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Abstract

Integrated pest management (IPM) seeks to minimize the environmental impact of pesticide
application, and reduce risks to human and animal health. IPM is based on two important
aspects – prevention and monitoring of diseases and insect pests – which today are being
assisted by sensing and artificial-intelligence (AI) techniques. In this paper, we surveyed
the detection and diagnosis, with AI, of diseases and insect pests, in cotton, which have
been published between 2014 and 2021. This research is a systematic literature review. The
results show that AI techniques were employed – mainly – in the context of (i) classification,
(ii) image segmentation and (iii) feature extraction. The most used algorithms, in classifica-
tion, were support vector machines, fuzzy inference, back-propagation neural-networks and
recently, convolutional neural networks; in image segmentation, k-means was the most
used; and, in feature extraction, histogram of oriented gradients, partial least-square regres-
sion, discrete wavelet transform and enhanced particle-swarm optimization were equally
used. The most used sensing techniques were cameras, and field sensors such as temperature
and humidity sensors. The most investigated insect pest was the whitefly, and the disease was
root rot. Finally, this paper presents future works related to the use of AI and sensing tech-
niques, to manage diseases and insect pests, in cotton; for instance, implement diagnostic, pre-
dictive and prescriptive models to know when and where the diseases and insect pests will
attack and make strategies to control them.

Introduction

Cotton (Gossypium hirsutum L.) is an economically important crop. Cotton is the main source
of natural textile fibre, and one of the most important oil crops (Zhang et al., 2017). Cotton
contains 49 species distributed throughout the most tropical and subtropical regions of the
world. The world’s cotton industry represents a multibillion-dollar enterprise, from the pro-
duction of raw fibre to finished textile products (Smith and Cothren, 1999). Between 2016
and 2017, 32.4 million hectares were planted in more than 80 countries (Carvalho et al., 2018).

Diseases and insect pests, in cotton, generate large economic losses. If they are not con-
trolled in time, that is, at an early stage, they can cause an infestation, and decrease production
yield and quality of the harvested product (El-Wakeil and Abdallah, 2014). As an example, in
Brazil, annual losses, in agricultural production, due to insect pests, can reach an average of
7.7%, equivalent to approximately US$ 17.7 billion (Oliveira et al., 2014). Entomological
and pathogenic problems are one of the causes of low yields and economic losses in cotton
(Anees and Shad, 2020; Chohan et al., 2020).

One of the ways to control diseases and insect pests is through agrochemicals, but this (i)
increases production costs and (ii) generates a negative impact on the environment. This is
why integrated pest management (IPM) seeks to minimize the environmental impact of pesti-
cide application, and reduce risks to human and animal health (Simberloff and Rejmanek,
2011; FAO, 2017). IPM is based on two important aspects – prevention and monitoring of
diseases and insect pests – which today are being assisted by sensing and artificial-intelligence
(AI) techniques. Research on object-recognition and computer vision has led to advances in
factory automation, assembly-line industrial inspection systems and medical imaging
(Andreopoulos and Tsotsos, 2013). In the detection of diseases and insect pests, computer
vision has led to advances in the development of precision agriculture (Solis-Sánchez et al.,
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2009; Patrício and Rieder, 2018; Habib et al., 2020). In addition to
computer vision, sensors (e.g. temperature sensors, soil and mois-
ture sensors) allow data acquisition for analysis and predictions
(Pratheepa et al., 2016).

For the analysis of diseases and insect pests, expert systems
have also helped to make better decisions and to assist farmers
to prevent or control diseases and insect pests (Boissard et al.,
2008; Abu-Nasser and Abu-Naser, 2018; Alzamily, 2018).
Expert systems contributed to improve the productivity and qual-
ity of the cultivated products, which is related to the objectives of
smart agriculture (SA): (i) to increase productivity, (ii) to improve
food security, (iii) to improve adaptation and resilience to climate
change and variability and (iv) to reduce greenhouse gas emis-
sions (FAO, 2013).

SA uses the interrelationship of (i) sensor-network, (ii)
grid-computing and (iii) context-aware computing to manage
the agriculture process. SA allows decisions to be made based
on the acquisition of data from the agricultural context
(Aqeel-Ur-Rehman and Shaikh, 2009; García et al., 2020). Some
of the technologies used in SA are robotic automation, data ana-
lytics and remote sensing (Grady et al., 2019). AI techniques are
employed in SA for the following tasks (Bannerjee et al., 2018): (i)
general crop management, (ii) pest management, (iii) disease
management, (iv) agricultural product monitoring and storage
control, (v) soil and irrigation management, (vi) weed manage-
ment and (vii) yield prediction. In this systematic literature review
(SLR), we focus on pest management.

Some SLRs have been made in relation to pest management,
but none – specifically – to cotton. Patrício and Rieder (2018)
conducted an SLR of computer vision and AI, in precision agri-
culture, for grain crops (maize, rice, wheat, soybean and barley),
and aspects related to disease detection, grain quality and pheno-
typing. Zhang et al. (2019) conducted an SLR on monitoring
plant diseases and pests through remote-sensing technology, not
including in-situ sensors: the main topics were sensing technolo-
gies and feature extraction. The previous study included four
papers related to cotton between 2004 and 2011. Boissard et al.
(2013) conducted a brief review of the application of image pro-
cessing to identify agricultural pests on various crops not includ-
ing cotton. Bannerjee et al. (2018) conducted a literature survey
on AI, in agriculture, in general. For cotton cultivation, they
included three papers, in the category of crop management, before
1989; and one paper, on yield prediction, in 2008. Finally, Iqbal
et al. (2018) made an SLR of automated detection and classifica-
tion of citrus-plant diseases using image-processing techniques.
Table 1 shows the summary of these reviews. According to the
above, an SLR for cotton is needed (i) to analyse articles that
used AI techniques to manage diseases and insect pests, in cotton;
(ii) to know the most recent state-of-the-art, given the continuous
advances in the area and (iii) to identify future work directions.

The objective of this SLR is to establish the state-of-the-art
research on the management (detection, prediction, diagnosis
and prescription), of diseases and insect pests, in cotton. The
main contributions of this article are the following. Firstly, a
description of the cotton diseases and insect pests was investigated
through the use of AI and sensing techniques, from 2014 to 2021.
Secondly, an analysis of the selected papers. Finally, a definition
and discussion of the current challenges on AI techniques, for
pest and disease management, in cotton.

Background

In what follows, a background of cotton diseases and insect pests
is presented.

Cotton insect pests

Insects are classified as pests when the damage they cause
decreases the yield of the farmer’s products (Dent and Binks,
2020). The insect pests described as follows were selected due to
the severity of their damage and greater presence (Presley, 1954;
Carpenter, 1983; Ñañez, 2012), or because they have been much
studied.

