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SUBGROUPS OF CONJUGATE CLASSES
IN EXTENSIONS

JOHN E. BURROUGHS AND JAMES A. SCHAFER

Often in various mathematical problems one encounters an extension B of
the group G by the group = in which one wishes to extract certain information
about B from information given in terms of G, =, the action of = on G, and
the class of the extension in H?(w, centre G). An example of this type of
problem is to determine some intrinsically defined subgroup of B, for instance
the centre of B, given knowledge of the corresponding subgroup for G and ,
and, of course, the usual information concerning the extension.

In this paper we shall use the fact that any extension is congruent to a
crossed product extension [2] to investigate a class of subgroups which
naturally generalizes the notion of the centre. The definition of this class
appears in § 3.

1. Let

E0-GKEKBYSr—1

by an extension of G by w. We write G and B additively and = multiplicatively
although none of the groups are necessarily abelian. It was shown in [2] that
any such extension gives rise in a canonical way to a homomorphism

Y: 7w — Aut G/In G.
Given any function

¢: ™ — Aut G, o(1) = id,

such that ¢ composed with the quotient map 7 from AutG to Aut G/In G
is ¢, there exists a function

fim X7—>G, flx, 1)y =f(1,x) =0 Yx¢€m,
such that the following identities are valid:
1) o®)f (v, 2) + f(x, y2) = f(x,3) + f(x, 2),
(2) o(x)o(y) = ul flx, y)]b(xy),

where u: G — In G is the obvious homomorphism. These functions allow one
to define a group operation on G X = which is given by the formula

(g, %) + (guy) = (g+ o(x)g1 + [ (x, ), xy).

This group is denoted by [G, ¢, f, 7] and is called a crossed product. The
exact sequence
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0—>G—>[G é, f, mPr -1

is called a crossed product extension of G by #. This new extension is congruent
to the original extension, i.e., there exists a homomorphism

p: B— G, ¢, f, 7]
such that the diagram

0—-G

b

0——->G—+ G, ¢, f, 7] =5 pe r—1

commutes. p is necessarily an isomorphism. However, p is not unique. We will
call any such p a congruence homomorphism.

We recall briefly how one obtains ¢ and f and what degree of freedom one
has in choosing them, given a fixed extension E. One method is to choose a
normalized coset representative; i.e., a function

u: v — B, u(l) =0, gou = id,.

Then ¢, f, and p are uniquely determined by the following formulae:

(i) ¢(x)g = u(x) + g —ulx), Vg € G,x € m,

(i) f (%, ¥) = u(x) + u(y) — u(xy), Vx,y € m,

(ii) p(d) = (b — u o o (b), ob), Vb € B.
The second method is to choose any ¢ in the automorphism class of ¢ and
then choose a normalized coset representative in such a way that (i) holds.
This was done in detail in [2]. The third method is to fix ¢ in the automorphism
class of ¢ (¢ € ¢¥); then since the extension exists, there is a function
f: # X ® — G such that the identities (1) and (2) are valid and E is congruent
to the crossed product extension [G, ¢, f, 7]. The different choices for f are in
a one-to-one correspondence with the factor sets

h: # X © — centre G

which are cohomologous to zero, as identities (1) and (2) indicate. Once the
choice is made, then p must be chosen so that if

U =plops m— B,

then equations (i), (ii), and (iii) are satisfied.

2. Let [G, ¢, f, 7] be a crossed product group.

Definition. A sub-crossed product of [G, ¢, f, 7] is a subgroup H of [G, ¢, f, 7]
of the form [G’, ¢, f', '], where

GCG oCmeé@') CAutG, f@ X)CSG, ¢ = ¢,
and
fl — f |1!'/ X 7r,,
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Note that not all subgroups of [G, ¢, f, 7] have this form.

Definition. Let A C B be a subgroup of B. We say that A splits with
respect to [G, ¢, f, w] if there exists a sub-crossed product of [G, ¢, f, 7],
[G', ¢',f,7'], and a congruence homomorphism p such that p|4 is an
isomorphism from A4 onto [G, ¢, f’, n'], i.e. there is a congruence
homomorphism p which makes the following diagram commute.

G u B g T

2 % 7

G’ A > 7’

pld

G >——> |[G,¢,finl
& 74
(6,91, >

We say that 4 is absolutely split with respect to [G, ¢, f, ] if 4 is split for
any choice of congruence homomorphism p.
It is obvious that if one considers the extension

QY

Gl

E:0—-«1(4)—>4 24 > 1,
then E’ is congruent to the extension
O — GI — [GI’ ¢,7 f/, 7|',] —_ 7_‘_/ — 1

under the isomorphism p|4, and therefore it follows that if 4 is split with
respect to [G, ¢, f, 7] then G’ = «1(4) and =’ = d4.

