J. Functional Programming 6 (1): 143-170, January 1996 © 1996 Cambridge University Press 143

Sparse matrix representations
in a functional language

P. W. GRANT, J. A. SHARP, M. F. WEBSTER and X. ZHANG
Department of Computer Science, University of Wales, Swansea, Swansea SA2 8PP, UK

Abstract

This paper investigates several sparse matrix representation schemes and associated algorithms
in Haskell for solving linear systems of equations arising from solving realistic computational
fluid dynamics problems using a finite element algorithm. This work complements that
of Wainwright and Sexton (1992) in that a Choleski direct solver (with an emphasis on its
forward /backward substitution steps) is examined. Experimental evidence comparing time and
space efficiency of these matrix representation schemes is reported, together with associated
forward/backward substitution implementations. Our results are in general agreement with
Wainwright and Sexton’s.

Capsule Review

Computational fluid dynamics problems occur in many industrial applications of great
commercial importance. If functional languages are to be successful in the arena of scientific
computation, they must lead to software that performs fluid dynamics computations efficiently.
The research that Grant et al. describe in this paper studies several implementation approaches
to functional language software for a computationally intensive portion of fluid dynamics
applications. It compares these approaches in terms of time and space, both analytically and
experimentally, and it compares the effectiveness of functional languages in this domain to
that of conventional programming languages. This research reveals information that is central
to the solution of an important problem, and suggests some promising avenues of research
to further iluminate the use of functional languages in scientific applications.

1 Introduction

Functional languages have many advantages over conventional procedural lan-
guages. However, the engineering community remains to be convinced that they are
suitable for large scientific computations. As part of the UK FLARE (Functional
Languages Applied to Realistic Exemplars) project, we have been using Haskell (Hu-
dak et al, 1992) to develop a Computational Fluid Dynamics (CFD) application.
A sequential version of a Taylor-Galerkin/pressure-correction finite element algo-
rithm (Townsend and Webster, 1987; Hawken et al., 1990), originally implemented
in Fortran and used extensively by the CFD research group in the Department of
Computer Science at Swansea, has been recoded in Haskell. This algorithm involves
solving large sparse systems of linear equations. The particular application area of

https://doi.org/10.1017/5095679680000160X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000160X

144 P. W. Grant et al.

this algorithm is that of numerically simulating non-Newtonian flows, representing
a field of some considerable industrial importance. Examples of such flows can be
found within such diverse areas as polymer processing, the oil production industries,
food processing and medicine.

There are several properties of this application which make it of interest to
functional programmers. Firstly, complex fluid flow problems normally involve
a large amount of data and solving such problems involves intensive numerical
computation. As a result, a program which solves such problems must manipulate
large data structures and perform numerical computation efficiently. In particular,
efficient array operations are usually expected by engineers. Acceptance of functional
programming technology by users solving engineering problems may largely depend
on its computational efficiency. Secondly, extensive parallelism can be extracted from
the algorithm under investigation. Finally, research into the advantages and problems
of applying functional programming technology to the important field of numerical
analysis is still in its infancy, and there is much scope for further work here.

Haskell (Hudak et al, 1992; Davie, 1992) is a modern lazy pure functional
language designed by a working group of leading researchers, supporting pattern
matching, user-defined data types, polymorphic types, functions and other features.
Some of our previous practical experience in the application of Haskell has been
published in several papers (Grant et al., 1992a, 1993a, 1993b; Zhang et al., 1994a,
1994b). In this paper, we mainly concentrate on the performance of solving lin-
ear equations arising from a Taylor-Galerkin/pressure-correction algorithm using a
Choleski direct method (Wilkinson and Reinsch, 1971) using several different sparse
matrix representations for Choleski factors. However, this investigation is not solely
a comparison of data structures as several different Choleski substitution imple-
mentations have been adopted to suit different situations. We are interested in the
optimal performance functional programs can provide rather than issues associated
purely with data structures.

In the above algorithm, the Choleski decomposition component of the Choleski
direct method is only carried out once at the start of the time stepping procedure
for each entire program execution. This means the Choleski decomposition is not a
significant component in the entire iterative time-stepping algorithm and is therefore
not under examination in this paper. Furthermore, a Choleski factor for a particular
problem is never updated in the entire execution as this is static, and in this respect
supporting efficient data update is not required here. However, some tests are also
reported on the use of mutable arrays that have been made available only recently
in a compiler provided by a group at Glasgow (Peyton Jones and Wadler, 1993).

There are two reasons why we are interested in sparse representations:

1. The practical systems we are dealing with can be huge but sparse which
makes sparse representations essential even in programs written in procedural
languages.