Boll weevil (Anthonomus grandis)
Boll weevil is the main pest in cotton around the world, directly
affecting cotton production (Coelho et al., 2016; Grigolli et al.,
2017; Ben Guerrero et al., 2020). Adults feed on fruiting forms,
leaf petioles and terminal growth (Ellis and Horton, 1997).

Whitefly (Bemisia tabaci)
Whitefly infests cotton and many other plants, for example,
tomato, soybean, paprika and rose (Martin et al., 2008; Xia,
2012; Barbedo, 2014; El-Wakeil and Abdallah, 2014; Xia et al.,
2014). The whitefly reduces the performance, or even kills the
plant, by feeding on the sap. In addition, the whitefly can also
transport viruses (El-Wakeil and Abdallah, 2014). The whitefly
is one of the most prominent insect pests and it is present in
two stages of cotton: growing and fruiting.

Thrips (Thrips tobacco)
Thrips can occur in plants such as cotton, tomato, avocado, broc-
coli and lettuce (Solis-Sánchez et al., 2011; Xia et al., 2014;
Shahzadi et al., 2016). Thrips’ damage can stunt growth which
impacts crop performance (El-Wakeil and Abdallah, 2014). The
thrips infest in the seedling stage.

Bollworms
There are two types: (i) American bollworm (Helicoverpa armi-
gera) and (ii) pink bollworm (Pectinophora gossypiella).

Table 1. Summary of reviews related to this SLR

Article Objective

Patrício and Rieder (2018) Grain crops: disease detection, grain quality and phenotyping using computer vision and AI.

Zhang et al. (2019) Monitoring plant diseases and pests through remote-sensing technology.

Boissard et al. (2013) Image processing for identification of agricultural pests on various crops.

Bannerjee et al. (2018) AI in agriculture.

Iqbal et al. (2018) Citrus plant: detection and classification of diseases using image processing techniques.
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Bollworms can infest cotton, tomato and okra. In a severe infest-
ation, bollworms may cause high damage to the plant. The larvae
feed on cotton boll in the fruiting stage (El-Wakeil and Abdallah,
2014).

Cotton diseases

Diseases may be caused by fungus (mainly), bacteria or nema-
todes (Presley, 1954; Carpenter, 1983; Ñañez, 2012). The most
important diseases based on the damage they do to cotton are
described below.

Cotton diseases with the most damage

Bacterial blight (Xanthomonas campestris pv. Malvacearum)
The damage of bacterial blight disease is that the leaf veins
blacken causing a ‘blighting’ appearance, causing defoliation
and rotting. It can infect all growth stages of cotton, and can
quickly spread to other areas of the field through wind-driven
rain or irrigation (Cox et al., 2019).

Fusarium wilt (Fusarium oxysporum f. sp. Vasinfectum)
Damage caused by fusarium wilt disease includes brown discol-
ouration of the vascular system, plant stunting, plant wilt, necrosis
and death. The pathogen that causes this disease is difficult to
control. It spreads through the soil, in which it can survive for
a long time, and through plant debris and seeds (Cox et al., 2019).

Cotton diseases most studied

The most studied diseases in the literature are described below.

Root rot (Phymatotrichum omnivorum)
The fungus attacks the plant root, blocks the vascular elements,
inhibiting the movement of water. The leaves turn yellow or
brown and then wilt rapidly, causing death in a few days
(Pammel, 1888; Uppalapati et al., 2010). The symptoms usually
begin during extensive vegetative growth, are more visible during
flowering and fruit development and continue through the grow-
ing season (Smith et al., 1962).

Grey mildew (Ramularia areola)
The disease is produced by a fungus. Initial symptoms appear,
firstly, on lower leaves after the first boll set. They are light
green to yellow-green translucent spots bounded by veinlets
(called areolate) on the upper surface of the leaves. The severe
infection leads to defoliation and premature boll opening
(Chohan et al., 2020). R. areola is the most important foliar cotton
disease; its infection can cause boll abortion, malformation of
bolls and lower fibre quality (Xavier et al., 2019).

Pest management and AI

AI supports decision-making activities of pest management, such
as monitoring and control. Some examples of the application of
AI in pest management are (i) pest identification (Deng et al.,
2018; Roldan-Serrato et al., 2018), (ii) pest counting (Xia et al.,
2014; Yao et al., 2014) and (iii) pest-spread prediction (Hudgins
et al., 2017; Chen et al., 2020; Ji et al., 2020). In disease manage-
ment, AI has been used for (i) disease recognition (Habib et al.,
2020; Velasquez et al., 2020) and for (ii) early plant-disease fore-
cast (Khattab et al., 2019). AI has also been used for soil and irri-
gation management (Navinkumar et al., 2020; Talaviya et al.,
2020) and weed management (Partel et al., 2019; Sudars et al.,
2020; Monteiro et al., 2021). In this paper, we only focus on dis-
ease and insect pest management.

Materials and methods

The methodology for reviewing the papers was based on
Kitchenham et al. (2010). The bibliographic analysis, in the
domain under study, involved two steps: (a) collection of related
work and (b) detailed review and analysis of these collected
works. In the first step, a keyword-based search for scientific
papers, between 2014 and 2021, was performed to know the
most recent state-of-the-art. Although there are earlier works
(Willers et al., 1999, 2005, 2009; Boissard et al., 2008; Martin
et al., 2008), they were not included because they did not comply
with the range of dates. Sources were the scientific databases:
Scopus, ScienceDirect, Taylor and Francis, Springer and Google
Scholar. The results of each database were merged, and later,
the duplicates were deleted. Table 2 lists the research questions
and their search queries.

The following inclusion criteria were used. IC-1: include pub-
lications in journals and conferences whose titles are related to the
management and diagnosis of insect pests or diseases. IC-2:
include publications in journals and conferences that contain key-
words that match those defined in the search string. IC-3: include
publications whose summary and/or introduction and/or conclu-
sions are related to the selected topic. Finally, IC-4: include studies
in English. The following exclusion criteria were applied. EC-1:
exclude publications that do not match the previous inclusion cri-
teria. EC-2: exclude all duplicates. EC-3: exclude books. EC4:
exclude documents in the form of editorial, abstract, keynote, pos-
ter. EC5: exclude opinion pieces or position papers.

The list of the final papers, by research questions, is presented
in Table 3. Papers that answer RQ2 also answer RQ1. Google
Scholar included results of Scopus, as well Scopus included results
of Science Direct, Springer and Taylor and Francis.

In general, the search strings were applied to search in the art-
icle title, abstract and keywords. In the scientific databases, 2057
papers were found. With these papers, the selection filters were
applied and, finally, 30 were selected. Of the 30 papers, 30

Table 2. Research question and search queries of this SLR

Research question Search query

RQ1 – How is AI used to manage diseases and insect
pests of cotton?

