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Abstract

Transformer-based large language models are receiving considerable attention because of
their ability to analyse scientific literature. Small language models (SLMs), however, also have
potential in this area as they have smaller compute footprints and allow users to keep data
in-house. Here, we quantitatively evaluate the ability of SLMs to: (i) score references according
to project-specific relevance and (ii) extract and structuring data from unstructured sources
(scientific abstracts). By comparing SLMs’ outputs against those of a human on hundreds
of abstracts, we found that (i) SLMs can effectively filter literature and extract structured
information relatively accurately (error rates as low as 10%), but not with perfect yield (as low
as 50% in some cases), (ii) that there are tradeoffs between accuracy, model size and computing
requirements and (iii) that clearly written abstracts are needed to support accurate data
extraction. We recommend advanced prompt engineering techniques, full-text resources and
model distillation as future directions.

1. Introduction

Language models are emerging as powerful tools for a wide array of tasks, with a particularly
promising role in processing scientific literature (Agathokleous et al., 2024; Busta et al., 2024b;
Jin et al., 2024; Knapp et al., 2025b; Lam et al., 2024; Simon et al., 2024). Scientific articles compile
results from decades, if not centuries, of effort by scientists worldwide. However, the automation
of classification, summarization and data extraction tasks related to this literature remains a
challenge because natural language is a complex data type. In other fields with intricate data,
such as image and sound, a proven strategy is to build mathematical models of the input data type
that can then be leveraged to summarize, classify or otherwise manipulate the input. Modelling
natural language is a long-standing field of study, but recently, the development and increase
in accessibility of transformer-based language models have led to substantial advances in our
language processing ability. Perhaps we can solve some of the many challenges with automated
processing of scientific literature by applying transformer-based language models.

A considerable number of recent investigations are focused on applying large language
models to scientific literature (Busta et al., 2024b; Jin et al., 2024; Knapp et al., 2025b; Sarumi &
Heider, 2024; Shiu & Lehti-Shiu, 2024). For example, large language models have been utilized to
perform tasks such as text classification, text summarization and question answering (Dalal et al.,
2024; Guo et al., 2023; Riordan et al., 2024; Shiu & Lehti-Shiu, 2024; Yin et al., 2019). Generally,
these large models require significant memory – hundreds of gigabytes – to store high billions or
trillions of parameters required at runtime. However, a diverse range of language models exists
beyond the popular large models from, for example, OpenAI, Anthropic, Google and Mistral.
In particular, small language models (SLMs) have gained attention due to their smaller sizes
(low billions or even just millions of parameters) and thus reduced computing requirements.
Furthermore, though the small models are not as general purpose as the large models, the
emerging evidence suggesting the small models are effective in various, albeit specific natural
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language processing tasks (Guo et al., 2023; Lepagnol et al., 2024;
Lewis et al., 2019; Zhu et al., 2024). Thus, these small language
models are intriguing because they suggest that individual scien-
tists could use them on ordinary personal computing devices to
potentially enhance scientific literature processing tasks. Impor-
tantly, running the small models on local hardware also avoids
passing private and/or copyrighted content to large language model
companies, which is prohibited by many research institutions and
industrial organizations.

In this work, we aimed to develop and evaluate a proof-of-
concept small language model processes to support the expansion
of databases that document plants and the specialized metabolites
that each may produce. Other databases have been created in the
past to document this same type of information (Chen et al., 2017;
Gallo et al., 2023; Nguyen-Vo et al., 2020; Rutz et al., 2022; Sorokina
& Steinbeck, 2020; Tay et al., 2023; Xie et al., 2015; Yang et al.,
2019; Zeng et al., 2024), but these databases, so far, do not leverage
the potential provided by language models. We experimented with
models to conduct two major tasks: (i) scoring articles based on
their relevance to need-specific criteria (in this case, whether they
contained reports of a specific plant making a specific chemical
compound) and (ii) extracting and structuring information on
the occurrence of specific chemical compounds in specific plant

species. We tested a dozen language models’ abilities on these
tasks by manually reading, labelling and extracting data from more
than 100 to more than 1000 scientific abstracts, depending on the
task, then measured the models’ ability to perform those same
tasks. Overall, our findings indicate that small language models,
while not perfect, effectively aid in filtering scientific literature
references and in extracting data. We recommend that researchers
both experiment with these models and monitor for updates in
literature processing software that incorporate language model-
enabled features.

2. Results and discussion

To develop and evaluate a potential role for small language models
in creating a phytochemical occurrence database, we assessed
such models’ abilities with regard to two tasks: (i) to quickly
score references according to whether the reference reports the
occurrence of a specific compound in a specific plant species
(Task 1, Section 2.1) and (ii) to evaluate language models’ ability
to extract an experimentally supported compound occurrence
dataset (Task 2, Section 2.2). For these investigations, we chose
to use six triterpenoid compounds as test cases (Figure 1a). The
six triterpenoid test cases under study here presented a challenge

Figure 1. Comparison of SciFinder® versus PubMed® as a data source and schematic of the small language model workflow for retrieving compound–species associations from

literature. (a). Structures, common names and CAS Registry® numbers for the six triterpenoid compounds used as test cases in our small language model development and

evaluation work. (b) Bar plot comparing the number of references (x-axis) found by SciFinder®and PubMed® (y-axis) for the six different triterpenoids (vertically arranged

panels) studied in this work. Each bar represents the number of references found by the indicated search tool for a particular triterpenoid. The absolute number of references

found is shown in text to the right of each bar. Bars are colour coded according to search tool (SciFinder® in purple and PubMed® in blue). SciFinder® searches were conducted

using CAS Registry® numbers, while PubMed® (which does not generally use these registry numbers) searches were conducted using compound common names. (c) Schematic

for the workflow we developed to extract compound occurrence data from information in the literature. Files or information are shown in green bubbles, while steps or actions

are shown as arrows. The workflow consists of searching the literature with SciFinder® based on CAS Registry® numbers then creating a repository of references and associated

full-text PDF files in an EndNoteTM database; then filtering references for those of highest task-specific relevance (SLM Task A) and finally extracting compound occurrence data in

either a targeted (SLM Task B1) or untargeted (SLM Task B2) fashion. Abbreviations: SLM: small language model.
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because they have been mentioned in the literature (going back to
the 1960s) by many names. Indeed, CAS SciFinder® indicates that
a total of more than 52 names has been associated with these six
compounds, potentially complicating efforts to retrieve references
describing the occurrence of specific plant chemicals. Fortunately,
triterpenoids (and the vast majority of all other chemical entities)
are identified explicitly by their CAS Registry® numbers (Figure
1a), which means that references to a given compound that use
varied nomenclature can be collected simultaneously and non-
ambiguously when using CAS Registry® number-based search
strategies. While other identification number systems exist, such
as PubChem® and LOTUS numbers, these alternate systems are
not as comprehensive as CAS Registry® numbers. Thus, where
possible, searches with identification numbers, as opposed to
common names, are preferred because this approach ensures not
only that a broader array of references is retrieved, but also that
those reference relate to one and the same compound, including
the correct stereochemistry.

