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Abstract

In this paper the relations between semi-infinite programs and optimisation problems
with finitely many variables and constraints are reviewed. Two classes of convex semi-in-
finite programs are defined, one based on the fact that a convex set may be represented as
the intersection of closed halfspaces, while the other class is defined using the representa-
tion of the elements of a convex set as convex combinations of points and directions.
Extension to nonconvex problems is given. A common technique of solving a semi-infinite
program computationally is to derive necessary conditions for optimality in the form of a
nonlinear system of equations with finitely many equations and unknowns. In the
three-phase algorithm, this system is constructed from the optimal solution of a dis-
cretised version of the given semi-infinite program, i.e. a problem with finitely many
variables and constraints. The system is solved numerically, often by means of some
linearisation method. One option is to use a direct analog of the familiar SOLVER
method.

1. Introduction

Linear semi-infinite programs were originally defined by generalising linear
programs allowing either the number of constraints or the number of variables
(but not both) to become infinite. Consider namely:

PROGRAM(LP). Minimise

cTy, (la)
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121 Semi-infinite programs 159

over ally e R", subject to the constraints

ATy > b. (Ib)

Here c e R" and b e RN are fixed vectors and A a given n by N matrix.

For all values of N, (lb) defines a convex subset of RN (which could possibly
be empty) and the generalisation to infinitely many constraints (lb) appears
straight-forward. (See e.g. Glashoff-Gustafson, [4]). We consider now the dual of
the problem (1). (In the sequel we refer to a group of formulae whose members
are distinguished by letters, by giving the common element of the formula labels,
i.e. the number.)

PROGRAM(LD). Let A, b, c be as in (1). Maximise

bTx, (2a)

over all vectors x e RN, subject to the constraints

Ax = c, {2b)

x>0. (2c)

If Program(LD) has an optimal solution, then it has an optimal solution x with
at most n positive components x}_, /' = 1,. . . , q. Therefore we may reformulate
Program(LD) thus:

PROGRAM(LD), SECOND FORMULATION. Let A, b, c, n and N be as in

Program(LP). Determine an integer q, a subset {j\,---,jq} c { 1 , . . . , JV } and

reals xn,...,Xj such that the expression

E*A' (3a)
/•=i

is rendered a maximum, subject to the constraints

I *,.«,, = c, (3b)
i - i

xJt>0, i = \,...,q. (3c)

Here the columns of A are denoted ax,..., aN.
We note that Program(LD) is feasible, if c e R" can be written as a nonnega-

tive linear combination of the columns of A. If such a representation exists, then
it is easy to establish that q < n columns are needed in this representation,
independently of the value of TV, the total number of columns. This observation
paves the way for considering generalisations of Program(LD) to the case when
{l,...,N} is replaced by an infinite set.
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160 S.-A. Gustafson [31

Thus we get two classes of semi-infinite programs by generalising Program(LP)
and (LD). In the first class, the set of feasible vectors y G R" is represented as
the intersection of a collection of closed halfspaces, while in the second class the
given vector c G R" shall be written as a nonnegative linear combination of a
given set of vectors. Thus we need to establish that c is an element of a certain
convex set whose members are, in the sense of Rockafellar, [11], represented as
convex combinations of a given collection of points and directions. Among all
possible representations of c, one seeks the ones rendering the preference function
a maximum. We illustrate the procedure with

EXAMPLE 1. Minimise

yx + \y2, (4*)

over allyv y2 subject to the constraint

y1+y2s> A + s,se [0,1]. (4b)

The dual of this problem is (See Glashoff-Gustafson [4])
Maximise

(5a)

subject to the constraints:

£ x, = 1, (5b)

E*,*, = 1/4, (5c)

If we replace the interval [0,1] with a finite subset T = {sv..., sN} in (4b) and
(5d) then (4) and (5) define a dual pair of linear programs. In the semi-infinite
case we need to write (1, \)T as a nonnegative linear combination of the vectors
(1, s ) r and to determine an optimal representation. We find the optimal solutions
specified by q = 1, xy = 1, sx = \, yx = 0.45v/fT, y2 = 02^5 . We note in passing
that if the function / has two continuous derivatives in [0,1] then the relation
holds:

f f(s)\nl/sds =/(l/4) + ̂ / " ( O . 0 < £ < 1.