(‘artificial intelligence’ OR ‘machine learning’ OR ‘computer vision’) AND (‘cotton crop’ OR ‘cotton
farming’ OR ‘cotton yield’) AND (disease OR pest OR insect)

RQ2 – How are sensing techniques used to detect
diseases and insect pests of cotton?

(‘remote sensing’ OR ‘wireless sensor networks’) AND (‘cotton crop’ OR ‘cotton farming’ OR
‘cotton yield’) AND (disease OR pest OR insect)

18 R. Toscano‐Miranda et al.
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respond to RQ1 and 20 respond to RQ2. Figure 1 shows the flow-
chart of the selection process.

In the second step, the 30 selected papers from the first step
were analysed one by one, considering the research questions.

Results

This section explains the SLR results, particularly, it analyses the
selected papers.

General characteristics of the selected studies

Thirty papers met the eligibility criteria and were included in this
review – according to the inclusion/exclusion process. In total,
66.7% were about diseases and 33.3% about insect pests. The dis-
tribution of the studies, by country, is shown in Fig. 2. These stud-
ies were conducted in five countries: India (66.7%), the United
States (13.3%), Brazil (10%), China (6.7%) and Pakistan (3.3%).
Not surprisingly, India represents the highest percentage, as it is
the major producer of cotton, ranked number one in the world.
The production of cotton in these five countries is among the
top ten in the world. India produces about ∼6000 metric tonnes,
China ∼5000, the United States ∼4000 and Pakistan and Brazil
∼2000 (Azam et al., 2020).

AI techniques used for the management of diseases and insect
pests

This section describes the techniques used for the management
(detection, diagnosis, etc.), of diseases and insect pests, in cotton
agriculture.

Insect pests
To identify whitefly, Sangari and Saraswady (2016) presented a
pest-image segmentation using Marker-Controlled Watershed
Transformation (MWT), which was compared with a fuzzy
c-means (FCM) clustering. The results showed that MWT per-
forms better than FCM, with a better convergence rate. Sangari
and Saraswady (2016) used nonlinear assessments for the meas-
urement of image distortion: the parameters evaluated were struc-
tural content (SC), peak signal-to-noise ratio (PSNR), normalized
correlation coefficient (NK), normalized absolute error (NAE)
and average difference (AD).

Shahzadi et al. (2016) proposed a rule-based system to diag-
nose whitefly and other insect pests. The rule-based system
used moisture sensors, temperature sensors, humidity sensors
and leaf-wetness sensors. For knowledge acquisition of the expert
system, they used three inputs: (i) domain experts, (ii) research
and (iii) field observations.

Kandalkar et al. (2014) used the following techniques to iden-
tify H. armigera: (i) for image segmentation, a saliency map; (ii)

for feature extraction, the energy of an image as a feature vector
with the discrete wavelet transform (DWT) – instead of colour,
shape and texture features and (iii) for pest classification, a back-
propagation neural-network (BPNN).

Pratheepa et al. (2016) used Shannon’s information theory
(SIT) to find significant factors that affect H. armigera incidence.
The results showed that correlation analysis revealed that crop
stage is negatively correlated with pest population, which is true
because the H. armigera population started to increase when
the crop was in an earlier stage of fruiting and boll formation,
and started to decline when the crop was in boll-bursting stage.
The crop stage, followed by the number of rainy days in a week
and relative humidity, were crucial in the pest population fluctu-
ation, which also had seasonal effects. In addition, they found that
SIT is more suitable to find significant factors, in pest surveillance
data, rather than regression analysis.

To evaluate the severity of mealybug, Singh et al. (2016) devel-
oped a model to map mealybug damage using remote-sensing
indices. They used multiple linear regression for data analysis
and evaluated the relationship between spectral vegetation indices
(SVIs) and severity index. These two indices had a huge correl-
ation between healthy and mealybug-infested cotton.

Ranjitha et al. (2014) used Pearson correlation to predict thrips
damage. They determined the correlation between canopy reflect-
ance and SVIs. Recently, Alves et al. (2020) used convolutional
neural networks (CNNs) to classify 13 insect pests (e.g. H. armi-
gera, Aphis gossypii, A. grandis, etc.). They used a modified deep
residual learning (RestNet34*). RestNet34* improved the accuracy
of other algorithms: local binary patterns with support vector
machine (LBP-SVM), AlexNet, ResNet34 and ResNet50.

The distribution of the reviewed papers according to whether
they used the classification algorithms, image segmentation or a
combination of both is shown in Table 4. Seven papers focused
on insect-pest classification (the majority). For image classifica-
tion, the AI techniques used were based on artificial neural net-
works (ANNs), regression and rules. Finally, two papers studied
image segmentation.

Diseases
To detect Phyllosticta gossypina, Zhang et al. (2018) proposed an
active-contour model (ACM) – based on a global gradient and
local information – to detect the disease from images. ACM
was more accurate in segmentation – and with lower running
time – than geodesic active contour, chan-vese and local binary
fitting. In a complex background, ACM can segment the leaves
of cotton with uneven illumination, shadow and fuzzy edges.
The results showed that ACM is the most suitable for the segmen-
tation of diseased leaves under natural conditions.

Rothe and Rothe (2019) used another technique in image seg-
mentation to detect bacterial leaf blight, Myrothecium and
Alternaria. They used Otsu’s segmentation to capture the image
of a diseased leaf in such a way that its background is kept intact.
This allowed the separation of the spot from the underlying
organic background of the leaf. In the stage of classification,
they used a BPNN. The accuracy of the classification was
97.14% for Alternaria, 93.3% for bacterial blight and 96% for
Myrothecium.

Patil and Zambre (2014) also used Otsu’s segmentation, but
their research focused on cotton-leaf spot classification. They
also used other techniques in the process: (i) for image segmen-
tation, global threshold, variable threshold and Otsu’ segmenta-
tion for an automatic threshold; (ii) for feature extraction,

Table 3. Data sources and results of the search queries of this SLR

RQ1 RQ2 Final selection

10 7 10

15 10 15

5 3 5

30 20 30
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features of diseased leaf spot; (iii) for shape feature extraction,
general descriptors such as the number of the object, area of
the shape object, width and length of the object and area of the
image. They used the SVM as the classification algorithm. For
the classification, they determined that the morphology and the
colour of leaf spots were very important because it provided crit-
ical information on the visual representation of the disease.

To detect bacterial blight, Alternaria, and root rot,
Prashar et al. (2017) created an automatic cotton-crop

disease-recognition method using the different invariant feature
descriptors and SVM. In the pre-processing of the images, all
the images were standardized by resizing them to the same
size. After, the images were converted into two-dimensional
images, using a grey-scale conversion, and a Gaussian filter
was used for noise removal of the grey-scale images. As a feature
descriptor, the histogram of oriented gradients (HOG) was
used. Finally, for classification, they used SVM with 85%
accuracy.

