Bull. Aust. Math. Soc. **93** (2016), 410–419 doi:10.1017/S0004972715001434

THE 7-REGULAR AND 13-REGULAR PARTITION FUNCTIONS MODULO 3

ERIC BOLL[™] and DAVID PENNISTON

(Received 1 August 2015; accepted 17 October 2015; first published online 11 January 2016)

Abstract

Let $b_{\ell}(n)$ denote the number of ℓ -regular partitions of n. In this paper we establish a formula for $b_{13}(3n + 1)$ modulo 3 and use this to find exact criteria for the 3-divisibility of $b_{13}(3n + 1)$ and $b_{13}(3n)$. We also give analogous criteria for $b_7(3n)$ and $b_7(3n + 2)$.

2010 Mathematics subject classification: primary 11P83. Keywords and phrases: partitions, congruences, modular forms.

1. Introduction

A *partition* of *n* is a nonincreasing sequence of positive integers whose sum is *n*. As usual we denote the number of partitions of *n* by p(n). Ramanujan proved that the congruences

$$p(5n+4) \equiv 0 \pmod{5},$$
$$p(7n+5) \equiv 0 \pmod{7}$$

and

$$p(11n+6) \equiv 0 \pmod{11}$$

hold for all nonnegative integers *n*, and Ahlgren and Ono demonstrated that for any positive integer *m* coprime to 6, there exist infinitely many congruences of the form $p(An + B) \equiv 0 \pmod{m} [1, 3, 12]$.

For $\ell > 1$, a partition is called ℓ -regular if none of its parts is divisible by ℓ ; we denote the number of ℓ -regular partitions of n by $b_{\ell}(n)$. The generating function for the ℓ -regular partition function satisfies the identity

$$\sum_{n=0}^{\infty} b_{\ell}(n)q^n = \prod_{n=1}^{\infty} \left(\frac{1-q^{\ell n}}{1-q^n}\right).$$
(1.1)

Many results on the arithmetic of $b_{\ell}(n)$ modulo *m* have been proven for various values of ℓ and *m* (see, for example, [2, 5–8, 10, 14]). In [11] Lovejoy and the second author

^{© 2016} Australian Mathematical Publishing Association Inc. 0004-9727/2016 \$16.00

gave a formula for $b_3(n)$ modulo 9, and recently Webb [16] showed that $b_{13}(n)$ satisfies the following infinite family of congruences modulo 3.

THEOREM 1.1 [16]. For all $\alpha, n \ge 0$,

$$b_{13}\left(3^{\alpha+2}n+\frac{5\cdot 3^{\alpha+1}-1}{2}\right) \equiv 0 \pmod{3}.$$

In this paper we establish a formula for $b_{13}(3n + 1)$ modulo 3 in terms of the prime factorisation of 2n + 1 (see Theorem 3.2) by relating the appropriate generating function to a weight one Hecke eigenform arising from binary quadratic forms. This formula yields the following criteria for the 3-divisibility of $b_{13}(3n + 1)$. (Here, for *p* prime, $\operatorname{ord}_p(m)$ denotes the largest integer *t* such that $p^t \mid m$.)

THEOREM 1.2. Let *n* be a nonnegative integer. Then $b_{13}(3n + 1) \equiv 0 \pmod{3}$ if and only if there is a prime *p* such that one of the following holds:

- (1) $p \equiv 2 \pmod{3}$ and $\operatorname{ord}_p(2n+1)$ is odd;
- (2) $p \equiv 1 \pmod{3}, (p/13) = -1 \text{ and } \operatorname{ord}_p(2n+1) \text{ is odd};$
- (3) $p \equiv 1 \pmod{3}, (p/13) = 1 \text{ and } \operatorname{ord}_p(2n+1) \equiv 2 \pmod{3}.$

Theorem 1.2 implies the following families of congruences. In addition, Theorem 1.1 follows from case (1) of Theorem 1.2.

THEOREM 1.3. Let $p \notin \{2, 3, 13\}$ be prime and $0 \le \beta \le p - 1$ with $\beta \ne \frac{1}{2}(p - 1)$.

