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Extreme-ultraviolet pulses can propagate through ionised solid-density targets, unlike
optical pulses and, thus, have the potential to probe the interior of such plasmas on
sub-femtosecond timescales. We present a synthetic diagnostic method for solid-density
laser-generated plasmas based on the dispersion of an extreme-ultraviolet attosecond
probe pulse, in a pump–probe scheme. We demonstrate the theoretical feasibility of
this approach through calculating the dispersion of an extreme-ultraviolet probe pulse
propagating through a laser-generated plasma. The plasma dynamics is calculated using
a particle-in-cell simulation, whereas the dispersion of the probe is calculated with an
external pseudo-spectral wave solver, allowing for high accuracy when calculating the
dispersion. The application of this method is illustrated on thin-film plastic and aluminium
targets irradiated by a high-intensity pump pulse. By comparing the dispersion of the
probe pulse at different delays relative to the pump pulse, it is possible to follow the
evolution of the plasma as it disintegrates. The high-frequency end of the dispersion
provides information on the line-integrated electron density, whereas lower frequencies
are more affected by the highest density encountered along the path of the probe. In
addition, the presence of thin-film interference could be used to study the evolution of
the plasma surface.

Key words: plasma diagnostics, plasma simulation

1. Introduction

The interaction between high-intensity lasers and solids has many promising potential
applications, such as ion acceleration (Romagnani et al. 2005; Zhang et al. 2017;
Higginson et al. 2018), warm-dense-matter generation (Remington et al. 1999; Renaudin
et al. 2003; Pérez et al. 2010; Brown et al. 2011) and inertial fusion (Drake 2018; Le
Pape et al. 2018). It is therefore of great importance to further our understanding of these
interactions. Insight may be gained through both experiments and numerical simulations,
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but in order to maximise the utility of the two tools, we must also be able to combine them
through experimental diagnostics and comparisons with simulations.

In experiments using solid-density laser-generated plasmas, we have a limited number
of experimental diagnostics methods, such as x-ray radiation (Chen et al. 2009; Renner &
Rosmej 2019) or ejected particles (Neely et al. 2006; Nürnberg et al. 2009). In addition
to experimental diagnostics, numerical simulations, in particular using the particle-in-cell
(PIC) method, are widely used to gain understanding of the evolution of the laser-generated
plasma. However, for PIC codes the particle noise is an inherent source of error, and
practical limitations on the resolution can lead to unphysical behaviour in certain cases
(Juno et al. 2020). In addition, at solid density, especially when the Coulomb logarithm is
order unity, the classical two-body treatment of collisions breaks down (Starrett 2018), thus
collision models rely on ad hoc choices and, especially because different choices may lead
to significantly different predictions (Sundström et al. 2020a), they need to be validated
experimentally. Thus, in order to validate numerical simulations of such high-density
laser-generated plasmas, there is a need for additional experimental diagnostics methods
that can be used for validation in this density regime.

On the experimental side, there are, for instance, optical probing methods,
e.g. shadowgraphy, which have been successful in diagnosing laser-generated plasmas in
high detail (Sävert et al. 2015; Siminos et al. 2016). However, optical probing methods are
limited to low-density plasmas, typically gas-jet targets, due to the plasma transparency
limit. To probe the interior of plasmas at solid density, Kluge et al. (2018) employed
the scattering of x-rays from a free-electron laser to study the density evolution in solid
density plasma gratings. With the advent of high-harmonic generation (Ferray et al. 1988),
attosecond extreme-ultraviolet (XUV) pulses are more readily available to small-scale
labs. Furthermore, with reliable methods of generating and measuring XUV pulses
(Calegari et al. 2016; Koliyadu et al. 2017), employing XUV frequencies in optical probing
methods is now becoming a possibility, for instance, spectral interference methods on
the spectral fringes of an attosecond pulse train (Salières et al. 1999; Descamps et al.
2000; Merdji et al. 2000; Hergott et al. 2003), high-harmonic transmission spectroscopy
to measure electron density (Hergott et al. 2001; Dobosz et al. 2005) and measurement of
XUV refractive index in solid-density plasmas (Williams et al. 2013).

In this paper, we present a method based on the dispersion of an attosecond XUV
pulse (or a pulse-train) to diagnose plasmas that are over-dense at optical frequencies.
We employ a linearised pseudo-spectral (PS) wave solver to compute the dispersion of
the probe pulse for any given plasma profile. In particular, we extract the spatiotemporal
plasma profile information along the optical axis from a PIC simulation, through which
the probe pulse is propagated separately using the PS solver. The effect of the probe pulse
on the plasma evolution is thus neglected. This limitation may be possible to relax if
necessary, through a PS fluid modelling of the plasma (Siminos et al. 2014), but because
experimentally available XUV intensities are quite low (normalised relativistic amplitudes
a1 � 10−3), our linearised treatment of the probe pulse is justified. The computed pulse
dispersion, our synthetic diagnostic, is most sensitive to the electron density variation
across the target, whereas corrections related to the energy distribution of electrons might
provide additional constraints at high electron temperatures.

Utilising such modelling in comparison with experimental measurements of the
dispersion of the high-frequency pulse across the target, e.g. with the RABBIT (Paul
et al. 2001) or attosecond streak-camera (Itatani et al. 2002) methods, could provide an
experimental diagnostic. Indeed, this type of experiment have already been performed with
(non-ionised) aluminium foil by López-Martens et al. (2005), but not yet in comparison
with simulations of the plasma evolution. In addition, the use of isolated attosecond probe
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pulses in our study provides unprecedented temporal resolution. We note, however, that
the use of an isolated pulse is not strictly necessary, although it simplifies the numerical
analysis. The main challenge of employing a pulse train, instead of a single pulse, stems
from the spectral fringes that it produces, as discussed in § 5.

The structure of this paper is as follows. In § 2 we derive the plasma dispersion for
a low-amplitude wave in the presence of relativistic electrons with arbitrary momentum
distribution. This is followed in § 3 by a description of a linearised PS wave solver, which
allows computation of the group delay of the frequency components in a probe pulse,
with minimal numerical dispersion. This tool set is then applied to an output from a
PIC simulation in § 4. The results are presented and discussed in § 5 and the conclusions
summarised in § 6.

2. Dispersion of the probe pulse

Our goal is to model the propagation of a high-frequency pulse in a laser-generated
plasma. Although a PIC code is suitable to model the dynamics of the plasma and
the laser pulse used to generate it, there are reasons to model the evolution of the
high-frequency probe pulse in an external numerical tool, which is the approach we
adopt. Resolving the spatiotemporal scales of the probe within the PIC code would
already require excessive numerical resources, while maintaining the accuracy of the
phase evolution, such that it is suitable for experimental comparison, in a finite-difference
time-domain framework affected by numerical dispersion (Nuter et al. 2014), is simply
not feasible (note that even in a non-standard, spectral PIC code with lower numerical
dispersion, the extremely high-resolution requirement would still persist; there may also
be potential issues with the level of discretisation noise compared with the probe pulse
amplitude).