Thus the optimal solution of (5) defines a one-point generalised Gauss rule
corresponding to the weighting function ln(l/.y) on the interval [0,1], since the
mechanical quadrature rule

C f(s)\n\/sds=f(\/4),

is exact if / is a polynomial of degree less than 2, i.e. a linear function.
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Provided certain regularity assumptions are satisfied when generalising Pro-
grams(LP) and (LD), the resulting dual pair of semi-infinite programs preserves
many important properties of linear programs, such as complementary slackness.

The procedure outlined above may be applied to nonlinear convex programs.
Then the Wolfe dual plays the role of Program(LD). This is discussed in Section
2. However, the convexity assumption is not valid for many important tasks like
nonlinear approximation. Therefore, generalisation to nonconvex problems is
called for. Hence one arrives at nonconvex semi-infinite programs which have
been treated numerically with success. Thus problems in a fairly large and diverse
class can be referred to as "semi-infinite" programs. However, all of these
problems may be treated by means of computational schemes based on the
principles of the three-phase algorithm:
Phase 1: Determine an approximate solution by solving a discretised version of
the given problem.
Phase 2. Determine necessary conditions in the form of a (nonlinear) system of
equations.
Phase 3. Solve the nonlinear system of equations (numerically).

2. General semi-infinite programs

We start by considering the following convex optimisation problem:
PROGRAM(PCT). Let 5 be a compact subset of Rk, k < oo, / a convex

differentiable function on R". Let further g(y, s) be a function which is defined
and continuously differentiable for all s e S, y e R". For each fixed i G 5, / is
convex as a function of y. Finally let

r = {s, j j v j c s ,

be a given subset.
Determine

inif(y), (6a)

when y varies over R" subject to the constraints

)^0,s^T. (6b)

We formulate the Wolfe dual of Program(PCT) as follows. (See Fletcher, [3], p 69.)
PROGRAM(DCT). Let the notations and assumptions of Program(PCT) prevail.

Determine

N

max/(_y) + £ Xjg(y,Sj), (la)
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162 S.-A. Gustafson |5]

when y varies over R" and Xj are real numbers subject to the constraints:

T.xj8y(y,sj) = o, Ob)

Xj>0, j=l,...,N. (7c)

We next study the semi-infinite case and define:
P R O G R A M ( P C S ) . Replace Tin Program(PCT) with S.
P R O G R A M ( D C S ) . Let the assumptions and notations of Program(DCT) prevail*.

Determine an integer q, a subset {slt..., sq) c 5 and reals xu...,x such that the
expression

is rendered a maximum when y varies over R" and {s1,...,sq}, xx,...,xq are
subject to the constraints

fy(y)+Lx,gy(y,sl) = 0, (86)

1 = 1

x,>0, i=l,...,q. (8c)

The following result is well-known. (See e.g. Theorem 2 on p 145 in Gustafson
[7]-)

THEOREM 1. Let Program(Pcs) have an optimal solution y0 and assume also that
there is a vector h e R" such that

g(y,s) + hTgy{y,s) < 0, alls e Sfory = y0. (9)

If y is an optimal solution, then there are positive numbers x, and elements s, G S
such that

where the vectors gy(y, st), i = 1 , . . . , q are linearly independent,

g(y,si) = O,i = l,...,q, . (10b)

the function

A(s) = g(y,s) has a local maximum at s,. (10c)

Finally, Programs{Pcs) and (Dcs) have a joint optimal value.
The relations (10) are used to construct a nonlinear system of equations from

whose solutions y, q, sv ..., sq and x1,...,xq one may determine optimal solu-
tions to Programs(Pcs) and (Dc s) .

EXAMPLE 2. Minimise

yl + yh

https://doi.org/10.1017/S0334270000005270 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000005270


[61 Semi-infinite programs 163

subject to the constraints

es-yi-y2s<o, se [o,i]. ( i i)

The dual problem may be written:
Maximise

i

y\ + y? + L *,(«*' -yi - J W ) .
; = 1

subject to the constraints

Lx, = 2yi, (12a)

We observe that (11) is equivalent to the simpler conditions
es — yl - y2s < 0 for s = 0 and J = 1.

