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Abstract

Let b(n) denote the number of {-regular partitions of n. In this paper we establish a formula for
b13(3n + 1) modulo 3 and use this to find exact criteria for the 3-divisibility of b;3(3n + 1) and b13(3n).
We also give analogous criteria for b7(3n) and b;(3n + 2).
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1. Introduction

A partition of n is a nonincreasing sequence of positive integers whose sum is n. As
usual we denote the number of partitions of n by p(n). Ramanujan proved that the
congruences

p(5n +4) =0 (mod 5),
p(Tn+5)=0 (mod 7)

and
p(1ln+6) =0 (mod 11)

hold for all nonnegative integers n, and Ahlgren and Ono demonstrated that for any
positive integer m coprime to 6, there exist infinitely many congruences of the form
p(An + B) =0 (mod m) [1, 3, 12].

For ¢ > 1, a partition is called ¢-regular if none of its parts is divisible by ¢; we
denote the number of {-regular partitions of n by b,(n). The generating function for
the {-regular partition function satisfies the identity

;bf(n)q" = lj(ll_—?;)' (1.1)

Many results on the arithmetic of b,(n) modulo m have been proven for various values
of £ and m (see, for example, [2, 5-8, 10, 14]). In [11] Lovejoy and the second author
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gave a formula for b3(n) modulo 9, and recently Webb [16] showed that b;3(n) satisfies
the following infinite family of congruences modulo 3.

Tueorem 1.1 [16]. Forall a,n > 0,

5.3a+1 -1

b13 (3“+2n + 3

) = 0 (mod 3).

In this paper we establish a formula for »13(3n + 1) modulo 3 in terms of the
prime factorisation of 2n + 1 (see Theorem 3.2) by relating the appropriate generating
function to a weight one Hecke eigenform arising from binary quadratic forms. This
formula yields the following criteria for the 3-divisibility of b13(3n + 1). (Here, for p
prime, ord,(m) denotes the largest integer ¢ such that p' | m.)

TueOREM 1.2. Let n be a nonnegative integer. Then bi3(3n + 1) = 0 (mod 3) if and only
if there is a prime p such that one of the following holds:

(1) p=2(mod3)and ord,(2n + 1) is odd;
(2) p=1(mod3), (p/13) = -1 and ord,(2n + 1) is odd;
(3) p=1(mod3), (p/13) =1 and ord,(2n + 1) = 2 (mod 3).

Theorem 1.2 implies the following families of congruences. In addition,
Theorem 1.1 follows from case (1) of Theorem 1.2.

Tueorem 1.3. Let p ¢ {2,3,13} be prime and 0 <B < p — 1 with3 # %(p - 1.
(1)  Suppose that p =2 (mod 3), or that p = 1 (mod 3) and (p/13) = —1. Then for all
a,n>0,
. (6ﬁ + 3)p20+1 -1
2
(2)  Suppose that p = 1 (mod 3) and (p/13) = 1. Then for all a,n > 0,

b13(3p2‘”2n ) =0 (mod 3).

L @B+3p -1
2

(3) Suppose thaty >0,y =1 (mod 3) and (2y + 1)/13) = —1. Then for all a,n > 0,

2y+1)-132 -1
+(7+ )2

Webb arrived at Theorem 1.1 by proving the modularity of the values of b3(3n + 1)
modulo 3. Here we show that the modularity of b;3(3n) modulo 3 can be established
in a similar way (see Theorem 4.1). We use this to demonstrate a connection between
these values and those of b13(3n + 1), which yields an analogue of Theorem 1.2 for
b13(3n) (see Theorem 4.3). Lastly, we show that similar phenomena hold for b;(n) (see
Theorem 5.1).

In Section 2 we give the necessary background on modular forms. We prove our
results for by3(n) in Sections 3 and 4, and those for b7(n) in Section 5.

b13(3p3“+3n ) = 0 (mod 3).

b13(3 139y )E 0 (mod 3).
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2. Modular forms

Given a Dirichlet character y modulo N and an integer k, denote by My(I'o(N), x)
the complex vector space of holomorphic modular forms on I'o(N) of weight k& and
character y. We will often identify a modular form f(z) € M(I'o(N), x) with its Fourier
expansion at infinity:

f@ = atmg" €Clql (q:= ™).
n=0
One can verify the congruence of a pair of modular forms modulo a prime p via a
theorem of Sturm. Given f(z) € Z[gll, we define ord,(f(z)) := min{n > 0 : p { a(n)}
provided this set is nonempty and write ord,(f(z)) = co otherwise. If g(z) € Z[¢] and
ord,(f(z) — g(z)) = co, we write f(z) = g(z) (mod p).