In the following, we derive the plasma response to a spatial harmonic of the probe pulse,
in the presence of electrons with arbitrary momentum distribution f (p). The resulting
expression is then used in the numerical framework, external to the PIC code, to evolve the
probe pulse based on the plasma information obtained from the PIC simulation, described
in § 3.

We treat the probe pulse as a ray propagating along a line in the plasma, assuming
negligible plasma variations over the transverse extent of the probe pulse, thereby
keeping the formalism one-dimensional (1D). Consider a transverse electromagnetic
wave,1 described by its vector potential A⊥. In a 1D geometry, conservation of transverse
canonical momentum dictates that the momentum response of the electrons is p⊥ = eA⊥,
where −e is the electron charge. In a cold-fluid plasma, assuming stationary ions, the
corresponding current response is

j⊥ = −eneve,⊥ = −e2neA⊥
γeme

, (2.1)

where ne is the electron density, v⊥ = p⊥/meγe is the fluid velocity of the electrons, me is
the electron mass and γe is the Lorentz factor of the electron fluid motion. We can now
write down the 1D wave equation for a cold-fluid plasma as

∂2A⊥
∂t2

− c2 ∂
2A⊥
∂x2

= c2μ0j⊥ = −ω
2
p

γe
A⊥, (2.2)

1Although it is possible to generate longitudinal wave components in a plasma with relativistic laser pulses (Kaw
& Dawson 1970) we restrict our analysis to low-amplitude waves, for which the transverse–longitudinal coupling is very
weak.
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where the wave is propagating along the x direction, c is the speed of light in vacuum and

ω2
p ≡ e2ne

ε0me
(2.3)

defines the non-relativistic plasma frequency ω p.
For a low-amplitude wave, such as the high-harmonic generated pulses available today,

a1 = eA1/(mec) � 1 where A1 is the amplitude of the wave vector potential, we may
neglect the contribution from the wave-induced oscillation to the Lorentz factor γe. For
the moment, we also assume that the longitudinal fluid momentum of the electrons is
small, px � mec, such that γe � 1. Thus, the prefactor on the right-hand side of (2.2) is
independent of A⊥, and we recover the cold-plasma dispersion relation c2k2 = ω2 − ω2

p.
Note that in this derivation we have neglected effects of particle collisions, which, if

sufficiently strong, could affect both the phase shifts and damping of the wave. In the cases
considered in this paper, however, we estimate the electron–ion collision frequencies νei
to be one to two orders of magnitude lower than the XUV probe frequencies, owing to
the approximately kiloelectronvolt electron temperatures reached, and can therefore be
neglected (note that collisional corrections to phase delays are quadratic in νei/ω � 1).
In cases where collisions play a larger role, e.g. in colder plasmas, the wave equation
(2.2) could be modified to accommodate collisional effects via a damping term ν̃ ∂A⊥

/
∂t

(added to the left-hand side), where ν̃ is an effective damping rate due to collisions.
Finding an appropriate expression for ν̃ is non-trivial, but once that is done, the PS solver
outlined in § 3 is easily modified to include this damping term.

2.1. Relativistic birefringence: a kinetic correction to the plasma frequency
In the above presentation, we used a cold-fluid description of the plasma response to the
electromagnetic wave. In reality, the electrons are not cold, and relativistic effects will
require a modification to the current response of an individual electron based on its initial
momentum, as was pointed out by Stark et al. (2015) and further developed by Arefiev
et al. (2020). In general, the Lorentz factor contributes to increasing the inertia of the
electrons, which lowers the effective plasma frequency. This effect is akin to relativistic
transparency (Kaw & Dawson 1970; Siminos et al. 2012), but here it is the general effect
of relativistic plasmas, not just the relativistic electron motion induced by the laser. In this
subsection, we present the relativistic, kinetic correction to the plasma frequency for a
low-amplitude wave.

For an electron subject to a field with vector potential A⊥ = Ayŷ, its corresponding
change in momentum would be δpy = eAy due to conservation of transverse canonical
momentum. Importantly, this change in momentum is independent of the initial momentum
of the electron. However, the velocity response, and thus also the current response, does
depend on the initial momentum. Therefore, when calculating the velocity response, we
must consider the initial Lorentz factor of the electron, γ = (1 + p2

x + p2
y + p2

z )
1/2. Here,

and in the rest of this subsection, we use the normalisation me = 1 = c, unless stated
otherwise.

Small wave amplitudes allow linearisation of the change in velocity v = p/γ due to
the small momentum perturbation δpy in the y direction (polarisation direction). The
corresponding change in velocity can be expressed as

δvy ≈ δpy
dvy

dpy
= δpy

(
∂2p
∂vy∂py

+ ∂2p
∂vy∂γ

∂2p
∂γ ∂py

)
= δpy

γ

(
1 − p2

y

γ 2

)
. (2.4)
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From this expression, we can note that the corresponding change in velocity depends on
the initial momentum and the respective direction of the momentum perturbation.

Next, we obtain the full current response of the plasma by integrating the individual
velocity response δvy over the electron distribution function f ,

δjy = −e
∫

d3p δvyf (p) = −eδpy

∫
d3p

f (p)
γ

(
1 − p2

y

γ 2

)
. (2.5)

In particular, we may lift the momentum perturbation δpy = eAy outside the integral
because the conservation of canonical momentum applies to each electron, regardless of
its initial momentum. In the previous calculations, we have used ŷ as the direction of
polarisation A⊥ = Ayŷ, but the same calculations can easily be extended to an arbitrary
polarisation direction ê, by replacing all instances of py with p · ê.

Finally, we note that we can obtain the kinetically corrected dispersion relation
by replacing the non-relativistic plasma frequency (2.3) with a relativistic plasma
frequency

ω̃2
p,ê = e2

ε0me

∫
d3p

f (p)
γ

(
1 − (p · ê)2

γ 2

)
= e2ne

ε0γ̃ême
, (2.6)

where me has been added back to the prefactor for clarity. The relativistic plasma frequency
can then simply be used in the plasma-response term in the wave equation (2.2). In the last
step, we also introduced an effective gamma factor, defined by

γ̃ −1
ê ≡ 1

ne

∫
d3p

f (p)
γ

(
1 − (p · ê)2

γ 2

)
. (2.7)

The effective gamma factor corresponds to the relative difference between the relativistic
and non-relativistic plasma frequencies, γ̃ −1

ê = ω̃2
p,ê/ω

2
p. If the distribution is not isotropic,

then γ̃ê, and thereby ω̃2
p,ê, are polarisation dependent, hence we can talk about this effect

as a ‘relativistic birefringence’.2
For thermal distributions at temperatures below approximately 10 keV, we show

in Appendix A, that the relative reduction of the plasma frequency due to the
effective gamma factor is only of the order of a few per cent. Therefore, in most
experimentally relevant cases, the attosecond dispersion can be said to probe the electron
density.