Fig. 1. Flowchart of the selection process for this SLR.

Fig. 2. World map of reviewed research articles in this
SLR.

Table 4. Use of AI for insect-pest management in cotton according to the problem of classification or segmentation

References

Problem AI technique

Classification
Image

segmentation ANN Rule-based Regression Clustering

Nigam et al. (2016), Ranjitha et al. (2014), Singh
et al. (2016)

X X

Dalmia et al. (2020), Alves et al. (2020), Kandalkar
et al. (2014)

X X

Shahzadi et al. (2016) X X

Pagariya and Bartere (2014), Sangari and
Saraswady (2016)

X X

ANN, artificial neural networks.

20 R. Toscano‐Miranda et al.
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Table 5. Type of problem to solve v. AI techniques (ANNs, rule-based, regression, clustering, SVM, DT or gradient-based) to detect cotton diseases

References

Problem AI techniques

Classification
Image

segmentation
Feature

extraction ANN Rule-based Regression Clustering SVM DT Gradient-based

Caldeira et al. (2021), Liang, (2021), Patil and
Burkpalli (2021), Patil and Patil (2021)

X X

Rastogi and Solanki (2015) X X X

Toseef and Khan (2018) X X

Yang et al. (2014) X X X

Xavier et al. (2019) X X X X

Chopda et al. (2018) X X

Dumare and Mungona (2017), Usha Kumari
et al. (2019)

X X X X

Sarangdhar and Pawar (2017) X X X X X

Prashar et al. (2017) X X X X X

Patil and Zambre (2014) X X X X

Rothe and Rothe (2019) X X X X

Revathi and Hemalatha (2014) X X X

Zhang et al. (2018) X X
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Another study, by Sarangdhar and Pawar (2017), included
SVM to classify five cotton leaf diseases (bacterial blight,
Alternaria, grey mildew, Cercospora and fusarium wilt). The
main steps for detection were: (i) image acquisition; (ii) pre-
processing (the images were resized, and the noise was removed);
(iii) segmentation (colour transformation and threshold were
used to extract from the region of interest of the lesion region);
(iv) feature extraction (colour and texture features were extracted
using partial least-square regression (PLSR)) and (v) classification
(SVM regression with Gaussian kernel). The overall classification
accuracy was 83.26%.

For the detection of ramularia leaf blight, Xavier et al. (2019)
used multispectral classifications, with four classifiers, in Waikato
environment for knowledge analysis software: (i) multinomial
logistic regression (MLR), (ii) multinomial logistic regression
with boosting (MLRb), (iii) SVM and (iv) random forest (RF).
Xavier et al. (2019) focused on the application of different algo-
rithms to minimize the possibility that the obtained performance
of infection level may be caused by the specifications of a single
classifier. The MLR used a linear-predictor function and required

small training data to estimate the parameters for classification.
SVM was adjusted to nonlinear class predictors and performed
well in the multi-spectral remote-sensing classification. In add-
ition, the results showed that the other two approaches – MLRb
and RFT – were affected more by overfitting of training data or
higher amounts of training data demanded: MLRb because of
its underlying boosting and RF because it was an ensemble
approach based on bootstrap aggregating (bagging).

To map cotton root rot, Yang et al. (2014) evaluated (i) itera-
tive self-organizing data analysis (ISODATA) unsupervised classi-
fication applied to multi-spectral images, (ii) unsupervised
classification applied to normalized difference vegetation index
(NDVI) and (iii) two supervised-classification techniques,
BPNN and SVM. Images were taken from airborne multi-spectral
imagery. All methods appeared to be equally effective and accur-
ate, for the detection of cotton root rot, for site-specific manage-
ment of this disease. Especially, the NDVI-based classification can
be easily implemented without the need for complex image pro-
cessing capabilities. Results demonstrated that ISODATA applied
to multi-spectral imagery (94%), NDVI combined with unsuper-
vised classification (94.5%) and the supervised classifiers (BPNN
(95.5%) and SVM (95%)) are all effective to detect root rot.

Yang et al. (2016) used multispectral imaging to detect consist-
ency and changes, in cotton root rot disease, for 10 years. They
used ISODATA for root rot classification. The result showed
that NDVI-based ISODATA classification appears to be a simple
and effective method to generate root rot infection maps.

Similarly, Song et al. (2017) classified the root rot with ISODATA,
with the minimum spectral distance to group each pixel into a class,
based on the four spectral bands (e.g. red-green-blue (RGB) and
near-infrared (NIR)) and the NDVI combination.

For automatic detection of alternaria leaf spot, grey mildew
and rust foliar, Usha Kumari et al. (2019) created an automatic
disease detection for the three diseases. Usha Kumari et al. used
the k-means clustering algorithm for disease image segmentation
of the cotton leaf. The diseased cluster was segmented into three
clusters. From each cluster, the features mean, contrast, energy,
correlation, standard deviation, variance, entropy and kurtosis
were extracted. The extracted features were given to a BPNN
and an SVM for classification. The performance of these classi-
fiers was compared, and the following results were obtained:
The alternaria leaf spot disease was classified 77.4% for BPNN
and 84.3% for SVM; grey mildew disease was 87.8% for BPNN
and 98.7% for SVM; rust foliar fungal disease was 90.1% for
BPNN and 93.2% for SVM. The overall average accuracy of the
BPNN classifier was 85.1% and for SVM was 92.06%. SVM clas-
sifiers gave more accurate disease detection than BPNN.

Fig. 3. AI techniques used for the classification and
image segmentation of cotton diseases and insect
pests. AC, active contour model based on global gradi-
ent and local information; MCWT, marker-controlled
watershed transformation; ISODATA, iterative self-
organizing data analysis; SVM, support vector machine;
BPNN, back-propagation neural-network; CNN, convo-
lutional neural networks.

Fig. 4. Image feature-extraction algorithms of cotton diseases and insect pests. HOG,
histogram of oriented gradients; PLSR, partial least square regression; DWT, discrete
wavelet transform; EPSO, enhanced particle swarm optimization.
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To identify bacterial blight, two articles were based on k-means
clustering: Dumare and Mungona (2017) used k-means for image
segmentation and SVM for classification; and Pagariya and
Bartere (2014) used k-means to identify the disease. To identify
different diseases, Rastogi and Solanki (2015) developed an expert
system with a fuzzy inference to identify the diseases at an early
stage. The classification serves at two levels: (i) classification
and grouping of disease, having the same causing agents – such
as viruses, bacteria and fungi – based on a feature vector extrac-
tion and (ii) reclassification based on SVM.