TueorREM 2.1 [15]. Suppose that f(2), g(z) € Mi(To(N), x) N Z[q] and

k
ord,(f(2) - g(2)) > E[SLz(Z) : To(N)],
where [SLy(Z) : To(N)] = N - [1a prime, aw(1 + d™"). Then f(z) = g(z) (mod p).
For a prime p the operator U, is defined by

F@1U, =) a(pn)q",
n=0
while the Hecke operator T, ,, of index p, weight k and character y acts via

(e8]

F@I Tpiy := Y (alpm) + x(p)p aln/ p))g’".

n=0
Recall that T, , preserves M;(I'o(N), ) and that the same holds for U, when p | N.
We will often abbreviate T, 4, by T),x or T.
We require Dedekind’s eta function

n@=q"*[ [0 - @.1)

n=1
Results of Gordon, Hughes, Newman and Ligozat (see [13, Theorems 1.64 and 1.65])
giving conditions under which an eta-quotient is a modular form will be used without

comment.
We will also employ twists of modular forms by Dirichlet characters.

ProposiTioN 2.2 [4]. Let f(2) = )~y a(n)q" € Mi(I'o(N), x), where x has conductor L,
and let  be a Dirichlet character modulo M. Then

f@® = ymang" € MUTo(N), x),
n=0

where N = lem(N, LM, M?).
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3. Proof of results for b13(3n + 1)

Denote by y, the character y,(e) = (d/e), and by xo, the principal character
modulo 7. In [16] Webb proved the existence of a modular form H(z) in the space
M5(To(156), x13) N ¢*Z[¢°] such that

H(z) = Z b13(3n + 1)g®*3 (mod 3).
n=0

Define the form H31(z) € M12(To(156), x13) by Hi3.1(2) := H(2) | Us. Then

Hiz1() = Y bisGn+ g (mod 3). (3.1)
n=0

ProposiTioN 3.1. Write Hj31(z) := X, c(n)q". Then for all odd primes p,
Hi3,1(2) | T, = c(p) - Hiz,1(2) (mod 3).
Proor. Suppose that Q(x,y) = ax’ + bxy + cy* € Z[x,y] is a positive definite binary
quadratic form of discriminant D < 0. For n > 0 let
r(Q,n) :=#{(x,y) € Z* : Q(x,y) = n},
and denote by 6, .(z) the function defined by

(o)

Oue(@) = ) H(Q.m)q".

n=0
It is well known that 6, .(z) € M1(Io(IDl), ¥p)- The set of reduced primitive positive
definite binary quadratic forms of discriminant —156 is
{(x* +39y%,3x% + 13y%, 5x% + 2xy + 8y?).
As this group is cyclic, by [9, Theorem 12],

1161,030(2) — 030,13(2) + i052,8(2) — i0528(2)] = 3[01,030(2) — 03,0,13(2)]

is a normalised eigenform for the Hecke operator T, ; for every odd prime p.
Define

7 (2)

E(z) = 1G32)

€ Mi(T'0(9), x-3).
Then
1[(01039(2) — 030,13(2)) ® X021 - EQ@)'" € M12(T(468), x13) N Zl[ g1l

and, on comparing their g-expansions out to their ¢'%® terms, Sturm’s theorem yields
that

11(01039(2) — 630,13(2)) ® X021 - E@)"" = Hi31(2) (mod 3). (3.2)

Recall that 7', and x> commute for odd primes p. Then, since E(z) = 1 (mod 3) and
f@ I Tpi24; = f@) 1 Tpiy s (mod 3) for all odd primes p and all f(z) € Z[g]], our
result follows. O
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We now prove an exact formula for b;3(3n + 1) modulo 3.