3. Linearised pseudo-spectral wave solver

A spectral solver is based on discretising and evolving the wave spectrum rather than
the real-space wave. The main benefit of a spectral solver is that numerical dispersion can
be reduced drastically compared with spatial discretisations, such as the commonly used
Yee mesh. Although numerical dispersion in the context of PIC codes (Nuter et al. 2014)
is often discussed with respect to numerical Cherenkov radiation (Godfrey 1974), it can
also greatly affect the accuracy of the evolution of the electromagnetic wave, which is the
main problem addressed here.

2This nomenclature follows Arefiev et al. (2020). However, the same term has also been used by Schwab et al.
(2020), although for a different physical phenomenon: the birefringence reported in their paper is due to strong magnetic
fields.
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In a periodic domain of length L, we may Fourier decompose the wave vector potential
in space into spectral modes,

A⊥(x; t) =
∑

k

Â⊥,k(t) e ikx, (3.1)

where the sum is over all integer multiples of �k = 2π/L; once the domain has been
discretised into N equally spaced points, the upper and lower limit to the sum are
±N�k/2 = ±Nπ/L. We may also transform ω̃2

p(x; t) �→ ω̂2
p,k(t) analogously. Through this

Fourier decomposition, we can replace the spatial derivatives ∂/∂x �→ ik, and the wave
equation (2.2) now becomes

∂2Â⊥,k
∂t2

+ c2k2Â⊥,k = −
∑

k′
ω̂2

p,k′Â⊥,(k−k′). (3.2)

It has been reduced to a set of coupled ordinary differential equations, which can be solved
using standard methods, e.g. Runge–Kutta. The right-hand side of (3.2) is a convolution in
k space (according to the Convolution theorem of Fourier analysis) which can be evaluated
efficiently using a PS approach, i.e. it is transformed back to real space in each time step,
where this convolution is reduced to a multiplication. This is particularly convenient as
ω̃2

p(x; t) is provided in real space from the simulations.
In this method, we have implicitly assumed a periodic domain. For the purposes of

this paper, to study the dispersion of an XUV pulse through a foil-target laser-generated
plasma, the simulation can be accommodated in such a periodic domain by allowing for
sufficiently large vacuum regions on both sides of the laser-generated plasma. In such a
simulation, there is no need for the XUV pulse to cross the periodic boundary. Other types
of simulations, where the plasma extends the full length of the simulation box and where
the XUV pulse propagates though the periodic boundary can also be accommodated, as
long as the XUV pulse does not cross the boundary of the plasma simulation, e.g. by
projecting a moving window plasma-simulation domain onto the PS periodic domain.

Finally, we note that the numerical methods for solving the second-order differential
equation usually involves decomposing the time derivative into two first-order derivatives.
By doing so, we obtain the electric field E = −∂A/∂t, which is the quantity that can be
measured in experiments, essentially ‘for free’.

3.1. Calculating phase shifts
The main result that we seek from the PS computation is the dispersion or relative
phase shifts of the frequency components of the XUV pulse, which can be measured
experimentally. Although the phase φk(t) is encoded in the Fourier spectrum as the
complex phase of

Êk(t) = |Êk(t)| e iφk(t) ≡ |Êk(t)|Pk(t), (3.3)

it is not trivial to recover φk(t) from Pk(t), because Pk(t) only contains phase information
modulo 2π. Practically, this makes it nearly impossible to reconstruct the relative phases
of two frequency components separated by more than a few steps in the discretised k space.

Instead of analysing Pk directly, we may use P̄k(t) ≡ Pk(t) e iωkt = e i[φk(t)+ckt] = e iφ̄k(t),
which will make the phase-shift analysis clearer. This view removes the relative phase
shifts due to vacuum propagation, and is equivalent to studying the pulse in a comoving
window that moves with the speed of light. Any phase shifts observed in this frame is
therefore due to the plasma dispersing the pulse.
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As the full information of the relative phase shifts is difficult to extract directly from the
complex spectral phase P̄k, some other method is necessary. Fortunately, because we are
interested in the relative phases, we can study the change of P̄k,

�P̄k = P̄k+1 − P̄k = e iφ̄k+�k − e iφ̄k = e iφ̄k [e i�φ̄k − 1]

= P̄k[i sin
(
�φ̄k

)+ cos
(
�φ̄k

)− 1], (3.4)

where the phase variation is �φ̄k = φ̄k+�k − φ̄k. From (3.4), we can define a related
phase-rate variable

ψ̄k ≡ − i�P̄k

P̄k
= sin

(
�φ̄k

)+ i[1 − cos
(
�φ̄k

)
]. (3.5)

This variable is still 2π periodic, but now the periodicity is in �φ̄k, which is smaller
than the ±π window of retrievable information, provided that the spectral resolution N
is sufficiently large. We can, therefore, retrieve �φ̄k, with which the properly unwrapped
phase φk can be reconstructed, up to a constant phase shift.

In an experiment, however, it is the relative group delay of the different frequency
components that is measured. The group delay τ is defined as the rate of phase change,
which, in the discrete case, we approximate as

τ ≡ ∂2p
∂φ∂ω

≈ �φk

�ω
= �φk

c�k
≡ τk. (3.6)

With this, we now have a full tool set for computing the relative group delay of
a low-amplitude probe pulse in any given 1D plasma profile ω̃2

p(x; t), with minimal
numerical dispersion. This tool set can be applied on the output form a PIC simulation
to create a synthetic diagnostic for a laser-generated plasma experiment.

4. PIC and PS simulations

The workflow for generating the synthetic dispersion diagnostic consists of two main
components: first the PIC simulation to simulate the plasma evolution due to the pump
laser pulse, then the PS method is used to calculate the dispersion of the probe pulse as
it propagates through the plasma profile generated by the PIC simulation. This two-step
process works for sufficiently low-amplitude probe pulses, where the effects of the probe
pulse on the plasma are negligible.

4.1. PIC simulation parameters
We used the PIC code Smilei (Derouillat et al. 2018), to generate on-axis profiles of the
relativistic plasma frequency ω̃2

p(x; t) from (2.6), which could then be used in the linearised
PS wave solver. To this end, we performed two-dimensional (2D), fully collisional (Pérez
et al. 2012), PIC simulations of a thin plastic foil target irradiated by a circularly polarised
pump pulse with wavelength λ0 = 800 nm, peak intensity 1.9×1019 W cm−2 (normalised
amplitude a0 = 3.0). The pulse temporal and spatial profiles were both Gaussian with
intensity full-width-at-half-maximum (FWHM) duration of 30 fs and spot size (waist
diameter) of 6 μm.

The thin-foil plasma studied here has a trapezoidal density profile with a 0.25 μm
plateau and 25 nm linear density ramps on both sides, fully ionised, solid-density
polyethylene (CH2), corresponding to an initial electron density of n0,e = 177.7nc,0 =
3.1×1023cm−3, where nc,0 = ε0meω

2
0/e

2 is the critical density associated with the pump
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laser frequency ω0. The plasma was modelled with 120, 30 and 15 macro-particles per
cell for the electrons, protons and carbon ions, respectively.