(1) Suppose that $p \equiv 2 \pmod{3}$, or that $p \equiv 1 \pmod{3}$ and (p/13) = -1. Then for all $\alpha, n \ge 0$,

$$b_{13}\left(3p^{2\alpha+2}n + \frac{(6\beta+3)p^{2\alpha+1}-1}{2}\right) \equiv 0 \pmod{3}.$$

(2) Suppose that $p \equiv 1 \pmod{3}$ and (p/13) = 1. Then for all $\alpha, n \ge 0$,

$$b_{13}\left(3p^{3\alpha+3}n + \frac{(6\beta+3)p^{3\alpha+2} - 1}{2}\right) \equiv 0 \pmod{3}.$$

(3) Suppose that $\gamma \ge 0$, $\gamma \equiv 1 \pmod{3}$ and $((2\gamma + 1)/13) = -1$. Then for all $\alpha, n \ge 0$,

$$b_{13}\left(3 \cdot 13^{\alpha+1}n + \frac{(2\gamma+1) \cdot 13^{\alpha} - 1}{2}\right) \equiv 0 \pmod{3}.$$

Webb arrived at Theorem 1.1 by proving the modularity of the values of $b_{13}(3n + 1)$ modulo 3. Here we show that the modularity of $b_{13}(3n)$ modulo 3 can be established in a similar way (see Theorem 4.1). We use this to demonstrate a connection between these values and those of $b_{13}(3n + 1)$, which yields an analogue of Theorem 1.2 for $b_{13}(3n)$ (see Theorem 4.3). Lastly, we show that similar phenomena hold for $b_7(n)$ (see Theorem 5.1).

In Section 2 we give the necessary background on modular forms. We prove our results for $b_{13}(n)$ in Sections 3 and 4, and those for $b_7(n)$ in Section 5.

2. Modular forms

Given a Dirichlet character χ modulo N and an integer k, denote by $M_k(\Gamma_0(N), \chi)$ the complex vector space of holomorphic modular forms on $\Gamma_0(N)$ of weight k and character χ . We will often identify a modular form $f(z) \in M_k(\Gamma_0(N), \chi)$ with its Fourier expansion at infinity:

$$f(z) = \sum_{n=0}^{\infty} a(n)q^n \in \mathbb{C}[\![q]\!] \quad (q := e^{2\pi i z}).$$

One can verify the congruence of a pair of modular forms modulo a prime p via a theorem of Sturm. Given $f(z) \in \mathbb{Z}[\![q]\!]$, we define $\operatorname{ord}_p(f(z)) := \min\{n \ge 0 : p \nmid a(n)\}$ provided this set is nonempty and write $\operatorname{ord}_p(f(z)) = \infty$ otherwise. If $g(z) \in \mathbb{Z}[\![q]\!]$ and $\operatorname{ord}_p(f(z) - g(z)) = \infty$, we write $f(z) \equiv g(z) \pmod{p}$.

THEOREM 2.1 [15]. Suppose that $f(z), g(z) \in M_k(\Gamma_0(N), \chi) \cap \mathbb{Z}[\![q]\!]$ and

$$\operatorname{ord}_{p}(f(z) - g(z)) > \frac{k}{12} [SL_{2}(\mathbb{Z}) : \Gamma_{0}(N)],$$

where $[SL_2(\mathbb{Z}) : \Gamma_0(N)] = N \cdot \prod_{d \text{ prime, } d|N} (1 + d^{-1})$. Then $f(z) \equiv g(z) \pmod{p}$.

For a prime p the operator U_p is defined by

$$f(z) \mid U_p := \sum_{n=0}^{\infty} a(pn)q^n,$$

while the Hecke operator $T_{p,k,\chi}$ of index p, weight k and character χ acts via

$$f(z) \mid T_{p,k,\chi} := \sum_{n=0}^{\infty} (a(pn) + \chi(p)p^{k-1}a(n/p))q^n.$$

Recall that $T_{p,k,\chi}$ preserves $M_k(\Gamma_0(N),\chi)$ and that the same holds for U_p when $p \mid N$. We will often abbreviate $T_{p,k,\chi}$ by $T_{p,k}$ or T_p .

We require Dedekind's eta function

$$\eta(z) = q^{1/24} \prod_{n=1}^{\infty} (1 - q^n).$$
(2.1)

Results of Gordon, Hughes, Newman and Ligozat (see [13, Theorems 1.64 and 1.65]) giving conditions under which an eta-quotient is a modular form will be used without comment.

We will also employ twists of modular forms by Dirichlet characters.