To obtain references describing our six triterpenoids of interest,
we used CAS Registry® numbers to search SciFinder®, which,
though requiring a subscription, allows the user to enter a CAS
Registry® number and then navigate directly to literature references
that relate to that specified compound. PubMed®, though providing
open access, does not generally support searches based on CAS
Registry® numbers or PubChem ID numbers, so we conducted
searches in PubMed using compound common names. We first
considered the two most common compounds in our case study
set, α- and β-amyrin. In SciFinder®, we found over 1340 and more
than 1850 hits for these two compounds, respectively, compared to
fewer than 500 and 1000 hits in PubMed® (Figure 1b). Results were
similar for the other four triterpenoid test cases (Figure 1b). In total,
~3200 SciFinder® references were retrieved using our searches,
while ~1500 references were retrieved by PubMed®. Therefore, we
used SciFinder®-retrieved references to develop and evaluate small
language model-based reference ranking and occurrence dataset
extraction processes (Figure 1c).

2.1. SLM Task A: Rating references according to relevance with a
small language model

At this stage in this work, we had used SciFinder® to collect more
than 3000 references associated with one or more of the six triter-
penoids that comprised our test cases for compound occurrence
data collection. Our first aim was to determine the efficacy of
small language models with respect to filtering the references for
articles of interest. In this case, our interest was in articles that
reported phytochemical occurrences (i.e. evidence for a specific
plant species producing a specific chemical compound). To estab-
lish a benchmark against which to evaluate small language model
performance, we read more than 1500 of the references in our
collection, including their titles and abstracts and classified each
as ‘reporting an occurrence’, ‘maybe reporting an occurrence’ or
‘not reporting an occurrence’ (Supplementary Materials S1). These
human-read citations included all the reference citations for α-
amyrone, β-amyrone, dammarenediol II as well as (−)-friedelin.
For an article to be considered as ‘reporting an occurrence’, its
title or abstract needed to indicate that the article in question
provided experimental evidence for the presence of a particular
plant chemical in a particular plant species. Articles whose titles
or abstracts merely contained co-occurrences of a plant chemical
name and a plant species name without indicating that there was
experimental evidence for an association between the two were

classified as ‘not reporting an occurrence’. Citations that did not
explicitly indicate that their articles contained experimental evi-
dence for a compound’s occurrence but instead implied that such
evidence might be present in the full text (to which we did not
have access) were classified as ‘maybe reporting an occurrence’. Of
the 1558 references that we read, 720 were classified as ‘reporting
an occurrence’ (46%), 332 were classified as ‘maybe reporting an
occurrence’ (21%) and 506 were classified as ‘not reporting an
occurrence’ (33%).

We next evaluated how well language models could classify
references according to whether they reported the occurrence of
a phytochemical using the 1558 manually classified references as
a ground-truth set. We used the bart-large-mnli model, selected
because it is one of the most downloaded on Huggingface.co, a
major hub for open-source language development, largely due to
its versatility and high speed – we found that it could process
45,000 articles/hour, a desirable characteristic for a model that
will be used to filter inputs into a multi-step processing pipeline.
This small language model is employed by providing it with a
body of text and then one or more classifier phrases. The model
then assigns a score to each phrase to indicate how closely that
phrase relates to the provided text. The bart-large-mnli model
card (i.e. the instruction manual) suggests presenting the model
with a classifier phrase framed as a hypothesis (e.g. ‘This text
is about politics’). Accordingly, we investigated phrases such as
‘Amyrin is present in plants’ as well as paired phrases in which
a hypothesis was matched with the exact negative (i.e. ‘Amyrin
is present in plants’ and ‘Amyrin is not present in plants’). Our
early experiments showed that composite scores derived from the
pairs’ individual scores improve the signal-to-noise ratio in the
classification task. Furthermore, we noted that multiple compound
names could be included in these positive and negative phrases (for
instance, ‘friedelin, friedooleanan-3-one, friedelan-3-one, friede-
lanone or friedeline is found in plants’; full-classifier phrase details
are provided in Supplementary Materials S2). In future, large-scale
operations, a single, general classifier phrase, which is not based
on compound names, would be preferred if the performance was
comparable to that of our specific classifier phrase system, which
is based on compound names. Therefore, we also tested the more
general classifier phrase, ‘the text discusses plants that contain
specific compounds’.

Using the two classifier phrase approaches described in the
previous paragraph, we instructed the bart-large-mnli model to
assign two scores to each of the 1558 references, one composite
score from the binary/two classifier phrase system, as well as a
score for the general classifier phrase. Composite scores (means
and standard deviations) for, respectively, references that reported
occurrences/maybe reported occurrences/did not report occur-
rences for (−)-friedelin were 0.9 ± 0.1, 0.8 ± 0.1 and 0.7 ± 0.1
(Figure 2a, top panel). Results were similar for the other three triter-
penoids (Figure 2a). Scores from the general classifier phrase for,
respectively, references that reported occurrences/maybe reported
occurrences/did not report occurrences for (−)-friedelin were 0.9
± 0.06, 0.9 ± 0.04 and 0.8 ± 0.2 (Figure 2b, top panel) and again,
results were similar for the other three triterpenoids (Figure 2b).
This illustrates that the two-classifier phrase system and the general
classifier phrase system both worked comparably well among ref-
erences describing four different triterpenoid compounds and may
also to a similar extent for compounds other than triterpenoids.