2. Functional programming normally demands more space than procedural pro-
gramming. Any saving on space will generally result in less garbage collection
activities and hence, in turn, improve time efficiency.

https://doi.org/10.1017/5095679680000160X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000160X

Sparse matrix representations 145

The patterns of sparse matrices that arise in our problems can be changed
by reordering both matrix rows and columns (together). Although a minimum
bandwidth pattern is normally adopted (for our Fortran program for example), in
this investigation we always apply a minimum degree reordering scheme, which
reduces the total number of non-zero entries in Choleski factors (Duff et al., 1986),
to make a generalised envelope sparse matrix representation scheme (described later)
effective. This reordering scheme reduces the total number of non-zero entries in the
resultant Choleski factors but may spread non-zero entries over the entire matrix. As
the Choleski decomposition is not under investigation, further details are omitted.

The Haskell code under investigation also includes the implementation of a
Jacobi iterative linear equation solver plus other components. The selection of data
structures has been made with a view to the optimisation of run time of the overall
code.

This work is complementary to Wainwright and Sexton’s work (1992). The em-
phasis of their investigation was on sparse matrix representations in Miranda for
solving linear systems of equations using two iterative system solvers: Conjugate
Gradient and Successive Over-Relaxation (SOR) (Hageman and Young, 1981). They
found that a quadtree representation out-performed other representations when the
Conjugate Gradient method was used. However, the quadtree representation was
less favourable compared with a run-length encoding scheme when using SOR.
They suggested that this was because the SOR method needs to isolate each row
of a matrix, one at a time, which is not a natural operation on quadtrees. Both
direct solvers and iterative solvers are used extensively in practice. There are two
main differences between the Choleski schemes and the schemes investigated by
Wainwright and Sexton. The Choleski method first decomposes an original system
matrix into a pair of Choleski factors. This operation introduces extra non-zero
entries. In the solution stage, the Choleski method performs both row and column
oriented operations on Choleski factors, while the Conjugate Gradient and SOR
methods perform only row oriented (or only column oriented) operations. These
two characteristics are not present in Wainwright and Sexton’s iterative methods
and warrant further investigation.

2 A Taylor-Galerkin/pressure-correction algorithm

For completeness, in this section we present a brief description of the numerical
algorithm used. The flow of an incompressible fluid can be described by the Navier—
Stokes equation (Cuvelier et al., 1986)

0
pa_l;+PU'Vu—uVZU+Vp=f (1)
together with the equation that constrains the flow to be incompressible:
Vou = 0)

In the above u refers to the velocity of particles in the fluid, p the pressure, p the
density, and u the viscosity. f is an external force acting on the fluid that is assumed

https://doi.org/10.1017/5095679680000160X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000160X

146 P. W. Grant et al.

to vanish in the current implementation. These equations describe the velocity and
pressure in a fluid flow as a function of time and location. Here we concentrate on
Newtonian fluids with constant viscosity. These are highly viscous problems that
display inertial effects and strong vortex structure. The numerical challenges posed
by such systems lie in the discrete resolution of these transient convection-diffusion
equations within an incompressible framework. By numerically solving equations (1)
and (2), we can simulate the evolution of velocity and pressure in a transient flow.
To achieve this goal, a Taylor-Galerkin/pressure-correction algorithm is employed.

The Taylor—Galerkin/pressure-correction algorithm incorporates four indepen-
dent fractional stages per time-step for viscous incompressible flows. The merits
of the scheme are its considerable computational accuracy and its space and time
efficiency. In this investigation we consider only two-dimensional spatial domains,
that are triangulated into a finite-element mesh.

This scheme discretises the Navier-Stokes equations and gives rise to equations
of the following form:

%’?M(U("H/z) —UMy = by U™, poy, (3)
éM(U(') _ymy = p(UCHYD piy,)
EASK(P(H” —PW) = UM, (5)

‘Z—‘;M(U("“) —U®) = py(PH) _ pl)), (6)

where M is an augmented mass matrix, K a pressure difference stiffness matrix, U™
the velocity solution vectors, and P the pressure solution vectors.

Precise details of these complex equations are given elsewhere (Townsend and
Webster, 1987; Hawken et al., 1990). However, the essential points to note are:

1. The right-hand-sides (RHS) and solutions in (3), (4) and (6) are multiple
vectors corresponding to individual velocity components. The right-hand-sides
and solutions in (5) are, however, single vectors.