The following proposition shows that for any subgroup 4 of B, there exist
¢ and f such that 4 is split with respect to [G, ¢, f, 7] since it is obviously
always possible to choose a normalized coset representative with u(¢cd) & 4.

ProrosiTioN 1. Let u: # — B be a normalized coset representative and let
Ous fuy and py be the uniquely determined functions as in § 1. Then A splits with
respect to (G, ¢u, fu, ] and p, if and only if u(cA) S A.

Proof. Since E: G>»> B > 1 is congruent to the crossed product extension
via py: B—[G, ¢, f, #], we have that p,ou: 7 — [G, ¢,f, ] is the map
x— (0,x). Now if x € ¢4 and A4 is split with respect to [G, ¢, f, 7], then
0, x) € p,(4) and so u(x) = p,72(0,x) € 4.

Conversely, if u(cA) C A, then since ¢, (x) is given by means of conjugation
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by #(x) and G 4 is normal in 4, we have ¢,|lc4: ¢4 — Aut(x14) and
Jur 04 X ¢dA — k" 1(4) since f,(x,y) = u(x) + u(y) — u(xy). Finally,

pA = [K_lAy qb,’flr UA]

since if (g, x) € p,4, then x € p2p,(4) = ¢4 and so pu(x) = (0,x) € p,A4.
Therefore (g, 1) € p,4 and so g € ¥ 'A4. It follows that

(g,x) € [k14, ¢, f', c4].
The opposite inclusion is clear.

Our aim in this paper is to investigate the following two problems with
respect to the subgroups of B defined in the next section. One problem is to
find criterion on ¢ and f so that one of the subgroups in question is split or
absolutely split with respect to [G, ¢, f, 7]. We are especially concerned
with the problem of the existence of an appropriate f when ¢ is held fixed,
and in particular, when G is abelian. The other problem is to find some more
explicit description of k4 and ¢4 in terms of ¢, f, G, and = so that when 4
is split with respect to [G, ¢, f, w] it is possible to compute the subcrossed
product {714, ¢', f’, ¢4 ] and hence determine 4.

We conclude this section with an example that shows that it is not always
possible, given a fixed ¢, to find f such that the centre of B is split with respect
to [G, ¢, f, w]. Let

E: 0= SLa(Zs) — GLa(Z5)3 26 5 1

and let ¢: Z;* —» Aut(SL2(Z;5)) be the homomorphism which sends the
generator a of Zs* into conjugation by (§ ?). We know that one can choose
a normalized coset representative u: Zs* — GL2(Z5) which realizes the
homomorphism ¢. Since centre SL.(Z5) = Z,, there are only two possible
choices for u, namely

w6y = (5 %) o v = (8 _9) ez

However, in neither case does # map det(centre GL3(Z;5)) into centre GL,(Z5)
and so the centre of GL3(Z5) cannot be written as a sub-crossed product when
one makes this choice of ¢ beforehand.

3. Let o be any infinite cardinal number or 2. We will write ||X|| for the
cardinality of the set X.

Definition. Let G be any group; then
Cle, G) = {g € G| [|hgh™*: k € G| < &}.

For example, C(2, G) is the centre of G and C(Xo, G) is the subgroup of G
consisting of those elements having finitely many conjugates. This last group
has been studied in [1; 3].
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ProrosiTiON 2. C(a, G) is a characteristic subgroup of G.

Proof. Since any group element and its inverse have the same number of
conjugates and since the conjugate of a product is the product of the
conjugates, we see that C(a, G) is a subgroup of G. If T: G — G is any
automorphism of G, then

T: {conjugates of h} — {conjugates of T ()}
is a bijection of sets and therefore C(a, G) is characteristic. Let
E0-G—>B—-or—-1
be an extension of G by 7 and let ¢: # — Aut G/In G be the associated
“action’’. Recall that 7 is the natural homomorphism from AutG to

Aut G/In G. In our description of C(x, B) we will need the following subgroups
of G and .

Definition.

Fo(G) = {g € G| [lw(g), Vw € 7 (n)|| <o},

T.(7) = {x € =| there exists w, € 7~ (x) such that ||(1 — w,)G|| < a}.

