•0297
•0049
•5147

•5905
•2152
•1229
•0527
•0161
•0026
•6966

Total
440

2237
—

from the Ministry of Health's Report on the Pandemic of Influenza, 1918-19.
I arbitrarily simplified the table and assumed that it referred to groups of
five in family and would thus read:

Secondary cases
0
1
2
3
4
5

No. of families
234
101
57
30
12
6

440

The mean is 0-87. Treated as a binomial with exponent 5 we should have
p = 0-174 and a = 0-826. This would yield as frequencies 169-2, 178-2, 75-1,
15-8, 1-7 and 0-1. Clearly preposterous values. The Poisson frequencies are
184-5, 160-2, 69-7, 20-3, 4-4 and 0-9 (grouping 5 and onwards), almost equally
preposterous. Interpolating for a "chain" we have 239-4, 91-0, 59-3, 31-9,
14-2, 4-1; a quite reasonable fit and, as we have seen, this is not the best fit
which we could obtain (the experiment is too trivial to justify the labour of
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careful fitting). One may say that the influenza of 1918-19 seems to have be-
haved rather like measles in its domestic evolution. However, the object of
this paper is to bring to the notice of others a method, not to discuss, without
data, epidemiological results.

To Dr Isserlis I owe not only the elegant demonstration quoted but helpful
criticism of the whole idea and Mr W. J. Martin has been indefatigable in
sparing me laborious arithmetic. To our valued colleague the late Mr H. E.
Soper, I owe the painless destruction of various other weakly dream children
brought to birth during this study and the encouragement that this brat might
be worth preservation.
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