Next, we investigated the ability of these scores to act as a filter to
separate articles of interest that report chemical occurrences from
those that did not report such occurrences. Thus, we examined
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Figure 2. Performance of small language models on a reference relevance ranking task. (a, b) Violin plot showing the score (BART small model language score, y-axis) assigned to

references by the bart-large-mnli small language model. Scores range from zero (low relevance) to one (high relevance) and indicate the relevance of a given reference to a

user-defined natural language criterion. In panel a, the score is derived from two, chemical compound-specific criteria (full details in methods section), while in panel b, the score

is derived from a single, generic criterion (‘chemical compounds are found in plants’). In both panels, scores are broken out according to whether the reference was labelled by a

human as ‘reporting an occurrence’, ‘maybe reporting an occurrence’, ‘not reporting an occurrence’ of a specific chemical compound in a specific species (x-axis). The number of

references belonging to each group are shown above each violin. In panel a, the dotted line represents a threshold of 0.85, and in panel b, the dotted line represents a threshold

of 0.9 (details of thresholds discussed in main text). (c, d) Column plot showing the proportion of references (y-axis) from each human labelled category (‘reporting an

occurrence’, ‘maybe reporting an occurrence’ or ‘not reporting an occurrence’; x-axis) that would be retained if a threshold small language model score was used for filtering

references. The proportion of each column in the positive y space indicates the fraction of references that would pass the filter and be retained, while the proportion of each

column in the negative y space indicates the fraction of references that would be rejected by the filter and eliminated. Exact proportions are shown in numbers above and below

each column. In panel c the threshold is 0.85, based on two-prompt scoring, while in panel d the threshold is 0.9, based on single, general prompt scoring (details in main text and

methods section). For example, if a score of 0.85 were used as a threshold with which to filter references that had been scored using the two-prompt small language model

scoring system, then 86% of references reporting occurrences would be retained while 14% of such references would be rejected, 35% of references maybe reporting occurrences

would be retained while 65% of such references would be rejected and 20% of references not reporting occurrences would be retained while 80% of such references would be

rejected. In all panels a–d, colours correspond to the three human label categories (‘reporting an occurrence’, ‘maybe reporting an occurrence’, ‘not reporting an occurrence’).

BART stands for the bart-large-mnli small language model.

the proportion of the former type articles that would be retained
if a threshold score were to be used as a filtering criterion for the
reference collection (i.e. if references with a score higher than a
threshold were to be retained and those with a score lower than
the threshold were to be eliminated from the collection). Based
on the distribution of scores assigned to articles that reported
chemical occurrences versus those that did not (Figure 2a,b), we
selected 0.85 as a threshold for the specific two-prompt scores and
0.90 as a threshold for the general prompt-derived scores. With
these thresholds, the specific two-prompt scoring system acting
as a filter would have retained 86% of the references that report
phytochemical occurrences (the references of interest in our study)
and rejected 80% of the references that did not report an occurrence
(Figure 2c). The general prompting system, with a 0.90 filtering
threshold, would have retained 92% of the references reporting
phytochemical occurrences and eliminated 55% of the references
that did not report occurrences (Figure 2d). While both the two-
prompt and general prompt filtering approach led to the retention
and rejection, respectively, of article of interest and not of interest,
the two approaches handled articles we had labelled as ‘maybe
reports an occurrence’ differently: the two-prompt approach kept
only 35% of these, while the general approach kept 81%. To learn
more about these ‘maybe’ references, we obtained and read 100
full-text articles for these references (those related to α-amyrone

and dammarenediol II, Supplementary Materials S3). This man-
ual inspection revealed that approximately 65% of these ‘maybe’
references contained reports of compound occurrence data, which
suggested that access to full-text information will help create more
comprehensive chemical occurrence datasets. After manual re-
annotation of the 100 articles based on full texts, we tested to
see if the scores of occurrence-reporting articles differed from
articles that did not report occurrences, but there was no significant
difference in the scores. However, regardless of whether full texts
are available or not, our results show that small language model rel-
evance scores provide a means to quickly (~45,000 references/hour)
and accurately (~80% relevant articles kept, ~80% of irrelevant
articles rejected) identify references that are most likely to provide
the information that a user might be seeking. This ability will be
highly useful when dealing with many thousands of references. Our
data also indicate that there will likely be a benefit to developing
more nuanced filtering approaches to handle edge cases like the
‘maybe’ articles we identified here.

2.2. SLM Task B: Extracting compound occurrence data with
language models

After filtering our collection of references to include only entries
with high scores concerning phytochemical occurrence data, we

http://doi.org/10.1017/qpb.2025.10021
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evaluated the ability of language models to extract experimentally
supported compound presence details. In this task, two steps can
be envisioned: (i) a first step in which a model receives a body of
text including the title and abstract of a scientific article and (ii) a
second step in which a model receives a query about compound
occurrences. For example, in the second step, we might ask the
model: ‘Does the provided text offer experimental evidence that
Arabidopsis thaliana produces the chemical compound thalaniol?’
This mode of operation represents a targeted approach. A second
mode of operation (for the second step) could be to pass a language
model a text passage containing the title and abstract of a scientific
article and pose an open-ended query such as: ‘List all of the
plant species mentioned in the provided text and indicate which
chemical compounds were reported from each one as part of the
experimental investigation described in the passage’. This second
mode represents an untargeted approach. Several advantages and
disadvantages of each approach can be imagined from the outset.
For example, an untargeted approach does not require a precon-
ceived set of chemical compounds or plant species of interest about
which to query the model, and a single untargeted query can poten-
tially extract multiple compound-occurrence data simultaneously.
In contrast, one benefit of the targeted approach is the relative sim-
plicity of creating human-labelled data. Thus, a true/false answer
about one plant/compound occurrence can be supplied by the
human or model instead of meticulously generating a complete list
of such occurrences. Furthermore, a model’s rate of detecting true
negative associations can be measured directly by comparing the
model’s response to plant and compound names appearing in an
abstract, without experimental association data, to the correspond-
ing human response. Thus, the targeted and untargeted approaches
each offer distinct benefits, so we tested and herein present results
from both approaches. For either approach, a model must correctly
distinguish between characters used in chemical names (in this
study, especially Greek letters like α and β) and recognize the syn-
onymous nature of certain symbols and words (e.g. that α-amyrin
and alpha-amyrin are the same compound). Previous studies have
shown that Greek letters occupy their own positions in language
model input spaces (Stevenson et al., 2024) and that such models
can reason over diverse alphabets (Maronikolakis et al., 2021),
suggesting that modern language models, in this regard at least,
may be suited to the earlier described approaches. We conducted
preliminary tests by asking each model (see model details next)
a series of six questions like ‘are α-amyrin and alpha-amyrin the
same compound?’, ‘are α-amyrin and beta-amyrin the same com-
pound’, ‘are β-amyrin and beta-amyrin the same compound’ and
so forth. All but the smallest two models (gemma-3-1B-instruct
and qwen-2.5-0.5B-instruct) answered these questions with 100%
accuracy, illustrating that detailed investigations of task/project-
specific assumptions should be empirically tested during the model
selection step of a language model-based investigation.