The simulation box was 10 μm and 20 μm in the x and y directions, respectively, with
4096 cells in each direction, giving a spatial resolution of �xPIC = 2.44 nm and �yPIC =
4.88 nm. The target front edge lies at x = 4.5 μm from the left edge of the box. Peak
on-target intensity occurs at simulation time t = 78.6 fs. The simulations output a binned
quantity corresponding to the relativistic plasma frequency squared ω̃2

p,ŷ (2.6). In these
simulations, ω̃2

p,ŷ is around 1 % lower than the non-relativistic plasma frequency squared
(2.3). Particles within ±0.5 μm from the optical axis were used in the binning, to create
the plasma profile used by the PS solver. The longitudinal resolution of the binning was
the same as the cell length.

We have chosen the target and laser parameters to illustrate one possible application
of the XUV dispersion diagnostics: time-resolving the disintegration of a thin foil when
irradiated by the pump pulse. As the electrons are energised by the pump laser, they
escape from both the front and back end of the target, which decreases the density on
axis. Therefore, by varying a delay between the probe and the pump pulse, the different
densities can be inferred from the decrease in dispersion.

As a comparison with the plastic target, we also performed a similar simulation of a
0.1 μm thin aluminium foil, with 10 nm linear density ramps on each side. The aluminium
is taken to be fully ionised at solid density, corresponding to an initial electron density
of n0,e = 449.4nc,0 = 7.8×1023 cm−3, which is very close to 2.5 times that of the plastic
target. The plasma was modelled with 120 and 40 particles per cell for the electrons and
aluminium ions, respectively. The other parameters were kept the same as for the plastic
target. The comparison with the thicker plastic target is interesting because the initial
integrated density, along the optical axis, is the same between the two targets.

4.2. PS simulation parameters
The plasma profiles generated in the PIC simulations are used in the PS solver to accurately
and efficiently calculate the dispersion of the probe pulse. Note that the solver takes both
spatial and temporal variation into account. In order to get the desired resolution, the PIC
output is interpolated in both time and space.

Because of the good numerical accuracy of a spectral solver, the resolution does not
have to be much greater than what was used in the PIC simulation. The whole length
Lx = 10 μm of the PIC-simulation box was discretised with N = 8196 points (twice that of
the PIC simulation), corresponding to a resolution of�xPS = 1.22 nm. This discretisation
allows for a maximum wavenumber of kmax = πN/Lx = 2.57 nm−1 (corresponding to
a minimum resolved wavelength of 2�xPS = 2.44 nm) with a wavenumber resolution
of �k = 2π/Lx = 6.28 × 10−4 nm−1. The time resolution was automatically handled in
the Runge–Kutta method implemented in the function solve_ivp from SciPy version 1.6.3
(Jones, Oliphant & Peterson 2001).3 In Appendix B, we present some benchmarks of the
PS code.

The probe pulse electric field is initialised in real space in the vacuum region near the
front of the target. The initial pulse shape has a four-cycle-duration cos2 envelope on a
centred sinusoidal carrier wave. The central wavelength is λ1 = 30 nm corresponding to
a wavenumber of k1 = 0.21 nm−1. Note, however, that the shape of the initial pulse is not
very important to the dispersion measurement. The pump–probe delay is set by a temporal
shift of the ω̃2

p(x; t) profiles from the PIC simulation. When analysing a spectrum from

3The code package developed for the PS solver, as well as tools for extracting and interpolating data from Smilei
simulations, is freely available at https://github.com/andsunds/PseudoSpectral
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the simulation, it is important that the whole pulse is in vacuum, so that the wavenumber
and the frequency spectra are the same. Otherwise, distortions of the spectrum due to the
plasma dispersion makes comparisons of spectral data difficult.

With the carrier wavelengths above, the initial target electron densities correspond to
n0,e ≈ 0.25nc,1 and ≈ 0.6nc,1 for the plastic and aluminium targets, respectively, where nc,1
is the critical density for the central frequency ω1 = ck1 of the probe pulse. As these values
are close to unity, there will be a significant portion of the pulse that is reflected. Because
the reflected part propagates in the opposite direction, it has a very strong influence on
the phase information of the spectrum. It is, therefore, important to filter out the reflected
pulse, and only study the spectrum of the transmitted part of the pulse. This filtering is
most readily done in real space.

As the PS solver evolves each wavenumber component independently, the group delay
incurred for each k component is, in principle, not affected by the initial pulse shape.
(There may be some minor effects due to the timing of each component in relation
to the plasma evolution, but they would be in order of the ratio of plasma-evolution
rate to pulse duration.) However, the initial pulse shape has one important effect on
the dispersion analysis. That is, the initial relative group delays. With the choice of a
symmetric envelope and symmetric carrier phase, each wavenumber component will have
the same vacuum-propagation-corrected spectral phase P̄k = 0, i.e. there are no relative
group delays in such a pulse. Conversely, if some other probe-pulse shape is used, the
observed group delays will be affected by the initial spectral phases of the pulse. For the
purposes of a synthetic diagnostic to an experiment, however, one could use the same
pulse shape as used in the experiment; the resulting group delay information can then be
compared directly with observations.

5. Results and discussion

With such thin foils, the targets rapidly disintegrate due to hydrodynamical expansion
after irradiation by the pump pulse. Figure 1(a) shows an electron-density map, from the
plastic target, at the simulation time t = 900 fs, approximately 820 fs after peak on-target
pump intensity. In the figure, we see how the electrons have expanded out in plumes, both
in front of and behind the target. Figure 1(b) shows the on-axis squared relativistic plasma
frequency ω̃2

p, given by (2.6), for four different time steps of the simulation. Note that ω̃2
p

is approximately proportional to ne. It is these profiles that are being probed by the XUV
pulse, which passes through the plasma along the optical axis y = 10 μm (white arrow in
figure 1a); the ω̃2

p values are averaged across ±0.5 μm in y on each side of the axis (thin
dotted lines in figure 1a).

In the evolution of the plasma, it is initially compressed (t = 150 fs, dotted line) by
the pump pulse, creating a density spike at the front. As the electrons are rapidly heated
to kiloelectronvolt temperatures,4 the plasma starts to expand and expansion fronts (the
interface between the perturbed and unperturbed plasma) propagate inwards from both
ends of the target and meet in the middle. As the expansion fronts collide, at first a narrow
density peak is created (t = 300 fs, dashed line), but that peak is rapidly flattened as
material is continuously escaping on both sides (t = 400 fs, dash-dotted line). Finally,
the plasma continues to expand, which results in a lower but elongated plasma profile
(t = 900 fs, thick green solid line, corresponding to the density map in figure 1a).