To diagnose 21 cotton diseases, Toseef and Khan (2018) pro-
posed a fuzzy inference system for the diagnosis of crop diseases.
The system diagnosed the main diseases of cotton and wheat.
Twenty-one diseases (e.g. bacterial blight, leaf curl, root rot, verti-
cillium wilt and anthracnose) were diagnosed with 99% of accur-
acy. Toseef and Khan (2018) had three main reasons to apply
fuzzy logic for decision-making: (i) rules are derived from expert
knowledge and described in natural language; (ii) fuzzy logic is a
powerful knowledge representation mechanism for linguistic
knowledge and (iii) fuzzy logic handles the vagueness and uncer-
tainty inherent in the problem domain, which is not handled by
classical set theory. Seventy-three inference rules were built for
decision-making.

To detect bacterial blight, fusarium wilt, leaf blight, root rot,
micro-nutrient and verticillium wilt diseases, Revathi and
Hemalatha (2014) proposed a new feature extraction method
using enhanced particle swarm optimization (EPSO) with skew-
divergence. The obtained features were classified using SVM,
BPNN and fuzzy classifiers. The accuracy was of 91, 93 and
94% for SVM, BPNN and fuzzy, respectively. The results showed
higher accuracy when EPSO is combined with fuzzy classifiers.

To predict anthracnose and grey mildew diseases, Chopda
et al. (2018) used temperature sensors and soil-moisture sensors.
They used a decision-tree (DT) classifier because it is a simple
classification technique that implies a set of questions about the
attributes of the test data set. The results showed that the system
can predict the disease with parameters such as temperature and
soil moisture, based on the previous year data.

Recently, Caldeira et al. (2021) used CNN (GoogleNet and
Resnet50 with 86.6 and 89.2% of accuracy, respectively) for cotton
disease classification. The results were better for the processing of
images compared with traditional approaches such as SVM,
KNN, ANN and neuro-fuzzy. Liang (2021) also used CNNs
(Vgg, DesenNet, ResNet and S-DesneNet). These CNNs were
optimized with the spatial structure optimizer (SSO). The result
showed more accuracy in classification in small samples.

To detect the diseases, the authors of the reviewed papers
focused on classification, image segmentation or feature extrac-
tion (see Table 5). Ten papers focused on disease classification.
Six papers combined image segmentation and classification.
One paper combined classification and feature extraction.
Among the AI techniques used, those based on SVMs and
ANNs were the most used. Regarding image segmentation, all
the works used k-means.

Summary
Many AI techniques were used to detect cotton diseases and
insect pests. Such AI techniques allowed an automatic detection
by crop symptoms, environmental conditions or physical charac-
teristics of the pest or disease. Particularly, it was found that the
articles focused on classification algorithms, image segmentation
and feature extraction. The classification algorithms that stood

out most for their results were CNNs, ISODATA, BPNN, fuzzy
inference and SVMs, the latter more frequently (see Fig. 3). For
segmentation, algorithms such as ACM, MWT and Otsu’s seg-
mentation were used (Fig. 3). And, finally, for feature extraction,
DWT, EPSO, HOG, and PLSR were used in equal proportion
(Fig. 4).

Some reviewed papers made comparisons of different algo-
rithms. Revathi and Hemalatha (2014) found that EPSO for fea-
ture extraction, and SVM or BPNN for classification, work best.
Yang et al. (2014) compared four classification algorithms
(ISODATA applied to multispectral imagery, NDVI combined
with unsupervised classification and two supervised classifiers
(BPNN, SVM)) with very close results. Usha Kumari et al.
(2019) found that k-means for image segmentation and SVMs
for classification gave better results than k-means for image seg-
mentation and BPNN for classification. Xavier et al. (2019) eval-
uated the classification algorithms MLR, MLRb, SVMs and RFT,
obtaining similar results. The most used technique was SVM
(26%), outperforming BPNN (11%) (see Fig. 3). Nonetheless, in
2021, CNNs got the best performance (Caldeira et al., 2021;
Liang, 2021).

Sensing techniques used for the detection of pests and
diseases

This section describes sensing techniques, used to detect diseases
and insect pests, on cotton.

Cameras
Cameras were used alone or through platforms such as satellites,
aircraft or unmanned airborne vehicles (UAVs). The details are
presented below.

Without platform. To detect P. gossypina, Zhang et al. (2018) pro-
posed an automatic segmentation of a diseased leaf, to improve
the image-segmentation performance of cotton leaves in a natural
environment. They used a digital single-lens reflex (DSLR) cam-
era with a Canon electro-optical system.

Satellite. To evaluate mealybug severity, Singh et al. (2016) eval-
uated the relationship between mealybug severity and remote-
sensing indices. The authors used Landsat TM5 satellite images
with spectral bands RGB, NIR, shortwave infrared and thermal.
The mealybug-infested cotton crop had a significantly lower
reflectance (33%) in the NIR region, and higher (14%) in the vis-
ible range of the spectrum, when compared with the non-infested
cotton crop, having NIR of 48% and visible-region reflectance of
9%. These results indicate that remote sensing has the potential to
distinguish damage by mealybug and quantify its abundance in
cotton.

Unmanned airborne vehicle. To detect ramularia leaf blight,
Xavier et al. (2019) used multispectral imagery from an UAV.
The camera captured wavelengths of 520–600 nm (green band),
630–690 nm (red band) and 760–900 nm (NIR band). The cam-
era was on an UAV with flight heights of 100, 300, 500 and
700 m. This type of imaging helped to detect the disease; however,
the images were not sufficient to differentiate finer-scaled disease
severity levels. The results show that a camera with a higher reso-
lution is needed to improve the disease classification.

The Journal of Agricultural Science 23

https://doi.org/10.1017/S002185962200017X Published online by Cambridge University Press

https://doi.org/10.1017/S002185962200017X


Aircraft. Yang et al. (2016) used multispectral imaging to detect
consistency and changes, in the root rot disease, over 10 years
(2002–2012). Firstly, the authors used cameras in three bands:
green (555–565 nm), red (625–635 nm) and NIR (845–857 nm).
Later, they used cameras in four spectral bands: blue (430–470
nm), green (530–570 nm), red (630–670 nm) and NIR (810–
850 nm). Finally, the authors used an RGB camera and NIR
(720 nm). All images were acquired from an aircraft at an altitude
of 3050 m. Results demonstrated that root rot tends to occur in
the same general areas within fields in recurring years, even
though variations in infection patterns exist over the years.