Therefore the primal is replaced with an equivalent optimisation problem involv-
ing just 2 linear constraints. We find the optimal solution

-Vi = yi = e/2-

Entering this into (12) we arrive at
q=\, sx = l, xx = e.

We next discuss the special case of linear semi-infinite programs. Specialising
Program(Pcs) we get

PROGRAM(PLS). Use the notations of Program(PLS) but put

f(y) = cTy,

g(y,s) = b(s) -a(s)Ty.
Here b is a real-valued function on S, a a vector-valued function on the same set and
c e R" a fixed vector.

The generalisation to nonconvex semi-infinite programs is straight-forward. We
introduce

PROGRAM(PS). Remove the convexity requirements in Program(Pcs).
Porgram(Ps) may have several (or none) local extrema. No duality equality can

be established but if condition (9) is satisfied, then (10) delivers necessary
conditions for optimality. Program(Dcs) may be substantially generalised to give
the task:

PROGRAM(I1S). Let S e Rk, k < oo be a compact set. Determine an integer q, a
subset {sx,..., s } c S, reals xx,..., xq and a vector y e R" in order to maximise
the expression

Z*My,s,), (13a)
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subject to the constraints

I (13b)

x,>0,i=l,...,q. (13c)

Here F,a,b,c are given continuously differentiable functions: F and c are defined on
R", a and b on S X R". Finally, F and b are real-valued while c and a take values
in R".

REMARK. Consider the special case when a, b, c, F all are independent of y.
Then (13b) and (13c) define a convex subset of R" whose elements are repre-
sented as convex combinations of points and directions in Rockafellar's terminol-
ogy-

3. Penalty functions. Lagrange multipliers

Consider Program(Ps). Put

m{y) = maxg(y,s).

Then Program(Ps) takes the form
Minimise f{ y)
over ally e R" subject to the constraint

m(y)^0.

Therefore a semi-infinite program may be cast into the form of a non-smooth
optimisation problem with a single constraint.

One may also introduce penalty functions. We discuss the two cases:
Minimise over ally e R"

f(y) + f max(0, g(y,s))w(s) ds,Js
w continuous and positive on S and

f(y) + M • max(0, m(y)). (14)

We illustrate the two choices with
EXAMPLE 3. Minimise

y\ •*• ^ 2 / 2 >

subject to the constraint

-s2-y1-y2s^0, 0 < J < 1 .

The problem
Minimise

y\ + 7 2 / 2 + M • f1 max(0, -s2 - yl - y2s) ds,

https://doi.org/10.1017/S0334270000005270 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000005270
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has the solution

But the problem

Minimise

yx +^2/2 + MmaxlO, max (-s2 — yl - y2s)j,

has for all M > 1 the solution

These results are verified by straight-forward calculations, observing that the
straight line y1 + y2s intersects the curve -s 2 at most twice.

THEOREM 2. Consider the convex problem Program{PCT). If M is chosen large
enough the penalty function given in (14) delivers an exact optimal solution,
provided the Wolfe dual, Program (DCT) has an optimal solution.

PROOF. (14) may be written

M • y0,
v.J'o

subject to the constraints

Its Wolfe dual reads
i

max f(y) + My0 - Xy0 + £ x,(g(y, s,) ~ y0), (15)

subject to

I,xigy(y,si)+fy(y) = 0,
1 - 1

A (16)

x > 0, / = \,...,q, X > 0.

After simplification (15) becomes
1

f(y)+ Lx,g(y,s,).
1 = 1

For M large enough, the constraint (16) will not be binding, giving the desired
conclusion. With the general problem Program(Ps) we may associate the
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Lagrangian function

L=f(y)+Zx,g(y,si).
/=i

When we seek its stationary values, we are led to the same nonlinear system as
before. Since the Lagrange multipliers occur in the solution of the dual program
they can sometimes be interpreted as weights of quadrature rules. This is
illustrated by Example 1, where only one multiplier occurred.