2. The order of solution is to start with (3) and (4) to produce the intermediate
result U® from (U™, P™), then (5) calculates P™+D from (U}, P™), and
finally (6) computes Ut from (U®), P, pr+D),

3. Matrices M and K are sparse, symmetric, banded and positive definite under
appropriate boundary conditions.

A Jacobiiteration method (Hageman and Young, 1981), which does not necessitate
the explicit assembly of system matrices arising from these finite element problems,
is used for the solution of (3), (4) and (6). For solving (5) we employ a classical
Choleski direct method (Wilkinson and Reinsch, 1971). There are many sparse
matrix representation schemes which are suitable in this context, and it is the
performance of these schemes that forms the main part of this study.

https://doi.org/10.1017/5095679680000160X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000160X

Sparse matrix representations 147

2.1 A Choleski direct method

System (5) does not vary across time-steps (the others do). This makes an explicit
assembly of this particular system matrix and the employment of a classical Choleski
direct method (Wilkinson and Reinsch, 1971) for its solution worthwhile. For readers
not familiar with this method we give the details below.

The solution of the system, Ax = b, is determined by the forward and backward
substitution steps:

Ly =b, LTx = y)
where L is a lower triangular matrix satisfying LLT = A. The elements of L are
given by

j—1

i = (ay — Y lplp)/lj j<i (8)
p=1
i1

l,',' = (a,-i h Zl,'pl,‘p)l/z. (9)
p=1

L is normally termed a Choleski factor and its construction is known as Choleski
decomposition. The forward/backward substitution steps can be described by the
following calculations:

i—1

yi = (b = > lpy)/l i=12..n (10)
p=1

X = (yl - Z lpixp)/lii’ i= n,n— 1:"'a1 (11)
p=i+1

where n x n is the size of A. These two substitution steps compute y = L~'b and
x = (LT)"!y without explicitly evaluating L~! and (L7)~!.

Although the forward/backward substitution steps must be performed at each
time-step, the Choleski decomposition of A needs to be performed only once. A
typical simulation may require thousands of time-steps. We therefore limit our
attention only to implementations of the forward/backward substitution steps in
this paper.

Equations (10) and (11), although quite similar, actually imply different entry
access order to the Choleski factor L using straightforward implementations. To
calculate y;, the ith row of L, {lip,p = 1,2,..,i — 1}, is required, but, to calculate
x;, the ith column, {l,,p = i+ 1,i+2,..,n}, is required. In other words, the for-
ward substitution accesses the matrix row by row, whilst the backward substitution
performs access in a column by column manner. If matrices are stored row by
row, the backward substitution may not be efficient for very large matrices under
a straightforward implementation of equation (11) due to swapping and caching
activities caused by accessing entries in different rows. We have implemented three
possible solutions to this problem. The first is achieved by providing a separate copy
of the Choleski factor for the backward substitution stored in a column by column
fashion. The second is through storing the Choleski factor in a ‘neutral’ form. These

https://doi.org/10.1017/5095679680000160X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000160X

148 P. W. Grant et al.

two solutions involve mainly data structure changes, examples of which are given
in later sections. There is however a third solution, ie. reformulating the backward
substitution equation (11) to establish a row-oriented scheme. If we introduce a set
of intermediate vectors zV/) = {z,(j)li =1,2,..,n} and define them as

0 = i=12,..n (12)
Zl(j) — Zl(j*l) _ lp,ixp7 p=n+1 —-ji= 1,2,..,n —] (for]> 0) (13)
n
= y — Z Ipixp
p=n+1—j

then equation (11) becomes
xi = 2"l (14)

It can be easily verified that if we evaluate these equations in the order of z¥, x,,
W, x,_4, ..., 2", x,, the access to L will be row by row.

The extra cost of this scheme is the storage of the z) vectors. In a procedural
implementation, all the z() vectors can share the same storage. In a functional
language where in-place update is unavailable, this cost is at least as heavy as
a two matrix copy scheme, where both a row-by-row version and a column-by-
column version of the L factor are retained. The emergence of the Glasgow mutable
arrays (Peyton Jones and Wadler, 1993), however, makes this scheme attractive in
a functional implementation and calls for future investigation. Despite the necessity
of updating RHSs, experiments show that the implementation of equations (12)-
(14) has much better speed efficiency than a straightforward implementation of
equation (11) in a one-copy scheme context. The implementation of equations (12)-
(14) has been adopted for all the one-copy schemes cited below.

2.2 Comparison of Choleski and some other equation solvers

To facilitate comparisons between our strategy and that of Wainwright and Sexton’s
study (1992), a short comparison of the Choleski method and some other equation
solvers is included in this sub-section.

Equation solvers can be generally classified as direct or iterative methods. Nor-
mally, direct methods are fast, and give high precision solutions, but require explicit
system matrix assembly and may be difficult to parallelise. The Choleski method
is one such method. In contrast, iterative methods may prove to be relatively slow.
Their precision of solution normally increases with the number of iterations per-
formed. Some of them are more suitable for parallel implementations and some do
not require explicit system matrix assembly (the Jacobi method for example). The
Conjugate Gradient and SOR methods investigated by Wainwright and Sexton are
examples of efficient iterative solvers. The operations involved in these two solvers
are mainly row-oriented vector-vector and matrix-vector multiplications.