To identify root rot, Song et al. (2017) used two methods for
image acquisition – airborne multispectral imagery and satellite
imagery – to identify infested areas. In the first case, they used
two Nikon D810 digital complementary metal–oxide–semicon-
ductor cameras. One camera was used to capture RGB images,
and the other camera captured NIR images. Airborne images
were taken at an altitude of 3050 m. Both cameras simultaneously
and independently captured images. For the satellite imagery, they
used the Sentinel-2A in the bands RGB and NIR. The authors
assessed the potential of 10-m Sentinel-2A satellite imagery for
root rot detection and compared it with airborne multispectral
imagery. Accuracy assessment showed that the classification
maps from the Sentinel-2A imagery were better than the
airborne-image classification. However, they found some small
root-rot areas were undetectable, and some non-infested areas
within large root-rot areas were incorrectly classified as infested
due to the images’ coarse spatial resolution. These results demon-
strate that freely-available Sentinel-2 imagery can be used as an
alternative data source for identifying root rot and creating pre-
scription maps for site-specific management.

Sensors
Three types of sensors were used: field sensors, spectroradiometer
and microscope. In what follows, we explain each type.

Field sensors. To detect bacterial blight, Alternaria, grey mildew,
Cercospora and fusarium wilt, Sarangdhar and Pawar (2017) used
image acquisition, environment temperature sensors, humidity sen-
sors, soil-moisture sensors and water sensors to detect and control
diseases in cotton. A Nikon camera (non-specified model) captured
RGB images. Environmental temperature sensors, humidity sensors
and moisture sensors were used to monitor the soil. A water sensor
was used to monitor the water level of a pesticide tank. The results
showed that, with timely detection and permanent monitoring, cot-
ton production can be improved.

To predict anthracnose and grey mildew, Chopda et al. (2018)
used environment temperature sensors and soil-moisture sensors.
The results showed that the system can predict cotton-crop dis-
eases with temperature, soil moisture, based on the previous
year data. In the same way, Shahzadi et al. (2016) used sensors
to determine the conditions that favour the appearance of white-
fly, thrips, jassid and pink bollworm. Soil sensors collected data
on soil conditions, soil moisture, soil content and leaf-wetness
sensors. In addition, weather sensors collected data about humid-
ity and temperature.

Finally, Pratheepa et al. (2016) used data mining to find the
significant factors that affect the incidence of the pest H. armigera.
The authors considered for the analysis, as incidence factors, the
crop stage of the cotton, season and abiotic factors such as max-
imum temperature, minimum temperature, morning relative
humidity, evening relative humidity, rainfall and number of rainy

days in a week. The results showed that among all the factors,
crop stage played a major role, followed by the number of rainy
days in a week, and relative humidity, for the insect pest incidence.

Spectroradiometer. To detect and estimate the damage caused by
T. tobacco (Lind), Ranjitha et al. (2014) used a spectroradiometer,
from 70 to 90 days, after sowing. Canopy reflectance was recorded
and SVIs were estimated. The hyper-spectral radiometer recorded
the spectral reflectance in blue (450–520 nm), green (520–590
nm), red (620–680 nm) and NIR (770–860 nm), at 30 cm above
the cotton canopy. The results showed that the reflectance
decreased in NIR, while RGB reflectance increased compared to
undamaged plants. Red band (at wavelengths 691 and 710 nm)
and green-red vegetative index were found to be more sensitive
to thrips damage. The sensitivity curve shows a single peak in
the blue region (at about 496 nm), which is characteristic of the
thrips damage.

To determine a whitefly infestation, Nigam et al. (2016) deter-
mined the relation of the infestation with and biotic stress with
remote sensors. They used a spectroradiometer with different sam-
pling intervals across the spectral region of 350–2500 nm at 1 nm.
Chlorophyll concentration was measured to determine the relation-
ship between whitefly infestation damage severity and chlorophyll
concentration. A whitefly-infested cotton crop showed a low-
reflectance value between 350–1335 nm and 1526–1769 nm.
Whitefly-infested leaf-tissue was damaged and reflectance, in NIR,
also went down drastically compared to healthy plants.

Microscope. To detect bacterial leaf blight, myrothecium and
alternaria present, Rothe and Rothe (2019) used a DSLR cam-
corder and Leica Wild M3C microscope in natural situations.

Summary
Sensing techniques were used to detect cotton diseases and insect
pests. These techniques allowed capturing information of crop
symptoms, environmental conditions or physical characteristics
of the insect pest or disease. Sensing techniques captured (i)
images and (ii) environmental conditions. In the case of the
images, multi-spectral cameras, DSLR cameras, spectroradi-
ometers and microscopes were used (Ranjitha et al., 2014; Yang
et al., 2016; Rothe and Rothe, 2019).

In the case of the cameras, most were installed in UAVs with a
flight altitude between 100 and 700 m, aircrafts with a flight alti-
tude of 3050 m or satellites of low Earth orbit at an altitude of 705
km for Landsat TM5 and 786 km for Sentinel-2A. Cameras, in
38% of the articles, were the most used in the detection of diseases
and insect pests in cotton.

In the case of in-situ sensors, environment-temperature sen-
sors, humidity sensors, soil-moisture sensors, leaf-wetness sensors
and water sensors were used (Nigam et al., 2016; Sarangdhar and
Pawar, 2017). In the selected studies, it was demonstrated that
with low-cost sensors, it was possible to take enough information
to make predictions of insect pests or diseases. The detection
techniques that were used in the selected papers include cameras,
soil moisture sensors, temperature sensors, water sensors, humid-
ity sensors, leaf wetness sensors, spectroradiometers and micro-
scopes (see Fig. 5).

Discussion

In this study, we have systematically searched the scientific litera-
ture, from 2014 to 2021, to establish the state-of-the-art on
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management (detection, diagnosis, etc.) of diseases and insect
pests in cotton. Many AI algorithms were used to detect cotton
diseases and insect pests. AI algorithms allowed an automatic
detection of crop symptoms, environmental conditions or phys-
ical characteristics of the pest or disease.

AI algorithms

Regarding AI algorithms, it was found that articles focused on
classification algorithms, image segmentation and feature extrac-
tion. The classification algorithms that stood out most for their
results were CNNs, ISODATA, BPNN, fuzzy inference and
SVM – the latter most frequently. For segmentation, algorithms,
ACM, MCWT and Otsu’s segmentation were used. Finally, for
feature extraction, DWT, EPSO, HOG and PLSR were equally
used.

HOG focuses on the structure or the shape of an object. HOG
+ SVM gave better results than scale-invariant feature transform
+ SVM or than spectral asymmetry index + SVM. PLSR is often
used when there are a lot of explanatory variables, possibly corre-
lated. A key advantage of DWT is that it has temporal resolution:
DWT captures both frequency and location in timed information.
Regarding EPSO, it has several advantages such as simplicity, con-
vergence speed and robustness.