Remarks. (1) If G is abelian and a = 2, then F,(G) consists of the fixed
points of G relative to ¢ () © Aut G. If o = X, then similarly F,(G) consists
of the points of G having finite orbits.

(ii) If G is not abelian, then if we choose any ¢ € ¢, i.e. any ¢: 7 — Aut G
in the automorphism class of ¢, then F,(G) consists of the points of C(a, G)
whose orbits relative to ¢ (w) have at most cardinality a.

(iii) If @ = 2, then T'w(7) = kernel y. This can be seen as follows. Clearly,
kernel ¢ C T'»2(w) for we can always choose w = 1. On the other hand, it is
clear that x € Tq(w) if and only if there exists an inner automorphism u[g,]
such that ||(1 — ulg]e(x))G|| < @ when ¢ € ¢. Therefore if x € Ty(w),
then there is an inner automorphism u[g,] such that z = (u[g.]¢(x))k for all
h € G,ie ¢(x)(h) = ulg,1](h) so that ¢(x) is inner and therefore

Y(x) = 7¢(x) = L.

(iv) If G is abelian, then In G = (1) and so ¢: # — Aut G. It follows that

the definition of T's(7) simplifies to
Ta(r) = {x € x| [[(1 — ¢(*))G|| < a}.

ProposITION 3. (1) F,(G) is a normal subgroup of G C C(a, G).

(2) Tu(r) is a normal subgroup of =.

Proof. (1) If g, b € F.(G), then

{w(gh™),w € 7% ()} = {w(@wh)™ v € 77Y(7)}
S {w(g),we (M} X {whk)™we rY(r)

https://doi.org/10.4153/CJM-1970-087-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1970-087-1

778 J. E. BURROUGHS AND J. A. SCHAFER

and therefore ||w(gh™!), w € 7Y (7)|| < « since g, & € F,(G) and inversion
is a bijection of sets.

Fo(G) C C(a, G) since 77'¢(r) 2 In G, and finally, F,(G) is normal in
G since for fixed & € G,

{whgh™), w € 7 (m)} = {w(g), w € 7=1Y(m)}.
(2) That T,(w) is a subgroup follows from the following two equations:
(I —w)g+ w(l —w)g = (1 —ww,)g;
(I —w)g = —w,(1—w)g

If w, € mW(x)and w, € 77 W(y), then w,w, € 7Y (xy) and w,~! € 7Y (x"1).
To show that Te(m) is normal in , choose ¢ and f so that [G, ¢, f, =] exists
and yields an extension congruent to E. Now if y € m,

dyxy™) = wplf(y, xy )7 Ue )l f(x, y ) e (x) (v 1)

by (2). But

d)ul f(x, y71)71] = p[\]¢(y) for some X € G.
that is

¢ (yxy™1) = wu[X]p(y)d(x)d(y~!) for some X € G.
Therefore

(x) = ¢ () X (yxy D (y~1)~L
It follows that
1 — ulglox) = 1 — plglo@) X 1o (yey 1o (y~1)!
= —¢(y )1 — plylo(yxy=))e(y~ 1)1

for some v € G since ¢(y)~! and ¢(y~!) differ by an inner automorphism of G.
Therefore, if x € To(rw), i.e. there exists u[g,] such that

1A — plgle@)G]| < a,
and since y is fixed, we have || (1 — [yl (yxy~1))G|| < a, thatisyxy=! € T, (x).

We now state a lemma giving the conjugation formula in a crossed product
group. The proof is straightforward but tedious. We will write ¢* for the
conjugation hgh=t.

LEMMA. In the crossed product group, |G, ¢, f, 7],
(g0, %0) 0P = (g + ¢(x)g0 + f (%, x0) — f(x0% %) — d(x07)g, %a7).

THEOREM 1. (i) k" 1(C(e, B)) = F.G.
(ii) ¢(C(e, B)) € ma = Tal(w) N Cla, 7).

Proof. (i) By Proposition 1 we can assume that C(a, B) is split with respect
to [G, ¢, f, w] with p a congruence homomorphism. Now

p(Cla, B)) =[G, ¢, f', 7],
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where G’ = ¥1(C(a, B)) and «’ = ¢(C(e, B)), and so it is sufficient to
determine C(a, [G, ¢, f, 7]). Now suppose that § € G' = «'C(a, B) so that
(g,1) € p(C(a, B)). We see from the lemma that

(& 1)U = (g+ ¢(x)Z — ¢(1)g, 1).
Thus ||ul[glé(x)g for g € G and x € 7|| < a and therefore g € F.(G).
Conversely, if g € F,(G), then the lemma shows that (g, 1) € p(C(a, B))
andso g € G'.
(ii) Let x¢ € ¢(C(a, B)) = 7', i.e., there exists § € G such that

(g %) € p[C(e, B)].