PROPOSITION 2.2 [4]. Let $f(z) = \sum_{n=0}^{\infty} a(n)q^n \in M_k(\Gamma_0(N), \chi)$, where χ has conductor L, and let ψ be a Dirichlet character modulo M. Then

$$f(z) \otimes \psi := \sum_{n=0}^{\infty} \psi(n) a(n) q^n \in M_k(\Gamma_0(\tilde{N}), \chi \psi^2),$$

where $\tilde{N} = \operatorname{lcm}(N, LM, M^2)$.

3. Proof of results for $b_{13}(3n + 1)$

Denote by χ_d the character $\chi_d(\bullet) = (d/\bullet)$, and by $\chi_{0,n}$ the principal character modulo *n*. In [16] Webb proved the existence of a modular form H(z) in the space $M_{12}(\Gamma_0(156), \chi_{13}) \cap q^3 \mathbb{Z}[[q^6]]$ such that

$$H(z) \equiv \sum_{n=0}^{\infty} b_{13}(3n+1)q^{6n+3} \pmod{3}.$$

Define the form $\mathcal{H}_{13,1}(z) \in M_{12}(\Gamma_0(156), \chi_{13})$ by $\mathcal{H}_{13,1}(z) := H(z) | U_3$. Then

$$\mathcal{H}_{13,1}(z) \equiv \sum_{n=0}^{\infty} b_{13}(3n+1)q^{2n+1} \pmod{3}.$$
(3.1)

PROPOSITION 3.1. Write $\mathcal{H}_{13,1}(z) := \sum_{n=1}^{\infty} c(n)q^n$. Then for all odd primes p,

$$\mathcal{H}_{13,1}(z) \mid T_p \equiv c(p) \cdot \mathcal{H}_{13,1}(z) \pmod{3}.$$

PROOF. Suppose that $Q(x, y) = ax^2 + bxy + cy^2 \in \mathbb{Z}[x, y]$ is a positive definite binary quadratic form of discriminant D < 0. For $n \ge 0$ let

$$r(Q, n) := \#\{(x, y) \in \mathbb{Z}^2 : Q(x, y) = n\},\$$

and denote by $\theta_{a,b,c}(z)$ the function defined by

$$\theta_{a,b,c}(z) := \sum_{n=0}^{\infty} r(Q,n)q^n.$$

It is well known that $\theta_{a,b,c}(z) \in M_1(\Gamma_0(|D|), \chi_D)$. The set of reduced primitive positive definite binary quadratic forms of discriminant –156 is

$${x^2 + 39y^2, 3x^2 + 13y^2, 5x^2 \pm 2xy + 8y^2}.$$

As this group is cyclic, by [9, Theorem 12],

$$\frac{1}{2}[\theta_{1,0,39}(z) - \theta_{3,0,13}(z) + i\theta_{5,2,8}(z) - i\theta_{5,-2,8}(z)] = \frac{1}{2}[\theta_{1,0,39}(z) - \theta_{3,0,13}(z)]$$

is a normalised eigenform for the Hecke operator $T_{p,1}$ for every odd prime p.

Define

$$E(z) := \frac{\eta^3(z)}{\eta(3z)} \in M_1(\Gamma_0(9), \chi_{-3}).$$

Then

$$\frac{1}{2}[(\theta_{1,0,39}(z) - \theta_{3,0,13}(z)) \otimes \chi_{0,2}] \cdot E(z)^{11} \in M_{12}(\Gamma_0(468), \chi_{13}) \cap \mathbb{Z}[\![q]\!]$$

and, on comparing their q-expansions out to their q^{1008} terms, Sturm's theorem yields that

$$\frac{1}{2}[(\theta_{1,0,39}(z) - \theta_{3,0,13}(z)) \otimes \chi_{0,2}] \cdot E(z)^{11} \equiv \mathcal{H}_{13,1}(z) \pmod{3}.$$
(3.2)

Recall that T_p and $\chi_{0,2}$ commute for odd primes p. Then, since $E(z) \equiv 1 \pmod{3}$ and $f(z) \mid T_{p,12,\chi_{13}} \equiv f(z) \mid T_{p,1,\chi_{-156}} \pmod{3}$ for all odd primes p and all $f(z) \in \mathbb{Z}[\![q]\!]$, our result follows.

We now prove an exact formula for $b_{13}(3n + 1)$ modulo 3.