More recent works have focused on the use of CNN, which has
led to greater accuracy in the classification of pests and diseases
(Caldeira et al., 2021; Liang, 2021). The results were better com-
pared with traditional approaches for the processing of images.
The main disadvantage is that CNN can, sometimes, take much
longer to train (Kamilaris and Prenafeta-Boldú, 2018). To solve
this, Liang (2021) used SSO on the training process, in different
architectures (including Vgg, DesenNet, and ResNet and
S-DesneNet), in small samples.

Insect-pest detection techniques

The most investigated insect pest was the whitefly, followed by
thrips and pink bollworm (see Fig. 6). The sensors that were
used for the whitefly were spectroradiometers, soil-moisture sen-
sors, temperature sensors, humidity sensors and leaf-wetness sen-
sors. In the case of thrips, in addition to the sensors used with

whitefly, satellites were used. These insect pests have been the
most studied because they have the capacity to infest several
crops; for instance, cotton, rose, soybean, corn, pepper, tomato
and lettuce. The degree of infestation is rapid, for example, the
whitefly can lay 130 eggs (Boissard et al., 2008), which is why
early detection of this pest is important. Image recognition was
mainly used, but the analysis of environmental conditions was
also important to discriminate biotic stress (Nigam et al., 2016)
that can encourage the appearance of insect pests; for instance,
this is the case of the whitefly which develops rapidly in warm
weather.

According to the AI problem, whether it was classification,
image segmentation or feature extraction, the authors combined
image sensing or field sensing techniques to detect insect pests
in cotton (see Table 6). Two papers used field sensors to classify
insect pests and four papers used images. Other papers focused
on AI techniques for other tasks (segmentation and feature
extraction) and did not describe the sensing techniques (N/A
means that sensing techniques were not available).

Disease-detection techniques

The most investigated diseases were root rot using cameras (see
Fig. 7), followed by bacterial blight using sensors. The sensors
that were used to detect the bacterial blight were soil-moisture
sensors, temperature sensors, humidity sensors, cameras, micro-
scopes and water sensors (Pagariya and Bartere, 2014;
Sarangdhar and Pawar, 2017; Toseef and Khan, 2018; Rothe
and Rothe, 2019). The research studies were, mainly, conducted
in disease recognition. For this purpose, the authors used close-up
images of diseased leaves of cotton captured with cameras
(Revathi and Hemalatha, 2014; Zhang et al., 2018; Rothe and
Rothe, 2019). Cameras were mounted on aircrafts, satellites or
UAV platforms, to capture images of entire fields of cotton, to

Fig. 5. Sensing techniques used to detect insect pests or diseases in cotton.

Fig. 6. Insect pests for cotton that were studied in the reviewed papers. HA,
Helicoverpa armigera; WF, whitefly; PiBo, pink and American bollworm; PB, pod
borer; RCB, red cotton bug; AG, Anthonomus grandis; mealybug, Me.
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make prescription maps or monitor diseases, in cotton (Yang
et al., 2016; Song et al., 2017; Xavier et al., 2019).

The reviewed papers were classified according to the AI prob-
lem and the sensing techniques to detect diseases (see Table 7).
Most studies used classification with images and some with
field sensors. For the combination of classification and image seg-
mentation, mainly cameras or microscopes (images) were used.
Only two papers used field sensors, one of which supplemented
it with cameras.

Trends in the reviewed articles

The main results from the selected articles are summarized in
Fig. 8. In the upper part, we can note from left to right aspects
such as: (i) AI tasks, (ii) the most used AI techniques, (iii) the
most researched pest and disease in cotton and (iv) the sensing
techniques (for detection). The width of the nodes and their
links is proportional to the number of reviewed articles in each
of the categories. Different colours were used in the links, to facili-
tate the visualization of the connections. Overall, there was more
research on diseases compared to insect pests for cotton. For dis-
eases and insect pests, the AI tasks were classification, image seg-
mentation and feature extraction. SVM and fuzzy inference were
widely used for disease classification, and k-means was used for
image segmentation of diseases and insect pests. The images
were taken with microscopes, spectroradiometers and cameras –
the latter most frequently. Finally, regarding sensing techniques,
soil-moisture sensors, humidity sensors and temperature sensors
were frequently used in combination, for both, diseases and insect
pests.

Comparison of the results with respect to previous SLRs

Same as this SLR, Patrício and Rieder (2018) found that the SVM
classifier was the most used with good results. In addition to
SVM, Iqbal et al. (2018) found neural networks as the most
used for classification. Patrício and Rieder (2018) worked in pre-
cision agriculture for grain crops and Iqbal et al. worked in the
detection of citrus-plant diseases. Iqbal et al. also found that
k-means clustering performs well for image segmentation.
Regarding remote sensing, Zhang et al. (2019) found studies
that used hyperspectral and multispectral systems to monitor
plant diseases and pests.

In the papers reviewed by Patrício and Rieder (2018), they
found that deep learning has been used for the detection of
some stored-grain insects, while Iqbal et al. (2018) found that
deep learning has been used for the detection of some citrus-fruit
diseases. Regarding remote sensing, Zhang et al. (2019) found
studies that used fluorescence and thermal systems, synthetic
aperture radar and light detection and ranging equipment. It is
worth noting that, Zhang et al. did not include studies with in-situ
sensors like this SLR.

Limitations of the selected papers

The limitations of the papers selected according to the research
questions in this SLR are described below.

Limitations of AI to manage diseases and insect pests in cotton
AI has contributed to the development of agriculture, in pest and
disease management, and specifically, to detect and diagnose dis-
eases and insect pests in cotton. AI allows detecting diseases and
insect pests in, timely, quickly and with more precision (Xia et al.,
2014; Khattab et al., 2019). To harvest a high cotton yield, it is

Table 6. Sensing techniques and AI problems to detect insect pests in cotton

References

AI problem Sensing technique

Classification
Image

segmentation
Feature

extraction Images
Field
sensor

Dalmia et al. (2020), Nigam et al. (2016), Ranjitha et al. (2014),
Singh et al. (2016)

X X

Pratheepa et al. (2016), Shahzadi et al. (2016) X X

Sangari and Saraswady (2016) X X N/A N/A

Kandalkar et al. (2014) X X N/A N/A

Alves et al. (2020) X N/A N/A

Pagariya and Bartere (2014) X N/A N/A

Sensing technique for images: cameras or spectroradiometers; mainly cameras.
N/A, not available.

Fig. 7. Diseases for cotton that were studied in the reviewed papers.
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very important the integrated management of diseases and insect
pests (Anees and Shad, 2020; Chohan et al., 2020). Despite the
importance of insect pest and disease monitoring with AI, there
are few works with neural networks, deep learning, deep residual
learning and no work on meta-cognition, which have been used
successfully in other studies (Cheng et al., 2017; Li et al., 2020;
Shi et al., 2020). Finally, no works include simultaneously diseases
and insect pests.