4We note that for the parameters considered in this paper, collisionless heating mechanisms are sufficient to heat
the plasma to a temperature comparable to those observed in the collisional simulations presented here; this is unlike the
simulations using heavier target materials and 1D geometry (Sundström et al. 2020b).
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(a) (b)

FIGURE 1. (a) Electron density in the polyethylene plasma at t = 900 fs; peak on-target pump
intensity occurs at t ≈ 80 fs. (b) Profiles of the squared relativistic plasma frequency ω̃2

p, relative
to the squared pump-laser central frequency ω2

0, along the optical axis (white arrow in panel a),
for t = 0 fs (solid line), t = 150 fs (dotted line), t = 300 fs (dashed line), t = 400 fs (dash-dotted
line) and t = 900 fs (thick solid line). The profiles are created by averaging (in y) across a band
±0.5 μm from the optical axis (thin dotted lines in panel a).

(a) (b)

FIGURE 2. (a) Electron density in the aluminium plasma at t = 900 fs; peak on-target pump
intensity occurs at t ≈ 80 fs. (b) Profiles of the squared relativistic plasma frequency ω̃2

p, relative
to the squared pump-laser central frequency ω2

0, along the optical axis (white arrow in panel a),
for t = 0 fs (solid line), t = 100 fs (dotted line), t = 150 fs (dashed line), t = 230 fs (dashed
line) and t = 900 fs (thick solid line). The profiles are created by averaging (in y) across a band
±0.5 μm from the optical axis (thin dotted lines in panel a).

A similar evolution is observed in the simulation with the aluminium foil target.
Figure 2(a) shows an electron-density map at t = 900 fs (same as the corresponding
density map in figure 1a). The plasma profiles in figure 2(b) (averaged across ±0.5 μm on
each side of the optical axis, white dotted lines in figure 2a) show the same general steps in
the evolution of the aluminium plasma as in the plastic-target plasma. Although the initial
laser compression in the aluminium plasma is essentially non-existent (t = 100 fs, dotted
line), there is still the interaction of the two expansion fronts. At t = 150 fs, the expansion
fronts meet in the middle, which creates at sharp peak (dashed line). Then, as the electrons
continue to escape, the peak is flattened (t = 230 fs, dash-dotted line).
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From both figures 1(a) and 2(a), we see that the transverse variations occur on length
scales on the order of micrometres. Therefore, the transverse beam profile of the probe
pulse should be smaller than that for the 1D assumption in the PS computation of the
probe-pulse dispersion to hold. Coudert-Alteirac et al. (2017) demonstrated an XUV spot
size of �4 μm, which is slightly larger than what would be ideal for the cases studied
here. More recently, Major et al. (2021) demonstrated a tightly focused waist (diameter) of
� 0.7 μm. However, the probe beam cannot be too tightly focused for the 1D assumption
to hold either. Thus, to avoid the 1D treatment from breaking down, the best option would
be to study plasmas generated by a wider pump pulse, so that the transverse variations can
accommodate a several-micrometre-wide XUV probe pulse.

Another possibility to handle transverse plasma variations is to extend the numerical
treatment in the PS solver to two or three dimensions. Although the conceptual steps to
extend the algorithm to higher dimensions are simple, some additional complexity arises.
The periodic boundary conditions in the transverse directions, caused by the spectral
treatment, would have to be handled carefully. In addition, as the pulse would be dispersed
differently in the transverse plane, the analysis of the arising range of group delays need
to involve a more accurate model of the experimental setup and detection in the RABBIT
or streak-camera methods. We have, therefore, limited the scope of this study to a 1D
dispersion analysis.

With plasma profiles from a PIC simulation, the attosecond probe pulse dispersion can
now be calculated using the PS wave solver. Figure 3 shows an overview of the information
obtained by such a PS computation, in this case with the plastic target. In figure 3(a),
the normalised real-space waveforms of the initial probe pulse at k1x = 750 (dashed blue
line) and the final waveform of the transmitted and reflected parts of the pulse (solid red
line), at k1x ≈ 1700 and k1x ≈ 250, respectively. We clearly see that the transmitted part
of the pulse is significantly wider than the initial pulse, showing that the pulse has been
dispersed. The reflected pulse is discarded from the later spectral analysis, via a spatial
filter on the real-space waveforms (represented as the black dashed line in figure 3a).5
The plasma profile (t = 191 fs) which the pulse passes through is shown on the right axis
relative to the probe central frequency ω̃2

p/ω
2
1 (dash-dotted green line).

Figure 3(b) shows the normalised energy spectral density |Êk|2/|Êk1 |2 of the initial
(dashed blue line) and transmitted (solid red line) probe pulse. There is a clear cutoff in
the transmitted spectrum at slightly above the initial plasma frequency of ω̃p,0 = 0.50ω1.
This is expected, since bulk of the plasma is still at its initial density,6 making it over-dense
for frequencies less than ω̃p,0 = 0.50ω1.

The dispersion of the probe pulse is encoded in the spectral phase information, which
can be retrieved using the methods discussed in § 3.1. Figures 3(d) and 3(e) show the real
and imaginary parts, respectively, of the phase-rate variable ψ̄k for the transmitted pulse
as well as the initial pulse. We see that Re(ψ̄k) = sin

(
�φ̄k

)
increases as k approaches the

cutoff near k � 0.6k1, which is expected as the group velocity decreases for frequencies
closer to the plasma frequency. Note that the flat initial value of ψ̄k = 0 is due to the choice
of initial pulse shape; see § 4.2 for a short discussion on the effects of the initial pulse
shape. From ψ̄k, we reconstruct the phase variation �φ̄k (figure 3d) that is proportional
to the group delay, which is what would be measured with the attosecond streak-camera
(Itatani et al. 2002) method in an experiment.

5The values of the filter function are not accurately represented on any of the axes; the values range from 0 at
k1x � 900 to 1 at k1x � 1000, with a sigmoid transition in between.

6Note that the plasma profile displayed in figure 3(a) is at a later time. The reflection occurs at an earlier time, where
the plasma profile was closer to its initial shape.
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(a)

(b) (c)

(d) (e)

FIGURE 3. Overview of the PS output for the baseline 2D PIC simulation, where the XUV
probe pulse is 100 fs delayed after the pump. (a) Real-space representation of the probe pulse
(blue and red lines) and the plasma profile at the final time (green dotted line; right axis). The
dotted line represents a spatial filter used on the reflected part of the pulse when computing
the transmitted spectra. (b) Initial (dashed line) and transmitted (solid line) spectral intensity
|Êk|2/|Êk1 |2 of the probe pulse normalised to the maximum value at the central wavenumber k1.
(c) Phase variation�φ̄k of the transmitted pulse. (d) Real and (e) imaginary part of the phase-rate
variable ψ̄k for the transmitted (solid line) and the initial (dashed line) probe pulse.