THEOREM 3.2. Let *n* be a nonnegative integer and write

$$2n+1=\prod_{i=1}^m p_i^{e_i},$$

where p_1, p_2, \ldots, p_m are distinct primes. For each $1 \le i \le m$, let $\alpha_i = (p_i/3)(p_i/13)$, define β_i to be $(-1)^{\lfloor e_i/2 \rfloor}$ if $(p_i/3) = (p_i/13) = -1$ and 1 otherwise, set

$$\gamma_i = \begin{cases} e_i + 1 & if\left(\frac{p_i}{3}\right) = \left(\frac{p_i}{13}\right) = 1, \\ 2 - (-1)^{\alpha_i e_i} & otherwise \end{cases}$$

and define δ_i to be $(-1)^{e_i}$ if p_i is represented by $3x^2 + 13y^2$ and 1 otherwise. Then

$$b_{13}(3n+1) \equiv \prod_{i=1}^{m} \beta_i \gamma_i \delta_i \pmod{3}.$$

PROOF. Note first that by (3.2),

$$c(2n+1) \equiv r(3x^2 + 13y^2, 2n+1) - r(x^2 + 39y^2, 2n+1) \pmod{3}$$
(3.3)

for all $n \ge 0$. By classical results on quadratic forms, an odd prime p is represented by a binary quadratic form of discriminant -156 if and only if $p \mid -156$ or (-156/p) = 1, and an odd prime p with 1 = (-156/p) = (p/3)(p/13) has four representations by reduced forms of discriminant -156. As the forms $x^2 + 39y^2$ and $3x^2 + 13y^2$ (respectively $5x^2 \pm 2xy + 8y^2$) represent no integer congruent to 2 (respectively 1) modulo 3, it follows that a prime $p \notin \{2, 3, 13\}$ is represented by $x^2 + 39y^2$ or $3x^2 + 13y^2$ if and only if $p \equiv 1 \pmod{3}$ and (p/13) = 1. Further, since $3 = 3 \cdot (\pm 1)^2 + 13 \cdot 0^2$ and $13 = 3 \cdot 0^2 + 13 \cdot (\pm 1)^2$, we conclude by (3.3) that for an odd prime p,

$$c(p) \equiv \begin{cases} 2 \pmod{3} & \text{if } p \in \{3, 13\}, \\ 2 \pmod{3} & \text{if } p \text{ is represented by } x^2 + 39y^2, \\ 1 \pmod{3} & \text{if } p \notin \{3, 13\} \text{ is represented by } 3x^2 + 13y^2 \text{ and} \\ 0 \pmod{3} & \text{if } p \equiv 2 \pmod{3}, \text{ or } p \equiv 1 \pmod{3} \text{ and } (p/13) = -1. \end{cases}$$
(3.4)

Moreover, Proposition 3.1 implies that

$$c(mn) \equiv c(m)c(n) \pmod{3} \quad \text{if } (m,n) = 1 \tag{3.5}$$

and

$$c(p^{k+1}) \equiv c(p)c(p^k) - \chi_{13}(p) \cdot p \cdot c(p^{k-1}) \pmod{3}$$
(3.6)

for all $k \ge 1$ and all odd primes *p*. Recalling (3.1), our result now follows inductively from (3.4), (3.5) and (3.6).

PROOF OF THEOREM 1.2. Theorem 1.2 follows directly from Theorem 3.2.

PROOF OF THEOREM 1.3. We prove only part (3), as the other parts can be proven in a similar fashion. Since 3 is a quadratic residue modulo 13, the conditions $\gamma \equiv 1 \pmod{3}$ and $((2\gamma + 1)/13) = -1$ imply that

$$\operatorname{ord}_p\left(13^{\alpha}\left(26n+\frac{2\gamma+1}{3}\right)\right)$$

is odd for some odd prime p with (p/13) = -1. Our result now follows from cases (1) and (2) of Theorem 1.2.