Using the lemma again we see that

(@ x0) = (g4 g — ¢(x0)g, %0).

Since (g, x¢) € p(Cy(a, B)), this last set has cardinality < « for g € G. But
g — ¢(x0)g = ulgle(xo)(—g) + &; therefore the set {(1 — u[Zl¢(x0))G} has
cardinality <« and x¢ € Te(w). On the other hand, if we conjugate (g, x,)
by any (g, x), we see that the set of conjugates of xo must have cardinality <«
since (g, x0) € p(C(a, B)) and so %o € C(e, ).

Let us now suppose that G is abelian and try to find a ‘“lower bound”
for ¢(C(a, B)). This lower bound will depend on the choice of factor set
representing the extension.

Definition. Let f: # X m — G be a factor set for the extension E associated
with ¢: # — Aut G. By B(a, f) we will mean the set

fxealllfx) —fG& ] <a Vye .

THEOREM 2. Suppose that G is abelian, and let [G, ¢, f, w] be any crossed
product group. If xo € ma, then (0,x0) € Cla, [G, ¢, f, 7]) if and only if
o) E B(a,f)

COROLLARY 1. B(a, f) N 7 € ¢C(e, B).

COROLLARY 2. If E is any extension of the abelian group G by the group =
and if f: # X m — G is any factor set representing the extension, then for any
choice of coset representative u: w — B such that f, = f, we have that if xo € Ta,
then u(x0) € C(a, B) if and only if xo € B(e, f).

Proof of Theorem 2. Suppose that xq € m,. The lemma shows that
0, x0)@? = (g + ¢(x)(0) + f(x, x0) — f(x0"%) — $(x0")g, X07).
Since G is abelian, the first entry is
g — o(x)g + f(x, ®0) — f (0% ).

Now since %o € C(a, 7), %o has 8 < a distinct conjugates, say {xo, x1,...}.
Since %9 € To(w) and T (w) is normal in 7, each x,, ¥ < 8, isin I, (7). Therefore
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for each v = B theset { (1 — ¢(x,))G} has cardinality <a. Since thereare8 < «
such conjugates, the set {g — ¢(x¢")g; g € G, x € =} has cardinality < a. It
follows that xo € B(a, f) if and only if (0, x,) € C(a, [G, ¢, f, 7]).
Unfortunately the above theorem is false without the hypothesis that G
be abelian. Even the following more restricted question can be answered in
the negative without the hypothesis of commutativity for G.
Let ¢ € ¢ and let f be any factor set associated with ¢. Then if

%0 € 1 M Bla, f),
does there exist gy € G such that

(go, xO) € C(a, [Gy ¢7 fr W])?

In terms of extensions and not crossed products, this can be stated as:
If xo € B(a, f) M ma, does there exist u: # — B such that f, = f and

u(x0) € C(a, B)?

That this question has a negative answer is seen by means of the following
example in which C(e, B) is the centre of B.

Let G = Djs, the dihedral group of order 8. Let # = Z; X Z; and ¢ = 0.
Choose ¢ € ¢ to be the following homomorphism.

¢(—1,1) = pla],
¢(1, —1) = ulB],
¢(—1: —1) = /4[0‘:3]7

where @ and B generate Ds, a* = 1, 82 = 1, and fa = 8. Since ¢ is a ho-
momorphism, the associated factor set f is zero. It follows that the obstruction
to this abstract kernel vanishes, and therefore the extension exists. It is
easily seen that w2 M B(2,f) = =, and so we must show that if 1 5 x, €
Zy X Zs, there does not exist any go € G such that (go, x¢) € centre[G, ¢, f, =].
Suppose that we are given x¢ € « such that g, exists. Then from the conjugation
lemma we have, taking g = 1, that ¢(x)go = go for all x € x. This implies
that go = 1 or go = a% However,

(1, x0) € Centre & g¢(xo)g™! = 1forallg € G

If go = a? then (a? xo) € centre & ga2p(xy)g™! = o2 for all g € G. But
a? € centre Dg and so this states that gé(x¢)g~! = 1 and again we see that
xo = 1. We conclude therefore that ¢(centre) = (1), and so

72 M B(2, f) & o(centre).

This example shows again that in the non-abelian case the choice of ¢ € ¢
must be involved in the description of the centre of the extension. Also, this
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extension was split and so even in this simple case the choice of ¢ becomes
crucial.