We have employed an isolated attosecond pulse for the dispersion analysis in this paper,
which somewhat simplifies the computation and analysis of the group delays. However, it
is experimentally more challenging to generate such isolated attosecond pulses compared
to trains of attosecond pulses. The PS solver and the methods used for computing the
group delays are general and, thus, capable of handling any waveform, including pulse
train. However, handling the fringes in the spectra caused by pulse trains requires some
care when analysing the group-delay data. Only the group delays at each spectral maxima
should be considered; this corresponds to the information gathered using the RABBIT
(Paul et al. 2001) method. Furthermore, the plasma processes considered in this paper
occur on approximately 1–10 fs time scales, which means that the sub-femtosecond
temporal resolution provided by an isolated attosecond pulse is not strictly necessary.

5.1. Diagnosing plasma evolution
Using the group delay as a tool, we can now diagnose the plasma evolution in the PIC
simulations by comparing the group delay for different pump–probe delays. Figure 4(a)
shows the relative group delay curves τk obtained from the plastic plasma, at four different
pump–probe delays t1, where t1 is measured between the peak intensities of the pump
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(a) (b)

(c)

FIGURE 4. (a) Spectral relative group delay τk for the plastic target as a function of wavenumber
k of an XUV probe pulse with pump–probe delays t1 = 0, 100, 300 and 800 fs between peak
intensities of the two pulses. The vertical dotted line corresponds to the plasma frequency at the
original target density. (b) Relative group delay τk2 at the wavenumber k2 = 0.625k1 (vertical
dashed line in panel a) as a function of pump–probe delay t1. Coloured markers correspond to
the same-coloured curves plotted in panel (a). (c) Spectral intensity |Êk|2/|Êk1 |2 of the initial
(dashed blue line) and transmitted (solid red line) probe pulse for the t1 = 0 fs case.

and probe pulses. The τk curves are plotted in the wavenumber range where the spectral
intensity |Êk|2/|Êk1 |2 > 0.05 is greater than 5 % of that of the central frequency, to remove
the experimentally not measurable regions. We see that the slope of the τk curves decreases
as the pump–probe delay is increased, which means that the dispersion of the probe pulse
decreases. The lowered dispersion is a sign that the bulk ω̃2

p decreases with time, as one
would expect from a disintegrating plasma and indeed is observed in figure 1(b). We also
note that even if the plasma were to expand one-dimensionally, i.e. having a constant
line-integrated density, the τk curves would still be different as changes in the maximum
density would translate to shifts in the cutoff frequency.

Another interesting feature seen in figure 4(a) is the oscillation in τk for t1 = 0 fs
(and a few very weak oscillations for t1 = 100 fs). These oscillations occur due to
internal reflections inside the intact target. The XUV pulse is reflected against the sharp
plasma–vacuum boundaries several times, thus generating a train of very low-intensity
pulses following the main transmitted pulse, which generates interference, much like
thin-film interference. The interference pattern can also be seen as spectral fringes in
the intensity spectrum, shown in figure 4(c). The reason why the interference patterns
do not appear at longer pump–probe delays t1 � 100 fs is due to the destruction of the
sharp plasma–vacuum boundaries as the plasma expands. This is interesting, because
the presence of thin-film interference in an XUV probe could be used to study the
evolution of the plasma surface, given that a sufficiently high-contrast pump pulse is
used. Furthermore, the spacing of the fringes can give some information about the plasma
thickness. Note, however, that the fringe separation depends both on the plasma thickness
and the group velocity in the plasma, the latter being frequency dependent, resulting in a
non-constant fringe spacing in figure 4(c).

The time evolution of the plasma can also be studied by examining the group delay at a
specific frequency. In figure 4(b), τk2 at k2 = 0.625k1 (vertical dashed line in figure 4a) is
shown for a range of different pump–probe delays from t1 = 0 fs to 900 fs. Interestingly,
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(a) (b)

(c)

FIGURE 5. (a) Spectral relative group delay τk for the aluminium target as a function of
wavenumber k of an XUV probe pulse with pump–probe delays t1 = 0, 100, 300 and 800 fs
between peak intensities of the two pulses. The vertical dotted line corresponds to the plasma
frequency at the original target density. (b) Relative group delay τk3 at the wavenumber k3 =
0.90k1 (vertical dashed line in panel a) as a function of pump–probe delay t1. Coloured markers
correspond to the same-coloured curves plotted in panel (a). (c) Spectral intensity |Êk|2/|Êk1 |2
of the initial (dashed blue line) and transmitted (solid red line) probe pulse for the t1 = 0 fs case.

the group delay initially increases and reaches a maximum at t1 ≈ 70 fs.7 This increase can
be attributed to that the maximum electron density initially increases due to a compression
by the laser pressure, as seen in figure 1(b), and so does the corresponding cutoff frequency
ωp,max. After that, τk2 starts to drop, which is consistent with the decreasing maximum
density as the plasma starts to expand hydrodynamically.

Figure 5(a) shows the corresponding relative group delays in the aluminium plasma.
As with the plastic target the τk curves are only plotted in the wavenumber range where
|Êk|2/|Êk1 |2 > 0.05. With the aluminium target, this cutoff moves down in k much faster
and farther than in figure 4(a), which indicates that the maximum density of the thinner
aluminium drops faster than in the plastic target. In addition, as in figure 4(a), the τk curve
oscillates for t1 = 0 fs due to the same type of thin-film interference. The energy spectrum,
shown in figure 5(c), has stronger, albeit fewer, interference fringes than with the plastic
target.

Unlike with the plastic target, there is no initial compression of the electrons, which
results in a monotonically decreasing τk3 in figure 5(b), for k3 = 0.9k1.8 This observation is
consistent with the direct findings from the PIC simulations shown in figure 1(b) and 2(b):
that the aluminium target lacks a defined compression wave, and that the inside expansion
fronts propagating from both sides of the plasma meet more rapidly in the thinner target.

Another feature seen in figure 5(b) is that τk3 has an initially steep decay which then
changes slope quite abruptly in a knee at t1 � 150 fs (corresponding to a simulation time
of t � 230 fs, cf. figure 2b). This is an interesting observation because the knee coincides
with the meeting of the expansion fronts and broadening of the density peaks, which can
be observed directly from the PIC simulation: see the ω̃2

p profiles at t = 150 fs and 230 fs

7For reference, t1 = 100 fs results in the probe pulse reaching the target at a simulation time of t ≈ 180 fs.
8Owing to the higher initial density of the aluminium target, the group delay displayed in figure 5(b) had to be chosen

at a higher wavenumber k3 > k2 than in the plastic target. Therefore, a direct comparison between τk3 in figure 5(b) and
τk2 in figure 4(b) cannot be done. However, the difference in the qualitative behaviours between the two targets is still
interesting to study.
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in figure 2(b). A similar, but less-pronounced, knee can also be seen with the dispersion in
the plastic target for t1 � 250 fs (simulation time t � 330 fs). The reason why the knee is
less pronounced in the plastic target is probably that the thicker plastic target has a wider
base density, so that the dispersion is less dominated by the narrow density peak.