4. Modularity of $b_{13}(3n)$ modulo 3

THEOREM 4.1. There exists a modular form $\mathcal{H}_{13,0}(z) \in M_{20}(\Gamma_0(468), \chi_{13}) \cap \mathbb{Z}[\![q]\!]$ such that

$$\mathcal{H}_{13,0}(z) \equiv \sum_{n=0}^{\infty} b_{13}(3n)q^{6n+1} \pmod{3}.$$
(4.1)

PROOF. For $m \in \mathbb{Z}$, define

$$f_m(z) := \eta^{61-2m}(13z)\eta^{2m-1}(z).$$

One can check that $f_m(z) \in M_{30}(\Gamma_0(13), \chi_{13})$ for $-2 \le m \le 33$, and also that

$$A(z) := \eta^{19} (13z) \eta^{17}(z) = q^{11} \cdot \prod_{n=1}^{\infty} (1 - q^{13n})^{19} (1 - q^n)^{17} \in M_{18}(\Gamma_0(13), \chi_{13}).$$

Let $F(z) := f_0(z) | U_3$. Then $F(z) \in M_{30}(\Gamma_0(39), \chi_{13})$ and, since (1.1) and (2.1) give

$$f_0(z) = \left(\sum_{n=0}^{\infty} b_{13}(n)q^{n+33}\right) \cdot \prod_{n=1}^{\infty} (1-q^{13n})^{60},$$

we see that

$$F(z) \equiv \left(\sum_{n=0}^{\infty} b_{13}(3n)q^{n+11}\right) \cdot \prod_{n=1}^{\infty} (1-q^{13n})^{20} \pmod{3}.$$
 (4.2)

Upon checking that the two sides agree modulo 3 out to their q^{420} terms, Sturm's theorem yields

$$F(z) \equiv A(z) \cdot E(z)^{12} + \sum_{m=-2}^{33} \epsilon_m f_m(z) \pmod{3},$$
(4.3)

where $\epsilon_m = 1$ for $m \in \{1, 3, 6, 10, 13, 14, 15, 16, 20\}$, $\epsilon_m = 2$ for $m \in \{-1, 0, 12, 17, 19, 21\}$ and $\epsilon_m = 0$ otherwise. Note that by (4.2),

$$\frac{F(6z)}{q^{65} \cdot \prod_{n=1}^{\infty} (1 - q^{78n})^{20}} \equiv \sum_{n=0}^{\infty} b_{13}(3n)q^{6n+1} \pmod{3}.$$
(4.4)

Next, letting

$$g_m(z) := \eta^{41-2m}(78z)\eta^{2m-1}(6z),$$

we find that $g_m(z) \in M_{20}(\Gamma_0(468), \chi_{13})$ for $-1 \le m \le 22$ and

$$g_m(z) = q^{133-6m} \cdot \prod_{n=1}^{\infty} (1 - q^{78n})^{41-2m} (1 - q^{6n})^{2m-1} = \frac{f_m(6z)}{q^{65} \cdot \prod_{n=1}^{\infty} (1 - q^{78n})^{20}}.$$
 (4.5)

Moreover, note that

$$\frac{A(6z)}{q^{65} \cdot \prod_{n=1}^{\infty} (1 - q^{78n})^{20}} = q \cdot \prod_{n=1}^{\infty} \frac{(1 - q^{6n})^{17}}{(1 - q^{78n})} = \frac{\eta^{17}(6z)}{\eta(78z)} \in M_8(\Gamma_0(468), \chi_{13}).$$
(4.6)

Thus,

$$\mathcal{H}_{13,0}(z) := \frac{\eta^{17}(6z)}{\eta(78z)} \cdot E(z)^{12} + \sum_{m=-1}^{22} \epsilon_m g_m(z)$$

lies in $M_{20}(\Gamma_0(468), \chi_{13})$, and our result follows from (4.3)–(4.6).

COROLLARY 4.2. For every $n \ge 0$,

$$b_{13}(3n) \equiv b_{13}(9n+1) \pmod{3}.$$

PROOF. Note that $\mathcal{H}_{13,1}(z) \otimes \chi_{0,3} \in M_{12}(\Gamma_0(468), \chi_{13})$. Then

$$(\mathcal{H}_{13,1}(z) \otimes \chi_{0,3}) \cdot E(z)^8 \in M_{20}(\Gamma_0(468), \chi_{13}) \cap \mathbb{Z}[\![q]\!]$$

and one can check that this form and $\mathcal{H}_{13,0}(z)$ are congruent modulo 3 out to their q^{1680} terms. Then Sturm's theorem, (3.1) and (4.1) yield

$$\sum_{n=0}^{\infty} b_{13}(3n)q^{6n+1} \equiv \sum_{\substack{n=0\\n\not\equiv 1 \pmod{3}}}^{\infty} b_{13}(3n+1)q^{2n+1} \pmod{3},$$

and our result immediately follows.