2.2.1. SLM Task B1: Targeted compound occurrence data extraction. To
evaluate the ability of large language models to extract compound
occurrence data from scientific abstracts, we first prepared and
manually evaluated a set of candidate occurrences. For this effort,
we used regular expression-based pattern matching to identify
accepted plant species names in the abstracts associated with the six
triterpenoids that comprised the present test case. We then com-
piled a dataset containing three columns: the title and abstract of
each reference, the chemical compound linked to it (the SciFinder®
search compound that retrieved that reference in the first place)
and accepted plant species name(s) found in that title or abstract.

We manually evaluated 500 candidate associations and annotated
each occurrence as positive (the abstract described experimental
support for the occurrence of that compound in that plant species)
or a negative (the abstract did not provide such support). We found
that roughly 350 (71%) of the candidate associations were nega-
tives, while around 150 (29%) were positives (Supplementary Mate-
rials S4). With a set of human-labelled compound species or can-
didate compound species associations in hand, we next turned to
evaluating whether open-source language models could perform
the same task. For this task, we used open-source language mod-
els that accepted two types of prompts. The first prompt was a
system prompt that contained detailed instructions on how the
model should generate an output. The second prompt (also called
user text) delivered content from which the model generated that
output. We used the second prompt to supply information on the
candidate compound species association (title/abstract, compound
name and species name) and the system prompt to convey detailed
instructions on how the model was supposed to evaluate this given
information (full details in Methods).

Past research has shown that language models of different sizes
vary in their ability to perform natural language processing tasks
(Brown et al., 2020; Kaplan et al., 2020), including tasks related to
chemical occurrence data extraction (Busta et al., 2024a). Accord-
ingly, in evaluating their capacity for the present targeted occur-
rence extraction task, we tested 12 language models of various
scales, spanning 0.5 billion to 32 billion parameters (often denoted
0.5B to 32B, Figure 3a). These models included variants of different
sizes from the Qwen family (Qwen: An et al., 2025) (32B, 14B, 7B
and 0.5B), the Gemma family (Gemma et al., 2025) (27B, 12B, 4B
and 1B) and the Phi-4 family (phi-4 14B and phi4-mini-instruct
4B) (Abdin et al., 2024). Each model was given the same system
prompt and all 500 candidate occurrences that had been previously
examined manually. During these assessments, all models were
run at 16-bit precision, except gemma-3-27B-it-unsloth and phi-
4-unsloth-bnb-4bit, which are dynamically quantized instances
operating at 4-bit precision (Figure 3a). When reviewing the 500
candidate associations, run times generally varied in direct propor-
tion with size; qwen-2.5-32B-instruct handled about 200 references
per hour, while qwen-2.5-0.5B-instruct surpassed 32,000 per hour
(Figure 3a). Notably, the quantized variants processed references at
speeds only slightly higher than their full-resolution counterparts
(e.g. the 4-bit phi-4-unsloth at 1500 references/hour and the 16-
bit phi-4 at 1200 per hour). These speeds will be important when
applying language model-based approaches to larger projects or the
assembly of databases.

Alongside measuring how quickly various models processed
500 candidate associations, we also examined model accuracy. To
gauge that accuracy, we compared whether each model labelled
every candidate association as positive or negative against the
corresponding human label. The results let us classify each model
output as a true positive (when the model labelled a candidate
association as positive, matching the human label), a true negative
(when both the model and the human labelled it negative), a false
positive (when the model labelled it positive, but the human did
not) or a false negative (when the model labelled it negative, but
the human did not). Because 71% of the 500 candidate associations
were negative, a high-performing model would have a true nega-
tive rate approaching 71%. The true negative rates for the models
tested ranged from 52% to 67%, with models containing more
parameters generally showing higher percentages (Figure 3b). One
exception was qwen-2.5-0.5B-instruct, which had a 0% true nega-
tive rate, as it labelled all candidates occurrences as positive. These

http://doi.org/10.1017/qpb.2025.10021


6 L. Busta and A. R. Oyler

Figure 3. Performance of language models on a targeted compound occurrence data extraction task. (a) Bar plot showing various metrics (y-axis in each row of panels) for

different language models (x-axis). The first row shows model size in billions of parameters, the second row shows model resolution in bits, the third row shows the speed with

which a model processes references (using the prompt shown in the methods section) in units of 1000 references per hour. (b) Bar plot showing the raw performance metrics of

each model (false negative, false positive, true negative and true positive rates). False negatives arise when a model erroneously marks a real compound occurrence as not being

true. False positives arise when a model erroneously marks a simple textual occurrence of a compound name and species name as an occurrence data point. True negatives arise

when a model correctly marks a simple textual occurrence of a compound name and species name as such and not as an occurrence data point. True positives arise when a

model correctly marks a compound occurrence as such. According to human evaluation of the 500 putative occurrences used to test the models, 71% of the putative occurrences

were real (i.e. ‘positives’) and 29% of the putative occurrences were just textual co-occurrence (i.e. ‘negatives’). Thus, a perfect model would have, in this experiment, a 71% true

negative rate and a 29% true positive rate. Bars are coloured according to true/false positive/negative. (c) Bar plot showing the processed performance metrics of each model. In

the first row, the precision of each model is shown (the ratio of true positives to the sum of true positives and false positives). In the second row, the recall of each model is shown