Limitations of sensing techniques to detect diseases and insect
pests
Remote sensing has allowed us to obtain monitoring data, in real-
time, of diseases and insect pests (Singh et al., 2016). This allows
us to provide an overview for large areas using, for example, satel-
lites, airplanes and UAV platforms (Ranjitha et al., 2014; Song
et al., 2017; Xavier et al., 2019). In-situ sensors allow obtaining
data, in real-time, of environmental variables (e.g. temperature,
humidity, moisture) (Pratheepa et al., 2016; Chopda et al.,
2018). However, only one study tried data fusion and included
computer vision with cameras and in-situ sensors to measure sim-
ultaneously soil moisture, temperature, humidity and water
(Sarangdhar and Pawar, 2017). The combination of a larger set
of sensor data can increase the accuracy and truthfulness of the
data. There was no research that combined sensors, AI and phero-
mone traps for boll weevil. There are also no studies, on the pres-
ence of the cotton boll weevil in post-harvest, which take into
account that boll weevil takes refuge for a long period during
post-harvest.

Future research trends

In this review, we found that many AI and sensing techniques
were used in the selected articles. For future research, however,
there are different challenges due to the need to use data to
make better decisions on the treatment of diseases and insect
pests, with the possibility of anticipation of an outbreak. These
challenges are summarized in the next sessions.

Develop predictive models to know when and where the
diseases and insect pests attack

This challenge represents the opportunity to work with the pre-
diction of diseases and insect pests simultaneously, using new
techniques of prediction. Previous research did not deal, specific-
ally, with both at the same time.

Implement prescriptive models to define how to control
diseases and insect pests

The prescriptive models help to determine what needs to be done
to attack diseases and insect pests. The prescriptive models define
what activities and tasks are necessary to do when this type of
problem appears in cotton. These models are important because
they will allow the farmer to know what to do.

Make a smart pheromone traps system to predict the spread of
pests

A smart pheromone traps system must define two aspects: firstly,
determine how the pest spread; secondly, where to put
geo-spatially the traps. This way, the system has the prediction
task and also self-defines where put the traps. None of the previ-
ous systems did this simultaneously.

Develop diagnostic disease models

The diagnostic models allow defining the causes of the disease.
This is important for those who make the decisions because
might attack the causes to solve the problem. Iqbal et al. (2018)
and Zhang et al. (2019) found some papers of detection and diag-
nosis for other crops, but not for cotton.

Make multi-detection models of diseases or pest attacks

This challenge includes multi-label techniques using labels related
to diseases and insect pests (Araujo et al., 2003). This technique
allows detecting, simultaneously, if there are pests and diseases.

Table 7. Sensing techniques and AI problems to detect diseases in cotton

References

AI problem Sensing technique

Classification
Image

segmentation
Feature

extraction Images
Field

sensors

Patil and Patil (2021), Rastogi and Solanki (2015), Toseef and Khan
(2018)

X N/A N/A

Caldeira et al. (2021), Liang (2021), Patil and Burkpalli (2021), Song
et al. (2017), Wang et al. (2020), Xavier et al. (2019), Yang et al.
(2014, 2016)

X X

Dumare and Mungona (2017), Rothe and Rothe (2019) X X X

Patil and Zambre (2014), Prashar et al. (2017), Sarangdhar and
Pawar (2017), Usha Kumari et al. (2019)

X X N/A N/A

Chopda et al. (2018) X X

Revathi and Hemalatha (2014) X X X

Zhang et al. (2018) X X

Sarangdhar and Pawar (2017) X X X X

The image sensing techniques used cameras or microscopes, mainly cameras.
N/A, not available.
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Define a cotton-crop management system using a
cognitive-computing architecture

No articles dealt with cognitive computing. In previous reviews,
only (Boissard et al., 2013) found one study where cognitive vision
was used for pest detection. One challenge is the use of cognitive
computing to manage cotton better. According to Crowder and
Friess (2011), metacognition and metamemory allow AI systems
to reason and adapt to the situation with self-awareness.
Meta-learning facilitates the selection of appropriate AI algorithms,
or adjusts them according to the task (Grąbczewski, 2014).
Meta-reasoning gives systems the ability to reason, deliberate and
self-optimize a decision-making process to produce effective action
on time (Russell and Wefald, 1991; Svegliato and Zilberstein, 2018).

Select the most useful variables

All challenges that have been described need to establish the right
variables for each model. These features can be used to improve
the performance of machine-learning algorithms. The stress in
crops may be generated by variables such as climatic conditions,
pest damage and diseases, and the study and selection of the right
variables can be complex (Ranjitha et al., 2014; Yang et al., 2014).
It is needed to analyse which variables are most useful for each
knowledge model (Pacheco et al., 2014; Jiménez et al., 2021).

Develop smart sticky-traps for whitefly, aphids and thrips

As an example, the whitefly eggs have a length of about 0.2 mm.
Xia et al. (2014) used sticky traps to take whitefly-egg samples in

Fig. 8. Trends in the reviewed articles are divided into diseases and insect pests, AI techniques and sensing techniques. Clas, classification task; FeaExt, feature
extraction task; ImgSeg, image segmentation task; AI techniques (ISODATA, iterative self-organizing data-analysis technique algorithm; SVM, support vector
machine; fuzzy, fuzzy logic; KM, k-means; BPNN, back-propagation neural-network; CNN, convolutional neural networks; OFeaExt, others feature extraction algo-
rithms); pest (WF, whitefly; PiBo, pink bollworm); disease (Rot, root rot; Ramularia, ramularia leaf blight; BB, bacterial blight; GreyM, grey mildew); sensing tech-
niques (SoMoS, soil-moisture sensor; TeS, temperature sensor; WaS, water sensor; HuS, humidity sensor; LeWeS, leaf-wetness sensors; Spect, spectroradiometer).
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tomato crops. Nonetheless, in the articles analysed in this SLR, no
sticky traps were used. These traps could be combined with AI in
a similar manner as pheromone traps. These traps could be used
for boll weevil (A. grandis Boheman), which affects cotton, in sev-
eral countries (Neupert et al., 2018), but only one research was
found related to the boll weevil and the use of AI for its detection
(Alves et al., 2020). Boissard et al. (2013) found one study with
sticky traps, for whitefly and aphids, using video to record the
insects flying.

Conclusions

AI techniques were employed mainly in the context of (i) image
classification, (ii) image segmentation and (iii) feature extraction
of images. These techniques were successfully used for insect
pests and diseases for cotton. The most used sensors were cam-
eras, and field sensors such as temperature and humidity sensors.
Future work should apply knowledge models, combined with the
Internet of Things, to monitor and control diseases and insect
pests.
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