Furthermore, the initial slope of the decay of τk3 is correlated with the rate of decrease
of the peak density. This relationship can be understood via the group velocity of the
plasma dispersion vgr = c(1 − ω̃2

p/ω
2)1/2, which goes to zero if ω̃p reaches ω; if we have

a density peak close to the critical density, then the group delays τk ∼ 1/vgr near the
peak plasma frequency will be dominated by that peak. In the aluminium case shown
in figure 5(b), with k3 quite close to the initial plasma frequency, τk3 is first dominated
by the peak density, which is in the form of a narrow peak that decays rapidly. Later,
when the plasma expansion also starts to flatten the density peak (t = 230 fs in figure 2b),
other contributions to the dispersion, such as the width of the plasma, which evolves more
slowly, also become important. Note, however, that it is more difficult to infer the absolute
value of the peak density, because the absolute value of the group delay will also be
affected by the rest of the plasma, by a more slowly varying additive shift, as well as
phase shifts when entering/exiting the plasma. However, it appears feasible to use XUV
dispersion as a direct diagnostic to infer the evolution of the plasma experimentally.

In the high-wavenumber end of the spectrum, we find another remarkable feature of
the τk curves in figures 4(a) and 5(a): they all converge in the high-wavenumber limit.
Furthermore, they converge toward the same values for both the plastic and aluminium
targets, e.g. τk ≈ 40 as at k = 1.8k1 (outside the ranges displayed in figures 4a and 5a).
This observation can again be understood by analysing the group velocity in the plasma.
The group delay, after propagation a distance �, at a frequency ω′ can be approximated via
a Wentzel–Kramers–Brillouin (WKB) approximation (for slowly varying spatial features
and ignoring time variation) as

τ(ω′)+ �

c
�
∫ �

0

dx
vgr(x;ω′)

=
∫ �

0

dx

c
√

1 − ω̃2
p(x)/ω′2

. (5.1)

As the group delay, as defined in (3.6), does not take vacuum propagation into account,
a term �/c has to be added to the left-hand side in order to agree with the integral. Note
that with the vacuum propagation accounted for separately in this way, the integration
limits can be chosen arbitrarily large, as long as they are outside the plasma. Next, in the
high-frequency limit, the square root can be expanded and we obtain

τ(ω′ � ω̃2
p) ≈ 1

2c

∫ �

0

ω̃2
p(x)

ω′2 dx � 1
2c

(ω1

ω′

)2
∫ �

0

ne(x)
nc,1

dx; (5.2)

we remind the reader that ω1 and nc,1 are the central frequency and associated critical
density of the probe pulse, respectively. In the last step we also used the approximation
γ̃ � 1, which holds for temperatures Te � 10 keV. The group delay at high frequencies
is therefore a measure of the line-integrated density, which can be used to follow the
transverse electron transport away from the optical axis during the plasma expansion.

The fact that all the curves in figures 4(a) and 5(a) converge toward the same value in
the high-wavenumber limit means that the line-integrated density of the two plasma on the
optical axis, has not changed significantly during the course of the PIC simulation: recall
that the initial line-integrated densities of the two targets were chosen to be approximately
equal. We may also compare the observed τk′ ≈ 40 as at k′ = 1.8k1 (ω′ = 1.8ω1) against
the known line integrated densities from the PIC simulations. For the plastic target,
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the initial density profile is trapezoidal and can easily be integrated in (5.2) to give a
WKB-approximated group delay of 39 as. The remarkable agreement between the WKB
and PS methods is a useful sanity check for the PS computation.

In the dispersion analysis of this paper, we have assumed the amplitude of the XUV
probe pulse to be small, which allows for the linearised treatment of the wave evolution.
Although theoretically convenient, in an experiment, the amplitude of the probe pulse
must be significantly higher than the radiation generated, in the relevant spectral band,
by the plasma itself, e.g. through bremsstrahlung (BS) and recombination. Regarding the
emission due to recombination, it will be in a limited number of well-defined wavelengths,
which will affect the dispersion measurements for those specific wavelengths. It should,
however, still be possible to obtain clean measurements of group delays for the other XUV
wavelengths in the probe-pulse spectrum.

The BS, however, presents a broad-spectrum background noise to the measurement, thus
the XUV probe should have a higher energy than the detected BS in order to reach a high
signal-to-noise ratio. We estimate the emitted BS power, in the spectral range down to
5 nm wavelength, to be in the order of 106–107 W for the plasmas considered in this paper.
However, the BS is emitted isotropically, whereas the probe pulse is highly directional. The
focused XUV pulse reported by Coudert-Alteirac et al. (2017) had an angular divergence of
less than approximately 1 mrad, corresponding to a solid angle of 3 × 10−6 sr. Therefore, if
the XUV detection is made with a comparable angular discrimination, the detected power
from the BS would only be in the order of 3–30 W. Recently, Morris, Robinson & Ridgers
(2021) have shown significantly longer durations of BS emissions than previous literature,
up to 10–100 ps, however that is, for much larger target volumes than considered here. Even
with this very conservative estimate of the duration, the detected BS energy would only
be in the 0.3–3 nJ range. In comparison, Manschwetus et al. (2016) reports an on-target
XUV pulse energy of 40 nJ, which is sufficiently greater than the (discriminated) BS
power, making group-delay measurements with the RABBIT or attosecond streak camera
methods feasible. In addition, the signal in these measurements is encoded as a temporal
oscillation with the delay between the XUV pulses and the external infrared measurement
pulse (employed in the RABBIT or streaking measurement mechanisms), which would
further aid to discriminate the sought signal information from the BS background noise.

6. Conclusions

In this paper, we have presented a synthetic XUV dispersion diagnostic method, which
can be used with the output of a PIC simulation. The use of XUV frequencies allow
for probing of some solid-density plasmas, which are otherwise over-critical for optical
wavelengths. The synthetic dispersion generated could then be used in comparisons with
experiments, which would aid experimental validation efforts and the understanding of
the evolution of the laser-generated plasma. The propagation of the XUV probe pulse is
accurately calculated using a 1D PS solver along the optical axis. Then the group delays
of the frequency components of the pulse are computed from the complex phases of the
spectral components. As a part of the dispersion calculation, we present a linearised kinetic
correction to the plasma frequency, relevant for plasmas that have a significant fraction of
relativistic electrons. However, for experimentally relevant pump-pulse parameters, this
correction only entails a decrease in effective plasma frequency in the order of a few per
cent. The main quantity being probed is, therefore, the electron density profile. To some
extent, both the maximum and the line-integrated value of the density can be inferred from
the group delays in the XUV pulse caused by the dispersion.