(the ratio of true positives to the sum of true positives and false negatives). In the third row, the F1 score is shown, which is the harmonic mean of the precision and recall. In (a–c),

models are organized into columns of panels by type (large: > 20 B parameters, medium: 1–20 B parameters, small: 0–1 B parameters and optimized: 4-bit resolution models).
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differences in true negative rates came with parallel differences
in false positive rates, since false positives arise when a model
incorrectly labels a negative result as positive. The false positive rate
is one of the most important metrics for this task because those
errors represent fabricated occurrence data. In our experiments,
larger models achieved lower false positive rates overall, with qwen-
2.5-32B-instruct and phi-4 showing the lowest values at 4% and
5% respectively (Figure 3b). Because both were also the slowest
and largest, there is a clear trade-off between parameter count
and computational requirements on one hand and task-specific
accuracy on the other.

The models we tested here did not only vary in their (true neg-
ative)/(false positive) rates, but also in their (true positive)/(false
negative) rates. Since positive associations comprised 29% of the
500 candidate associations, a perfect model in our experiment
would have a 29% true positive rate. True positive rates among the
models tested here generally ranged from 21% to 27% (Figure 3b).
This variability did not correlate as strongly with model size as
did the (true negative)/(false positive) rates. For example, a large
model (qwen-2.5-32B-intruct), two medium models (gemma-3-
12B-instruct and phi-4-mini-instruct (4B)) and one of the quan-
tized models (gemma-3-27B-it-unsloth) all had very similar true
positive rates (26% or 27%, Figure 3b). Note that the perfect true
positive rate of qwen-2.5-0.5B-instruct is a misleading statistic,
since this model simply labelled all associations with which it was
presented as positive. To account for such potentially misleading
rates, we computed precision and recall statistics. Precision is cal-
culated as the number of true positive results divided by the sum of
true positive and false positive results, which indicates how reliable
the model is when it marks an association as positive. Recall is
calculated as the number of true positive results divided by the
sum of true positive and false negative results, which reflects the
model’s ability to correctly identify all actual positive associations.
Excluding qwen-2.5-0.5B-instruct, precision varied from 0.5 to as
high as 0.85 and recall varied from 0.71 to 0.94 (Figure 3c). We also
computed F1 scores, which are the harmonic mean of precision
and recall, to provide a single metric to balance both reliability
(precision) and completeness (recall). F1 scores (excluding qwen-
2.5-0.5B-instruct) ranged from 0.62 (gemma-3-1B-instruct) to 0.87
(qwen-2.5-32B-instruct) and varied, again, according to model
size, which reinforced the importance of that parameter in task-
specific accuracy.

So far, our results indicated that language models can assess
whether an abstract describes experimental support for a par-
ticular compound, but no model was entirely accurate in per-
forming this task. Accordingly, we next turned our attention to a
detailed examination of the candidate associations that were fre-
quently labelled incorrectly by the language models. Specifically, we
reviewed the incorrect answers generated by the phi-4 model. First,
we focused on references in which no experimental support for a
compound’s occurrence was provided, yet the model (erroneously)
indicated such support was presented (i.e. false positives). Among
these occurrences, two main text structures appeared to ‘confuse’
the model. The first scenario involved abstracts where occurrence
data were not presented in separate sentences but instead merged
with multiple data types. For example, some passages combined
information from authentic standards and plant extracts or from
sediments and plant extracts or listed multiple compounds from
several species in a single statement. The second scenario leading
to false positives involved abstracts that failed to provide clear
statements about plant/compound occurrences, even to a human
reader. As an example, one such abstract stated ‘beta-sitosterol

and alpha-amyrin were isolated from unsaponifiable fractions of
mature seeds of solanaceae plants’ and mentioned the solanaceous
species Hyoscyamus muticus, which caused the model to label
alpha-amyrin as present in H. muticus, even though this link was
not explicitly supported by the text. Finally, we examined references
where positive associations were mistakenly labelled by the models
as negative (i.e. false negatives). We identified three main cases: (i)
abstracts that were written in confusing ways, which lead the model
to produce an incorrect result, (ii) abstracts that contained an alter-
native spelling or abbreviation for a compound or species name and
(iii) clearly written abstracts in which the model nevertheless failed
to provide the correct answer. These scenarios appeared in roughly
equal proportions among phi-4’s false negatives. To summarize,
the model sometimes makes clear mistakes, but, just as often, the
model produces incorrect answers because of inconsistencies or
unclear information in the input data. Finally, we also examined
the performance of the models when alternative spellings of com-
pound names were present in abstracts. Across the 500 candidate
associations we manually evaluated, there were 28 instances where
alternative spellings were used in the abstract (amyrin/amirine,
friedelin/friedeline, amyrone/amyrenone). Evaluating these can-
didate associations, the highest performing models were correct
~50% of the time, which is lower than model performance across
the entire dataset (~10% overall error rate). Thus, we conclude
that these alternative spellings do impact model performance and
strategies to deal with such should be included in the design of
small language model-based pipelines.

Several conclusions arise from our work with targeted
compound-occurrence dataset extraction. First, models with more
parameters (‘larger’ models) appear to perform the task with higher
accuracy, though that improvement comes alongside increased
computational demands and time requirements. To balance speed
and performance, architectures such as phi-4 stand out from those
evaluated in this study. Next, the abilities of systems like phi-4 to
accurately detect true negatives indicate that they are distinguishing
references with textual co-occurrence of plant and compound
names from references that present experimental evidence for a
plant producing a given compound. Finally, our examination of
the underlying reasons for incorrect answers revealed many errors
arise from inconsistencies or unclear information in the input
data, which suggests that using full-text articles instead of titles
and abstracts may improve results beyond the approach described
here.