Combining Corollary 4.2 and Theorem 1.2 gives the following criteria for the 3-divisibility of $b_{13}(3n)$.

THEOREM 4.3. Let *n* be a nonnegative integer. Then $b_{13}(3n) \equiv 0 \pmod{3}$ if and only if there is a prime *p* such that one of the following holds:

(1) $p \equiv 2 \pmod{3}$ and $\operatorname{ord}_{p}(6n + 1)$ is odd;

(2)
$$p \equiv 1 \pmod{3}, (p/13) = -1 \text{ and } \operatorname{ord}_p(6n + 1) \text{ is odd};$$

(3) $p \equiv 1 \pmod{3}, (p/13) = 1 \text{ and } \operatorname{ord}_p(6n + 1) \equiv 2 \pmod{3}.$

416

5. 3-divisibility results for $b_7(n)$

In this section we establish results on the 3-divisibility of $b_7(n)$ analogous to those we have proven for $b_{13}(n)$. For brevity we will not state the analogues of Proposition 3.1 and Theorem 3.2.

THEOREM 5.1. Let *n* be a nonnegative integer. Then $b_7(3n) \equiv 0 \pmod{3}$ if and only if there is a prime *p* such that one of the following holds:

(1) $p \equiv 2 \pmod{3}$ and $\operatorname{ord}_p(12n+1)$ is odd;

(2) $p \equiv 1 \pmod{3}, (7/p) = -1 \text{ and } \operatorname{ord}_p(12n + 1) \text{ is odd};$

(3) $p \equiv 1 \pmod{3}, (7/p) = 1 \text{ and } \operatorname{ord}_p(12n + 1) \equiv 2 \pmod{3}.$

Moreover, $b_7(3n + 2) \equiv 0 \pmod{3}$ *if and only if there is a prime p such that one of the following holds:*

- (4) $p \equiv 2 \pmod{3}$ and $\operatorname{ord}_p(4n+3)$ is odd;
- (5) $p \equiv 1 \pmod{3}, (7/p) = -1 \text{ and } \operatorname{ord}_p(4n+3) \text{ is odd};$
- (6) $p \equiv 1 \pmod{3}, (7/p) = 1 \text{ and } \operatorname{ord}_p(4n + 3) \equiv 2 \pmod{3}.$

PROOF. As in our proof of Theorem 4.1, one can show that the modular forms

$$\mathcal{H}_{7,0}(z) := \sum_{m=0}^{6} \mu_m \eta^{21-4m}(84z) \eta^{4m-1}(12z) \in M_{10}(\Gamma_0(1008), \chi_7) \cap \mathbb{Z}\llbracket q \rrbracket$$

and

$$\mathcal{H}_{7,2}(z) := \sum_{m=-1}^{10} \lambda_m \eta^{37-4m}(84z) \eta^{4m-1}(12z) \in M_{18}(\Gamma_0(336), \chi_7) \cap \mathbb{Z}[\![q]\!]$$

satisfy

$$\mathcal{H}_{7,0}(z) \equiv \sum_{n=0}^{\infty} b_7(3n) q^{12n+1} \pmod{3}$$

and

$$\mathcal{H}_{7,2}(z) \equiv \sum_{n=0}^{\infty} b_7(3n+2)q^{12n+9} \pmod{3},$$

where

$$(\mu_0, \mu_1, \mu_2, \mu_3, \mu_4, \mu_5, \mu_6) = (1, 2, 2, 2, 2, 2, 1)$$

and

$$(\lambda_{-1}, \lambda_0, \dots, \lambda_{10}) = (1, 2, 1, 1, 2, 1, 2, 1, 2, 2, 1, 2)$$