We have illustrated this synthetic diagnostic technique on thin foil targets, where
we show that the change in group delays of the XUV pulse varies significantly for
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different probe delay times. Indeed, the group delays reported here are well within
currently available experimental resolution (López-Martens et al. 2005). Furthermore, this
technique allows for an unprecedented time resolution of the plasma evolution, which is of
great use in experimental validation of PIC simulations. This technique might also be used
as a direct diagnostic for the evolution of the peak density in the plasma profile, as well
as the line-integrated density. Furthermore, the presence of thin-film interference could be
used to study the early evolution of the plasma surface.
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Appendix A. Relativistic plasma frequency in thermal plasmas

For an isotropic distribution, i.e. 4πp2f (p) = f ( p), we can write (2.7) as

γ̃ −1
ê =

∫
d3p

f̄ (p)
γ

(
1 − (p · ê)2

γ 2

)
=
∫

dp dθ dϕ sin θ
f̄ ( p)
4πγ

(
1 − p2 cos2 θ

γ 2

)
, (A1)

where f̄ = f /ne denote the density-normalised distribution such that
∫

d3p f̄ (p) = 1, and
where we have aligned the θ = 0 axis along ê direction. Performing the angular integrals
yields the effective gamma factor for an isotropic distribution as

γ̃ −1 = 1
3

∫ ∞

0
dp

f̄ ( p)
γ

(
2 + 1

γ 2

)
= 1

3

∫ ∞

1
dγ

f̄ (γ )
γ

(
2 + 1

γ 2

)
, (A2)

where, in the last integral, we have changed variables to γ = (1 + p2)1/2, and we
have absorbed the Jacobian into the distribution function, i.e. f̄ ( p) dp = f̄ (γ ) dγ . This
expression for γ̃ −1 naturally does not have a polarisation dependence.

With (A2), we can calculate γ̃ −1 from a thermal plasma, using the Maxwell–Jüttner
distribution

f̄MJ(γ ) = Θ

K2(Θ)
γ
√
γ 2 − 1 e−Θγ , (A3)

where Θ = mec2/Te is the dimensionless inverse electron temperature, and K2 is the
modified Bessel function of the second kind (of order two). If we take this distribution
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FIGURE 6. Relative reduction of the squared plasma frequency due to the effective gamma
factor, 1 − γ̃−1, for both Maxwell–Jüttner (solid red line) and Maxwell–Boltzmann (blue dashed
line) distributed electrons with temperature Te. The curves for both distributions display an
asymptotic behaviour 1 − γ̃−1 � 5Te/(2mec2) as Te → 0 (black dotted line).

in (A2), we obtain

γ̃ −1
MJ = Θ

3K2(Θ)

∫ ∞

1
dγ
√
γ 2 − 1 e−Θγ

(
2 + 1

γ 2

)
(A4a)

= 2K1(Θ)

3K2(Θ)
+ Θ

3K2(Θ)

∫ ∞

1
dγ

√
γ 2 − 1
γ 2

e−Θγ . (A4b)

The last integral can be solved numerically, the result of which is shown in figure 6.
In order to obtain an explicit analytic result, we can perform the same calculation for

non-relativistic temperatures, Θ � 1. Using the Maxwell–Boltzmann distribution,

f̄MB( p) = 4π

(2π/Θ)3/2
e−Θp2/2, (A5)

in (A2) yields

γ̃ −1
MB = Θ3/2 eΘ/4

6
√

2π
[ΘK0(Θ/4)+ (2 −Θ)K1(Θ/4)]. (A6)

By asymptotically expanding the Bessel functions in (A6) for Θ → ∞, we find the
low-temperature asymptotic behaviour

1 − γ̃ −1 � 5
2Θ

= 5Te

2mec2
as Θ → ∞ (Te → 0), (A7)

where we have expressed the asymptotic behaviour in terms of the relative reduction of
the squared plasma frequency, 1 − γ̃ = 1 − ω̃2

p/ω
2
p. Naturally, (A7) is also an asymptote to

(A4) as the Maxwell–Jüttner distribution approaches the Maxwell–Boltzmann distribution
for low temperatures.

As can be seen in figure 6, when we numerically compare the relativistic (A4) and the
non-relativistic (A6) effective gamma factors, we find that the two expressions agree well
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(a)

(b)

(c)

FIGURE 7. Benchmark test of the PS solver: propagation for 1μm through a homogeneous
plasma with ωp = 0.5ω1. Acomparison is shown of the initial (solid line), analytically (dashed
line) and numerically propagated (dotted line) probe pulses. (a) Real-space waveforms of the
corresponding pulses. The positional coordinate x̄ is relative to the vacuum propagation position
of the pulse centre. (b) Energy spectra of the corresponding pulses. (c) relative group delay τk of
the numerically and analytically propagated pulses.

with each other (to within 5 %) up to temperatures of Te ∼ 10 keV. In either case, the
relative reduction of the squared plasma frequency, 1 − γ̃ = 1 − ω̃2

p/ω
2
p, remains below

5 % for temperatures less than 10 keV. We also see that the low-temperature asymptote is
a good approximation of the full solutions, up to temperatures of several kiloelectronvolts.

Appendix B. Benchmarking of the PS solver

In order to evaluate the numerical accuracy of the PS solver, we have benchmarked it
by propagating a test pulse through a homogeneous plasma. The analytical dispersion
of a pulse in a homogeneous plasma with plasma frequency ωp is given by
Êk(t) = Êk(t=0) exp(−iωkt), where ωk = sgn(k)(c2k2 + ω2

p)
1/2 according to the plasma

dispersion. Note that, unlike in the main body of the paper, the pulse is initialised
with the waveform shown in figure 7(a) already inside the plasma, which means that
the wavenumber spectrum, shown in figure 7(b), still goes all the way down to k = 0
(corresponding to ω = ωp); this is unlike in the main body of the paper, where the pulse
is initialised, and then later measured, in vacuum and, therefore, the transmitted part of
the pulse gets cut off below kcutoff = ωp/c. The benchmark tests were performed with the
same numerical settings as used in the main body of the paper, described in § 4.2.

Figure 7 shows the results from one such benchmark, where the pulse has been
propagated for 1 μm through a plasma with plasma frequency ωp = 0.5ω1 (i.e. ne =
0.25nc), where ω1 is the central frequency of the test pulse. This plasma frequency is
close to that of the plastic target used in this paper. Figure 7(a) shows the initial (solid
blue line) pulse real-space waveform as well as the analytically (dashed green line) and
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numerically (dotted red line) propagated pulses. There is no discernible difference between
the analytical and numerical cases. Figure 7(b) shows the energy spectrum, for the three
cases as above, and figure 7(c) shows the relative group delay τk = �φ̄k/�ω from § 3.1.
Again, there is no discernible difference between the numerical and analytical curves; the
relative error between the PS numerical and analytical dispersion, as represented by τk, is
less than 10−5 in the wavenumber range 0 ≤ k ≤ 2k1. Similar performances are seen when
the plasma density is varied between ωp = 0 (vacuum) and ωp = 0.8ω1 (aluminium), and
with varying propagation lengths up to 10 μm. These benchmark tests demonstrate the
extremely low numerical dispersion of the PS solver.
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