2.2.2. SLM Task B2: Untargeted compound occurrence data extraction.

After assessing the extent to which language models can classify
compound occurrences in a targeted manner, we next examined
these systems’ abilities with the same task in an untargeted way. For
this process we used models that, as before, accept a system prompt
with detailed instructions and a second prompt containing content
with which to work. Our general approach was to provide a system
prompt directing the model to read the input text (title/abstract)
and write all experimentally supported compound occurrences
in a Python dictionary format (e.g.: {‘Arabidopsis thaliana’:
[‘arabidiol’, ‘beta-sitosterol’], ‘Brassica oleracea’: [‘beta-sitosterol’,
‘alpha-amyrin’]}). Thus, this task is considerably more complicated
than the targeted approach. Due to this complexity, we conducted
some preliminary tests to determine which of our 12 models might
be suitable for this task. We found that the two large models and the
two small ones were, respectively, too slow and too inaccurate to be
feasible. For this reason, we proceeded with the six medium models
as well as the two quantized 4-bit variants described in the previous
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section. Previous work has shown that the exact phrasing of system
prompts can have substantial impacts on the accuracy of language
model outputs (Razavi et al., 2025; Sclar et al., 2024), which
included the context of phytochemical data processing (Knapp
et al., 2025a). This phenomenon is the basis for prompt engineering.
This untargeted task was inherently more complicated than the
earlier described targeted approach, but further complications
arose because we wanted a specific output format (the Python
dictionary). We investigated a variety of prompts to determine
how they might impact results from each model. As in the previous
sections, to benchmark the ability of the models to perform this
task, we again began by performing this task manually. We read
100 abstracts and wrote out the compound species associations
reported in each in the JSON, or Python dictionary, format. This
led to the identification of just over 400 compound occurrences
across the 100 abstracts (Supplementary Materials S5). Next, we
describe the performance of the 8 models and the 11 prompts on
this untargeted compound occurrence extraction task with the 100
manually evaluated abstracts.

To begin, we carefully created a detailed system prompt and
then employed a commercial large language model to produce 10
additional prompt variants that contained the same instructions
but with different phrasings (all prompts included in Supplemen-
tary Materials S6). We then used each of the 11 prompts to instruct
each of the eight models to write out all experimentally supported
occurrences in each of the 100 manually evaluated abstracts. Next,
we examined the ability of each model/prompt combination to
provide results in a valid Python dictionary (the structure of the
response needed to perform this data extraction task) and the speed
at which each model/prompt combination could process the 100
abstracts. The percentage of responses from each model in answer
to each prompt varied considerably, with some model/prompt com-
binations producing zero valid dictionaries and others generating
100% valid dictionaries (Figure 4a). Most model–prompt combi-
nations produced >90% correctly structured responses, with some
notable exceptions. Interestingly, qwen-2.5-14B-instruct struggled
to consistently produce valid dictionary outputs, while its smaller
sibling, qwen-2.5-7B-instruct, yielded over 90% valid dictionaries
in most cases. This result breaks the trend of larger models being
more proficient, as described in the previous section of this report.
Phi-4 was the best model tested at this task since it returned
100% valid Python dictionaries, except for one response to prompt
8 (Figure 4a). We also observed variation among the prompts
tested, with prompts 9, 10 and 4 eliciting higher proportions of
valid responses across all the models than other prompts. We also
examined the rate at which each model and prompt pairing could
process queries. Rates ranged from about 200 references per hour
to almost 1500 references per hour, with model size as the primary
determinant of speed (Figure 4b). Different prompts sometimes
caused variability in processing times for the same model, though
these shifts were negligible compared to those driven by scale.
Overall, the largest model, gemma-3-27B-instruct-unsloth, was the
slowest. Meanwhile, phi-4-mini-instruct and qwen-2.5-7B-instruct
performed the fastest, at rates around 1000 articles or references
per hour. Altogether, the outcomes suggested that the phi-4 family
models, along with qwen-2.5-7B-instruct combined with prompts
9, 10 and 4, were the most accurate for further detailed inves-
tigation. The four best performing models for producing valid
Python dictionaries included the two fastest frameworks (phi-4-
mini-instruct and qwen-2.5-7B-instruct), which showed that larger
models do not always perform more proficiently than smaller
versions.

In the previous section, we identified that the results from
prompts 9, 10 and 4, in conjunction with phi-4, phi-4-mini-instruct
and qwen-2.5-7B-instruct warranted further scrutiny. Therefore,
we next examined the accuracy of occurrences generated by those
models in response to those prompts. In contrast to our quantitative
assessment of the models’ ability to evaluate targeted compound
instances, this broader approach allowed for quantifying only three
response types: true positives (correct occurrences reported by a
model), false positives (incorrect occurrences reported) and false
negatives (correct occurrences missed by the model but found
during manual evaluation, Figure 4c). Note that true negatives are
not present in this untargeted analysis since the model is only asked
to report existing occurrences, not to classify candidate occur-
rences. We quantified the number and category of each occurrence
identified by each model in response to prompts 4, 9 and 10. We
observed that using different system prompts led to only minor
variations in the total correct versus incorrect instances flagged by a
given model, but, interesting, that correct versus incorrect outputs
varied greatly with respect to the number of species described in
a given abstract (Figure 4d,e,h,i). Specifically, references involving
more than four species appeared ‘confusing’ to the models, result-
ing in large numbers of inaccuracies from those sources (Figure
4d,h), while abstracts focused on one or two species typically
yielded substantially more correct instances compared to incor-
rect ones (Figure 4d,h). Even so, the ratio of correct to incorrect
responses typically generated from articles reporting on one or
two species was roughly 2:1, an approximately 30% false positive
rate.