THEOREM 3.2. Let n be a nonnegative integer and write

m
2n+1= l_[pfi,
i=1

where pi, pa, ..., pm are distinct primes. For each 1 <i<m, let a; = (p;/3)(pi/13),
define B to be (=12 if (pi/3) = (pi/13) = —1 and 1 otherwise, set

AR

2 — (=D)%¢  otherwise

and define 6; to be (—1)% if p; is represented by 3x* + 13y? and 1 otherwise. Then

bisBn+ 1) = [ | Bvio: (mod 3).

i=1

Prookr. Note first that by (3.2),
c@n+1)=r(3x> + 13y%,2n + 1) — r(x* + 39y%, 2n + 1) (mod 3) (3.3)

for all n > 0. By classical results on quadratic forms, an odd prime p is represented by
a binary quadratic form of discriminant —156 if and only if p | =156 or (-156/p) =1,
and an odd prime p with 1 =(-156/p) = (p/3)(p/13) has four representations
by reduced forms of discriminant —156. As the forms x* + 39y? and 3x? + 13y?
(respectively 5x* + 2xy + 8y?) represent no integer congruent to 2 (respectively 1)
modulo 3, it follows that a prime p ¢ {2,3, 13} is represented by x> + 39y? or 3x* + 13y?
if and only if p = 1 (mod 3) and (p/13) = 1. Further, since 3 = 3 - (+1)> + 13- 0? and
13 =3-0%+ 13- (+1)?, we conclude by (3.3) that for an odd prime p,

2 (mod 3) if pe{3,13},
2 (mod 3) if p is represented by x* + 39y?,

c(p) = 34
() 1 (mod 3) if p ¢ {3, 13} is represented by 3x* + 13y? and S
0 (mod 3) if p =2 (mod 3), or p =1 (mod 3) and (p/13) = —1.

Moreover, Proposition 3.1 implies that

c(mn) = c(m)c(n) (mod 3) if (m,n) =1 3.5)
and

(P = e(p)eP) = x13(p) - p - (P (mod 3) (3.6)
for all k > 1 and all odd primes p. Recalling (3.1), our result now follows inductively
from (3.4), (3.5) and (3.6). O
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Proor oF THEorREM 1.2. Theorem 1.2 follows directly from Theorem 3.2. O

Proor oF THEOREM 1.3. We prove only part (3), as the other parts can be proven in a
similar fashion. Since 3 is a quadratic residue modulo 13, the conditions y = 1 (mod 3)
and ((2y + 1)/13) = —1 imply that

2y +1
ordp(13"(26n+ I ))

is odd for some odd prime p with (p/13) = —1. Our result now follows from cases (1)
and (2) of Theorem 1.2. O

4. Modularity of b13(3n) modulo 3
THEOREM 4.1. There exists a modular form Hi30(z) € Mao(T'o(468), y13) N Zllg]l such
that

Hi3o@) = Y bi3(Gn)g™! (mod 3). @.1)

n=0

Proor. For m € Z, define

fu@ =023 ).
One can check that f,(z) € M30(I'g(13), x13) for =2 < m < 33, and also that
A@ =030 @ =" - | [0 =40 = g7 € Mig@o(13),x13).
n=1

Let F(z) := fo(z) | Us. Then F(z) € M30(I'0(39), x13) and, since (1.1) and (2.1) give

fo) = (i bn(mq“”) : ﬁ(l -q"®,
n=0 n=1

we see that
F@ = (Y buGma") - [ ]a - ¢ mod 3). (42)
n=0 n=1

Upon checking that the two sides agree modulo 3 out to their ¢** terms, Sturm’s
theorem yields

33
F@) =A@ EQ"2+ ) enfu(2) (mod 3), 43)

m=-2

where €, = 1 form €{1,3,6,10,13,14,15,16,20}, ¢, =2 form € {-1,0,12,17,19, 21}
and ¢, = 0 otherwise. Note that by (4.2),

F(62)
4% 1, (1 = g%

D bisBr)g”! (mod 3). (4.4)
n=0

https://doi.org/10.1017/S0004972715001434 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972715001434

416 E. Boll and D. Penniston [7]

Next, letting
gm(2) ="' 2" (782" (62),
we find that g,,(z) € M»o(I'((468), x13) for —1 <m < 22 and

_ 133-6m = 78n\41-2m 6n\2m—1 _ Sm(62)
gn(@) = g [ [ - g2 - gyt = A a g @9

n=1

Moreover, note that

A(62) 1 A -¢"" "6

=q- = € Mg(T'(468), . 4.6

4% 11, (1 — g7y q g (=g _ (182 8(l'0(468), x13). (4.6)
Thus,

17 22
n'(62) 12
= : E ms&m
Hisold) = gy E@+ 2, engn®
lies in M5y(I'9(468), x13), and our result follows from (4.3)—(4.6). O