The group

$$\{x^2 + 84y^2, 3x^2 + 28y^2, 4x^2 + 21y^2, 7x^2 + 12y^2, 5x^2 \pm 2xy + 17y^2, 8x^2 \pm 4xy + 11y^2\}$$

of reduced primitive positive definite binary quadratic forms of discriminant -336 is isomorphic to $\mathbb{Z}_2 \oplus \mathbb{Z}_4$. As above, for every odd prime *p*,

$$\frac{1}{2} \left[\theta_{1,0,84}(z) + \theta_{3,0,28}(z) - \theta_{4,0,21}(z) - \theta_{7,0,12}(z) \right]$$

is a normalised eigenform for the Hecke operator $T_{p,1}$. Note that for any odd prime p, (-336/p) = (p/3)(7/p). Then, since the forms $x^2 + 84y^2$, $3x^2 + 28y^2$, $4x^2 + 21y^2$ and $7x^2 + 12y^2$ (respectively $5x^2 \pm 2xy + 17y^2$ and $8x^2 \pm 4xy + 11y^2$) represent no integer congruent to 2 (respectively 1) modulo 3, it follows that a prime $p \notin \{2, 3, 7\}$ is represented by one of the first four forms if and only if $p \equiv 1 \pmod{3}$ and (7/p) = 1.

Finally, on verifying that the forms

$$\frac{1}{2} \left[\theta_{1,0,84}(z) + \theta_{3,0,28}(z) - \theta_{4,0,21}(z) - \theta_{7,0,12}(z) \right] \cdot E(z)^{17}$$

and

$$\mathcal{H}_{7,0}(z)E(z)^8 - \mathcal{H}_{7,2}(z) - (\mathcal{H}_{7,2}(z) \mid U_3)$$

lying in $M_{18}(\Gamma_0(1008), \chi_7)$ are congruent modulo 3, by similar arguments as in our proofs of Proposition 3.1 and Theorem 3.2, our result follows.

References

- [1] S. Ahlgren, 'Distribution of the partition function modulo composite integers M', *Math. Ann.* **318**(4) (2000), 795–803.
- [2] S. Ahlgren and J. Lovejoy, 'The arithmetic of partitions into distinct parts', *Mathematika* **48**(1–2) (2001), 203–211.
- [3] S. Ahlgren and K. Ono, 'Congruence properties for the partition function', *Proc. Natl. Acad. Sci.* USA 98(23) (2001), 12882–12884.
- [4] A. O. L. Atkin and W.-C. Li, 'Twists of newforms and pseudo-eigenvalues of W-operators', *Invent. Math.* 48(3) (1978), 221–243.
- [5] N. Calkin, N. Drake, K. James, S. Law, P. Lee, D. Penniston and J. Radder, 'Divisibility properties of the 5-regular and 13-regular partition functions', *Integers* 8(2) (2008), #A60.
- [6] B. Dandurand and D. Penniston, '*ℓ*-divisibility of *ℓ*-regular partition functions', *Ramanujan J*. **19**(1) (2009), 63–70.
- [7] D. Furcy and D. Penniston, 'Congruences for ℓ-regular partition functions modulo 3', *Ramanujan J.* 27(1) (2012), 101–108.
- [8] B. Gordon and K. Ono, 'Divisibility of certain partition functions by powers of primes', *Ramanujan J.* 1(1) (1997), 25–34.
- [9] E. Kani, 'The space of binary theta series', Ann. Sci. Math. Québec 36(2) (2012), 501-534.
- [10] J. Lovejoy, 'Divisibility and distribution of partitions into distinct parts', Adv. Math. 158(2) (2001), 253–263.
- J. Lovejoy and D. Penniston, '3-regular partitions and a modular K3 surface', *Contemp. Math.* 291 (2001), 177–182.
- [12] K. Ono, 'Distribution of the partition function modulo m', Ann. of Math. (2) 151(1) (2000), 293–307.
- [13] K. Ono, *The Web of Modularity*, CBMS Regional Conference Series in Mathematics, 102 (American Mathematical Society, Providence, RI, 2004).
- [14] D. Penniston, 'Arithmetic of *l*-regular partition functions', Int. J. Number Theory 4(2) (2008), 295–302.

[10] The 7-regular and 13-regular partition functions modulo 3

- [15] J. Sturm, 'On the congruence of modular forms', Lecture Notes in Math. 1240 (1984), 275–280.
- J. J. Webb, 'Arithmetic of the 13-regular partition function modulo 3', *Ramanujan J.* 25(1) (2011), 49–56.

ERIC BOLL, c/o Department of Mathematics, University of Wisconsin Oshkosh, Oshkosh, WI 54901-8631, USA e-mail: eaboll@gmail.com

DAVID PENNISTON, Department of Mathematics, University of Wisconsin Oshkosh, Oshkosh, WI 54901-8631, USA e-mail: pennistd@uwosh.edu