To reduce the false positive rate observed during this untargeted
compound occurrence extraction task, we introduced two types of
filters. For the first filter, we programmatically compared the com-
pound name reported in each occurrence against the PubChem
database to check if it appeared among the entries. We removed
all reported occurrences describing compounds missing from Pub-
Chem, which generally produced a bigger drop in incorrect results
than in correct ones. The second filter relied on two language
models identifying the same occurrence from a given abstract. Only
those occurrences found by both, working independently, were
kept, while partial matches (instances flagged by a single model
but not recognized by another) were excluded. We tested this two-
part filtering approach with two pairs of models: (i) one contain-
ing the most advanced model: phi-4 + qwen-2.5-7B-instruct and
(ii) another featuring the two fastest options: phi-4-mini-instruct
+ qwen-2.5-7B-instruct. In both scenarios, the agreement filter
yielded a marked decrease in inaccurate entries in the final dataset
and only a small decline in valid ones (Figure 4d,h). Finally, to
produce a dataset that reflects the lowest likely false positive rate
for these models on the untargeted task at hand, we combined
three filtering strategies: we restricted data to abstracts mentioning
one or two species, retained only occurrences describing chemicals
found in the PubChem database and kept only those occurrences
that were independently detected from the same abstract by two
different language models. Using this threefold approach, phi-4
+ qwen-2.5-7B-instruct produced about 225 accurate occurrences
and 25 inaccurate ones (an 11% error rate and ~55% yield, relative
to the 400 occurrences found during manual inspection of the 100
abstracts, Figure 4f). Meanwhile, phi-4-mini-instruct + qwen-2.5-
7B-instruct yielded 175 valid occurrences and around 20 erroneous
findings (also an 11% error rate and ~44% yield/recall, Figure 4j).
Thus, pairing two fastest models led to a dataset that was less com-
prehensive but maintained similar accuracy as a pair that contained
a considerably larger and more sophisticated model.

http://doi.org/10.1017/qpb.2025.10021
http://doi.org/10.1017/qpb.2025.10021
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Figure 4. Performance of language models on a targeted compound occurrence data extraction task. (a) Heat map showing the per cent of outputs that contain valid python

dictionaries (encoded with colour and written inside each box) from each language model (y-axis) in response to each prompt (x-axis). The marginal (i.e. top and right) plots show

the mean per cent valid responses across all models for each prompt or across all prompts for each model. (b) Heat map showing the rate (in 1000 references per hour) of

processing by each language model (y-axis) in response to each prompt (x-axis). The marginal (i.e. top and right) plots show the mean per cent valid responses across all models

for each prompt or across all prompts for each model. (c) Guide describing how to interpret panels (d–k). Evaluation of occurrence data reported by language models (d/e/f/g:

phi-4 and, in darkest bars, phi-4 in agreement with qwen-2.5-7B-instruct; h/i/j/k: phi-4-mini-instruct and, in darkest bars, phi-4-mini-instruct in agreement with

qwen-2.5-7B-instruct). (d) and (h) show the number of correct occurrences (true positives, positive y-axis) and incorrect occurrences (false positives, negative y-axis) reported, as

indicated in panel c. (e) and (i) show the number of correct occurrences (false negatives, negative y-axis) reported, as indicated in panel c. (f) and (j) show the number of correct

occurrences (true positives, positive y-axis) and incorrect occurrences (false positives, negative y-axis) reported after filtering for occurrences whose compounds are in PubChem

and were agreed upon by the two models. (g) and (k) show the number of correct occurrences missed by the models after PubChem and agreement filtering (false negatives,

negative y-axis). In (d–k), bar orientation emphasizes desired model behaviour: bars pointing upwards indicate correct model responses (desired behaviour), while bars pointing

down indicate incorrect model responses or correct answers not reported by the model (undesired behaviour).
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3. Conclusions and future directions

Here, we evaluated the ability of small language models to perform
two major tasks: to numerically score references based on their
relevance to a given topic (SLM Task A) and to extract structured
data from unstructured inputs in both a targeted (SLM Task B1)
and untargeted fashion (SLM Task B2). Our efforts showed that a
small language model could rapidly and effectively score references
in a set so that a threshold score could be used as a filter to substan-
tially enrich that set for articles of interest (Section 2.1). Limitations
arose when handling edge cases, with highly tailored, task-specific
prompts emerging as a possible approach to address those short-
comings. When using small language models to classify candidate
compound occurrences as true or false, we observed that if an
abstract directly reports the detection of a particular compound in
a specific plant species, the models nearly always label the candidate
occurrence correctly (Section 2.2.1). In this task, however, a trade-
off did appear between accuracy and model size (parameter count)
and compute requirements. Among the mistakes noted (false pos-
itives as low as 5% and false negatives as low as 2% for certain
models), these misclassifications were as often tied to convoluted
and unclear writing in the input abstract as they were to outright
model errors. For extracting compound occurrence information
from unstructured text in an untargeted manner, we found small
language models to be effective, though choosing a suitable model
and pipeline strategy proved more challenging than earlier tasks
(Section 2.2.2). We discovered that prompt engineering, selecting a
model and filtering reported detections by cross-referencing chem-
ical databases, along with requiring two small language models to
independently agree on an occurrence, yielded the best reporting
statistics (~10% false positives and ~50% yield). Of note, this rela-
tively low yield arises because many correct associations are filtered
out, essentially sacrificed, to lower the false positive rate. Regarding
all tasks considered, more advanced prompting techniques (e.g.
chain-of-thought prompting (Wei et al., 2022) or model distillation
(Hinton et al., 2015; Sanh et al., 2019)) could reduce error rates
further and improve yield/recall. In addition, future model releases,
including small reasoning models, may also address these limita-
tions. Finally, we will note that many abstracts we worked with
here presented problems for humans and language models alike by
failing to contain clear and concise information. We read hundreds
of abstracts for the present project. Fully understanding many
abstracts in a timely fashion was extremely difficult due to long,
convoluted sentences, the presentation of connected data types (e.g.
plants and compounds) in multiple sentences spread throughout
a long abstract, the use of compound numbers or abbreviations
instead of compound names, poor grammar and so forth. In a
variety of cases, we were surprised that the language models per-
formed reasonably well, while humans needed considerable time
to understand the same abstracts.