CoroLLARY 4.2. For every n > 0,
b13(3n) = b13(9n + 1) (mod 3).
Proor. Note that H31(2) ® yo3 € M12(T0(468), x13). Then

(H13.1(2) ® x0.3) - E@2)® € Map(To(468), x13) N ZI[q]l

and one can check that this form and #3 o(z) are congruent modulo 3 out to their ¢'%%°

terms. Then Sturm’s theorem, (3.1) and (4.1) yield

DbiaGmg™ = > bisGn+ D! (mod 3),
=0 n#l ’Z;%d 3)
and our result immediately follows. O

Combining Corollary 4.2 and Theorem 1.2 gives the following criteria for the
3-divisibility of by3(3n).

THEOREM 4.3. Let n be a nonnegative integer. Then b13(3n) = 0 (mod 3) if and only if
there is a prime p such that one of the following holds:

(1)  p=2(mod 3) and ord,(6n + 1) is odd;
(2) p=1(mod3), (p/13) =1 and ord,(6n + 1) is odd;
(3) p=1(mod3), (p/13) =1 and ord,(6n + 1) = 2 (mod 3).
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5. 3-divisibility results for b7(n)

In this section we establish results on the 3-divisibility of b7(n) analogous to
those we have proven for bi3(n). For brevity we will not state the analogues of
Proposition 3.1 and Theorem 3.2.

THeEOREM 5.1. Let n be a nonnegative integer. Then b7(3n) = 0 (mod 3) if and only if
there is a prime p such that one of the following holds:

(1)  p=2(mod 3) and ord,(12n + 1) is odd;

(2) p=1(mod3), (7/p)=-1andord,(12n + 1) is odd;

(3) p=1(mod3), (7/p)=1and ord,(12n + 1) = 2 (mod 3).

Moreover, b7(3n + 2) = 0 (mod 3) if and only if there is a prime p such that one of the
following holds:

(4) p=2(mod3)and ord,(4n + 3) is odd;

(5) p=1(mod3), (7/p) = -1 and ord,(4n + 3) is odd;

(6) p=1(mod3), (7/p)=1and ord,(4n + 3) = 2 (mod 3).

Proor. As in our proof of Theorem 4.1, one can show that the modular forms

6
Ho0(2) 1= D ' " (842" (122) € Mio(To(1008), x7) N ZI[q]

m=0
and
10
Hia(2) = D A’ " (842 (122) € Mis(To(336), x7) N Zlq]
m=—1
satisfy
Hyo(2) = D by(3n)g""*! (mod 3)
n=0
and
H2(2) = ) br(3n +2)g'*"* (mod 3),
n=0
where
(10> s 12, 13, pas Hiss pe) = (1,2,2,2,2,2, 1)
and
(ﬂ'_l’ /109 MR ﬂlo) = (19 29 1’ 1’ 2’ l’ 2’ 1’ 2’ 2’ 1’ 2)'
The group

(x + 84y?, 3x% + 28y%, 4x? + 21y%, 7x% + 12y%, 5x% + 2xy + 17y%, 8x% + 4xy + 11y%}
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of reduced primitive positive definite binary quadratic forms of discriminant —336 is
isomorphic to Z, ® Z4. As above, for every odd prime p,

3101,0.84(2) + 030,28(2) — 64,021(2) — 67,0,12(2)]

is a normalised eigenform for the Hecke operator T, ;. Note that for any odd prime

p, (=336/p) = (p/3)(7/p). Then, since the forms x> + 84y?, 3x> + 28y?, 4x> + 21y?

and 7x> + 12y* (respectively 5x* + 2xy + 17y? and 8x? + 4xy + 11y?) represent no

integer congruent to 2 (respectively 1) modulo 3, it follows that a prime p ¢ {2, 3,7} is

represented by one of the first four forms if and only if p = 1 (mod 3) and (7/p) = 1.
Finally, on verifying that the forms

1[61.084(2) + 03028(2) — 04021 (2) — 670,12(2)] - E(2)"

and
Hr0(E@)® — Hi2(2) — (H12(2) | Us)

lying in M 3(T'9(1008), x7) are congruent modulo 3, by similar arguments as in our
proofs of Proposition 3.1 and Theorem 3.2, our result follows. O
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