4. Discretisation. Stability

It is an essential prerequisite for successful numerical treatment that the problem
to be solved has a well-defined solution which can be represented in the
computer. We therefore introduce the so-called regularised problem:

PROGRAM(PR). Use the notations of Program(Ps). Lety0 be a real variable, MB

and MF given positive constants.
Determine

minf(y)+y0MF, (l7a)

subject to the constraints

g(y,s)-yo^O, s^S, {lib)

-y0 < o, (17c)

\yr\*MB, r=l,...,n. (lid)

REMARK. Let f and g in (17) also satsify the convexity requirements of
Program(Pcs). Then Program(PR) has an optimal solution with y0 = 0, ; / Pro-
gram (Pc s) and its dual have optimal solutions satisfying

h\L < MB, E x, < MF.
1 = 1

We note that the constraints in (17) are consistent also in a more general
context, since we may select an arbitrary j> e R" satisfying (17d) and then put

yo = maxg(y,s).

For the numerical treatment, we approximate Program(PR) with Program(PRT),
the task we get when S in (17b) is replaced by a finite subset T. The resulting
problem may be solved, e.g. by the SOLVER method described in Fletcher [2].

Using the fact that the solutions of Program(PRT) are constrained to a compact
subset of R" we may establish that the solutions of the discretised problem can be
made arbitrarily close to those of Program(PR), provided that the grid T is made
sufficiently "fine", as explained in Gustafson [6], [7]. The numerical stability
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[io I Semi-infinite programs 167

questions associated with linear semi-infinite programs are examined in Gustaf-
son [5]. We discuss here

EXAMPLE 4. Use the notations of Example 1 but replace in (4Z>) the interval [0,1]
by the discrete set with N + 1 points:

T= {0,l/N,2/N,...,!}.

The resulting discretised problem may be solved by means of linear program-
ming. To describe the result, we distinguish between the two cases (a) and (b)
below:

Case (a). \ belongs to the grid T. Then the dual has the optimal solution
q=\, *! = 1, Jj = 1/4.

(This result is independent of N as long as \ belongs to the grid.) Let now tx, t2

be the two gridpoints adjacent to \ and such that tl < \ < t2. Then yx, y2 define
an optimal solution, if and only if

/ (18a)

Thus the optimal solution is not unique.
Case (b). \ does not belong to the grid T. Let tx, t2 be the two adjacent

gridpoints satisfying tx < \ < t2. We find that the dual has the unique solution

q = 2, s1 = tl, s2 = t2,

x - 2 i x1 h h 2~
and the unique solution of the primal is defined by

yi + M = A + '<' ' = 1>2- (19)

We observe here the relation
x x + x2= 1 .

Further, (19) gives

yx = Jl + t2 - '2 (20a)
]jl + tx + / I + t2

y2=-==J—==. (20b)

To be able to compare (20) with (18), we observe that (18) is equivalent to the
three relations
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Hence we may conclude

1

Thus the solutions of the discretised primal problems converge towards that of
the corresponding continuous problem when the grid T is made finer, i. e. when
t1 and t2 approach \. In the dual problem, the integer q depends on TV and large
values of N do not imply the "correct" value q = 1. However,

xlSl + x2s2
4 '

and these relations hold for all n > 2, illustrating the clustering procedure given
on page 141 in Glashoff-Gustafson [4]. We discuss now the case when S is a real
interval and s1,...,sq are all in its interior. Then an optimal solution of (17)
satisfies, provided ^0 = 0 and that (17d) is not binding:

g(y,s,) = 0, i=l,...,q, (21a)

gs(y,s,) = 0, z = l , . . . , 4, (21b)

Lxlgy(y,s,)+fy(y) = 0. (21c)
/ = i

The optimal solution of the discretised version satisfies under the same assump-
tions:

g(y,c,) = 0, i=l,...,2q, (22a)

Here a,, / = 1, . . . , 2q belong to the subset T. We rewrite (22), putting a2, - a2<-i

= *,.

) = 0, (23a)

= 0, (lib)

L
(23c)

If now the grid T is fine, then the numbers h, become small and the system (23)
approaches (22), if we identify xt with £2/-i + £2,- Therefore the solution of the
discretised problem can be used for constructing an approximate solution of the
continuous program.
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We have not treated the general problem Program(ns). A discretisation would
imply that the infinite set S is replaced by a finite subset T resulting in a problem
with finitely many variables and constraints. A regularisation could be imposed
by constraining y to a bounded subset of R".
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