Overall, though the approaches here represent a considerable
advance over manual curation (at least, with respect to the creation
of large databases, where speed is a prime consideration), a sub-
stantial amount of plant chemical occurrence data will still not be
retrieved from the literature using the techniques presented here.
One important step forward will be the development of pipelines
that can handle articles reporting occurrence data from dozens of
species, including in tabular format. In addition, further attempts
towards occurrence databases and in fact scientific endeavours in
general, need literature databases that include the full-text files
along with reference citations and abstracts. The separation of the
full text from the citations seems to be a systematic and legal

barrier that needs to be overcome. The expanded posting of pre-
prints is suggested as a potential, albeit partial, solution to this
issue. In addition to the tasks we quantitatively evaluated here,
we also experimented with several versions of Microsoft’s Phi-4
model to conduct multiple activities related to reference citations
(e.g. species name extraction, compound number or plant number
extraction, etc.) and found that the models could perform a range
of additional functions, suggesting versatility and application in
order domains. In our case, these functions have allowed us to
identify publications that most likely contain extensive tabular data
in the full text, flagging them for analysis by a pipeline suitable
for such reports. Finally, in our efforts, we found that filtering
capabilities such as those provided by SciFinder® and EndNoteTM

showed usefulness in a somewhat orthogonal way to the value of the
small language model scores. For example, in our case, we were able
to eliminate many articles of low relevance to our case studies using
EndNote™ keyword filters. As these commercial software tools
and other related programmes are outfitted with language model
(‘artificial intelligence’) capabilities, it will be important to evaluate
and incorporate those features into discipline-specific workflows.
We strongly encourage the scientific community to look for new
versions of their favourite research tools that incorporate language
model features and to experiment and empirically test and report
on such functionality in field-specific tasks as they emerge.

4. Methods

Literature searches were conducted with CAS SciFinder®.
SciFinder® searches were conducted by entering the compound
CAS Registry® number from the SUBSTANCE menu and then
working with all the references that were assigned to this Registry
number. SciFinder® references were downloaded as ‘tagged’ text
files. The ‘tagged’ text file selection provides numerous fields
including the CAS Registry numbers for all compounds discussed
in a given article. Multiple tagged files were downloaded for each
compound (according to year ranges) since the SciFinder® software
limits an individual tagged export file to 100 citations. SciFinder
limits the number of citations that can be exported in one file
to 100. Thus, for a compound such as alpha-amyrin with 4344
SciFinder references, the downloading of all references was not
possible. If the number of filtered references was greater than
400, the word ‘plant’ was entered into the ‘search within results’.
Thus, only English-language journal references that corresponded
to the ‘search within results’ term ‘plant’ were downloaded (1744
references, in the example of alpha-amyrin). PubMed® searches
for the six triterpenoids were also conducted based on their major
common names (not all synonyms were used). These PubMed®
searches were conducted with the compound names shown at the
top of Figure 1 since PubMed® does not generally recognize CAS
Registry® numbers. PubMed® files were downloaded as PubMed
(NLM) files. Of note is that PubMed® provides automated access
to its search and abstract download services through a REST API
and various language-specific packages like R and Trez. These tools
could be leveraged in the future to further streamline literature
analysis projects and automate data extraction and tabulation.

EndNoteTM Version 21.5 (https://endnote.com/) was used to
import and combine the sets of ‘tagged’ SciFinder® export text
files for each compound into an individual EndNoteTM compound
folders (with the ‘discard duplicate’ feature turned on). Further-
more, EndNoteTM ‘Smart Groups’ were set up for each of the
six triterpenoids, which included the CAS Registry® number and

https://endnote.com/
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multiple names for each compound (i.e. synonyms). The references
in each of the six Smart Groups were then added to the corre-
sponding original six triterpenoid folders (with automatic elimina-
tion of duplicates). As noted earlier, some plants contained more
than one of the six triterpenoids. These EndNoteTM operations
ensured that any references that might have been missed in a given
SciFinder® compound search, but included in another compound
search, would end up in the appropriate folders (i.e. one reference
might be in more than one compound folder). In EndNote®, the
user can select scores of references and then right-click on ‘Find
full text’. EndNote will then automatically download the PDF files
for each reference that cites a journal for which the user’s institution
has a subscription or an open-source journal. However, in some
cases, software blocks (e.g. the ‘Are you a human filter?’) prevent the
downloading of some files. In our case at our institution, EndNote
downloads approximately 40–50% of the PDF files for the selected
references.

All manual evaluation of reference relevance (‘reports an occur-
rence’, ‘maybe reports an occurrence’, ‘does not report an occur-
rence’), manual evolution of candidate occurrences (targeted) and
manual extraction of associations (untargeted) was performed by
opening the list of references in Microsoft Excel and entering the
manual annotations into a new column. References were labelled
as ‘maybe reports an occurrence’ if they mentioned specific plant
species and the isolation of multiple compounds from the species
but did not mention the specific compounds’ names in the abstract.
While the likelihood of a plant/compound association appear-
ing in the full article was high, we nevertheless conservatively
chose to label these types of citations as ‘maybe reports an occur-
rence’ until the full-text article file could be evaluated. An ‘maybe’
example is:

‘Medicinal attributes of Solanum capsicoides All.: an antioxidant
perspective. Int. J. Pharm. Sci. Res. 12(5): 2810–2817. The study
evaluates the medicinal efficacy of Solanum capsicoides fruits as an
antioxidant. Fruit extracts were prepared using acetone, ethanol,
HCl and water [. . .] A neg. correlation was observed between
the pigments, anthocyanins and carotenoids, with DPPH and
CUPRAC activity. [. . .] From this study, it can be considered that
the phenolics present in the fruits contribute to the characteristic
antioxidant property’.

The Facebook BART-Large-MNLI zero-shot classification
model (https://huggingface.co/facebook/bart-large-mnli) was
applied to the individual sets of compound reference citations in
the EndNoteTM database. The model was run on a single NVIDIA
GV100GL [Quadro GV100] GPU. First, the set of references in
the curated EndNoteTM folder for a given compound was selected
and exported from this folder to a text file (with the ‘annotated’
style selected). This text file was then imported into an Excel file
(e.g. with the legacy ‘get text from file’ Excel wizard. The resulting
Excel sheet was then modified so that each reference citation
(author/year/journal/abstract) was contained in one cell and all
cells resided in one column. This Excel sheet, which contained
all the reference citations for a given compound, was then saved
as a CSV UTF-8 (Comma delimited) file. This CSV file was used
via JupyterLab (https://jupyter.org/, operating in a WINDOWS 11
environment) and a custom Python program (full code in Sup-
plementary Materials S8). System prompt-accepting chat language
models were downloaded from HuggingFace.co and run on a single
NVIDIA GV100GL [Quadro GV100] GPU using custom code
(full code provided in Supplementary Materials S8). Calculation of
precision, recall and F1 scores as well as plotting were performed in
R. Additional system prompts for the prompt engineering reported

in Section 2.2.2 were generated by OpenAI’s 04-mini-high language
model using the ChatGPT browser interface.
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