Returning now to the abelian case, we combine our previous results into
the following theorem.

THEOREM 3. Let f: # X m — G be any factor set associated with the extension
G >— B —-m, where G is abelian. Then the following are equivalent:

@) f splits C(a, B) absolutely, i.e. Cla, B) is split absolutely with respect
to [G’ ¢7 f7 7r];

(b) f splits C(a, B);

(c) o(Ce, B)) € B(e, f).

Proof. (a) = (b): Trivial.

(b) = (c). If f splits C(e, B), then there exists a congruence homomorphism
p: B> [G, ¢, f, 7]. Let u: # — B be the associated coset representative. By
Proposition 1, #(¢(C(a, B))) € C(a, B). Therefore, if xo € ¢(C(a, B)), then
(0, x0) € p(C(e, B)). Conjugating by (0, x) shows that xo € B(e, f).

(¢) = (@). If ¢(C(a, B)) € B(e, f), then by Theorem 1 and Corollary 1
to Theorem 2 we see that ¢(C(a, B)) = ma M B(e, f). Therefore if % is any
coset representative such that f, = f, (note that this is equivalent to choosing
a congruence homomorphism of B to [G, ¢, f, ]), then if x5 € ¢(C(e, B)) we
have by Corollary 2 to Theorem 2 that u(x,) € C(e, B). By Proposition 1,
C(a, B) is split by u, i.e., f splits C(a, B) absolutely.

Note that from Proposition 1 we know that in the abelian case, there
always exists an f which splits C(e, B). Theorem 3 states a condition so that
splitting fs may be recognized and also states that for this class of subgroups
splitting and absolute splitting are equivalent.

Under the same hypothesis as in the preceding theorem, we have the
following result.

CoRrOLLARY. If o(C(a, B)) C B(a, f), then C(a, B) corresponds under any
congruence homomorphism p: B — [G, ¢, f, ] to [F.G, ¢', f', 7 M B(a, f)].

Note that if the extension is split ( f = 0), then C(e, B) corresponds to
[F.G, ¢, f', mal-

We conclude with two examples in the abelian case. The first shows that
B(a, f) 2 ¢(C(a, B)) and therefore it is not true that every f splits C(e, B).
The second example shows that it is possible for the sub-crossed product
[F.G, ¢, f, s(C(2, B))] to exist but have no congruence homomorphism p
which splits C(2, B) with respect to [G, ¢, f, 7).

(1) Let
1 2¢ b
B = 0 1 ¢)|ab,cc Z}
0 01

and let
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1 0 2x
G=<10 1 2]l x,y € Z).
0 0 1

Then G <0 B and a simple calculation shows that

1 0 b
centre B = {(O 1 0> b € Z}.
0 0 1
If # = B/G, then

1 2¢ B
=<0 1 ~v])|a€ZB,vE€ Zsy;
0 0 1

define u: # — B by

1 22 8 1 2¢ r(B) 1 2¢ B 1 01
ul0 1 ~)=[0 1 r(&)) {0 1 4])=#{0 1 0],
0 0 1 0 0 1 0 0 1 0 01

where 7: Zy; —» Z by 7(0) = 0 and (1) = 1; and

1 01 1 01
u<0 1 0>=<0 1 2>.
0 01 0 01

1 01
<0 10>€7r
0 01

by x0, and f, is the associated factor set to #, then an easy calculation shows
that

If we denote

0 01

but xo € o(centre B) and so o(centre B) € B(2, f) and centre B does not
split with respect to f.

(ii) For this example, we let

1 2¢ 1
S (%o, ¥) #= (v, x0) ify=<0 1 0>€7r,

1 x v
B={<O 1 z> x,y,z€Z4}
0 0 1
and
1 0 2
G = {(0 1 26) b, Cc E 24}
0 0 1

Then it is easily seen that
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1 0 b
centre B = 01 0)|b¢€Zy.
0 0 1

Choose # as in the previous example. An easy calculation shows that
f |o(centre B)?2: o(centre B)? — F2(G)

and therefore the sub-crossed product [Fs(G), ¢/, f’, o(centre B)] exists.
However, this is not the centre of B because if it were, this choice of f would
split the centre of B, and therefore split it absolutely. It follows that # would
have to map o(centre B) into centre B which it does not.
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