There are two main operational differences when comparing the forward /backward
substitution steps with the Conjugate Gradient and SOR. First, it is not difficult
to appreciate from equations (10) and (11) that diagonal entries and non-diagonal

https://doi.org/10.1017/5095679680000160X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000160X

Sparse matrix representations 149

entries in a Choleski factor involve different operations. The property of the system
matrix guarantees non-zero diagonal entries. This leads to differences in implemen-
tation compared with some sparse representations implemented by Wainwright and
Sexton — segregating diagonal entries from non-diagonal entries and using sparse
representations only for non-diagonals. Second, column-oriented operations are re-
quired in the Choleski method but not in the Conjugate Gradient and SOR methods.
This adds extra complication to our investigation.

3 Data structures and Haskell implementations
3.1 Vector representations

In most of our tested schemes, the following data structure is used for representing
system right-hand-side and solution vectors.

type S_Vector = S_array Double

where S_array is our implementation of the Haskell arrays (Zhang et al., 1994a)
using a concrete tree implementation.

There are a number of cases in our code where it is reasonable for us to use the
same structure for all vectors. This can also simplify code maintenance and other
tasks such as code parallelisation. There are two reasons why a tree structure has
been chosen instead of the obvious Haskell standard built-in array implementation
in the hbc (Augustsson, 1993) and Glasgow Haskell compilers which store array
elements in contiguous memory locations. The first is the consideration of updates
to vector entries which arise in the second Choleski substitution algorithm described
earlier. Entry update supported by the standard Haskell arrays is simply not space
(nor time) efficient (O(n) where n is the length of the vector). The second is that the
tree structure fits naturally into the recursive algorithm used in the quadtree scheme
(see section 3.2.3). Therefore the tree structure is employed for all representation

schemes.

The S_array has also been designed to support sparse vector representation, and
is therefore also used for representing matrix rows (described later). The precise
definition of S_array is

data S_array a = Mk_t_Array (Int,Int) (Maybe a) (Bin_tree a)
data Bin_tree a = Fork Int (Bin_tree a) (Bin_tree a) | Leaf a | Null

data Maybe a = Nothing | Just a

The first parameter (Int, Int) after the Mk_t_Array constructor is for the indication
of array index bounds and the first parameter Int after the Fork is for keeping key
information to facilitate the implementation of some array operations (although it
is not strictly necessary, we found its presence improved execution speed). Figure 1
illustrates how this structure supports sparse representation of sparse vectors. Coun-
terparts of all standard Haskell array operations have been defined on S_array.
Table 1 lists the name correspondences of some of our operations and the stan-
dard Haskell operations. Operators (1) and (//) provide array entry accesses and

https://doi.org/10.1017/5095679680000160X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000160X

150 P. W. Grant et al.

! :

i S | A st

E /° ,° i °‘/ ;ﬁu
[3,0,0,2,0,0,0,0] L o o °/ \\"-'?

A AT A N A

A0 0000 | 3 a2

! 1

Fig. 1. An example of the tree representation.

Table 1. Name correspondence of some array operations

S.array (!'°) (//°) s_bounds s.array s.listArray s.accum

Standard Haskell (!) 7)) bounds array listArray accum

updates respectively. Functions array, listArray and accum are various array
constructors. Function bounds returns the bounds of an array.

Our scheme is slightly different from the implementation of Wainwright and
Sexton (1992), whose corresponding binary tree data structure has a Scalar num
constructor in place of our Null. In other words, our approach expects all subtrees
represented by Nulls in the same tree to share the same numerical entry value
while Wainwright and Sexton’s approach does not. The actual shared numerical
value (normally 0) in our case is stored in the Maybe parameter field (Spivey, 1990).
Although this can be done in a more straightforward manner, for example using
Double , Maybe allows the value to be undefined (being Nothing) and facilitates
array entry access violation checks.

We have also conducted some experimentation using a monadic mutable array
(see section 3.2.5) implemented in the Glasgow Haskell compiler (Peyton Jones and
Wadler, 1993) for RHS and solution vector representation (a further study is planned
when this implementation has reached a more mature state). A monadic mutable
array contains a string of non-pointer bytes and stores unboxed (or untagged) array
elements in consecutive memory locations. It allows constant time read/write access
to array elements and also supports in-place update of array entries.

There are three basic operations defined on these arrays: newDoubleArray,
readDoubleArray and writeDoubleArray (Double data type version). These oper-
ations need to be used in conjunction with monadic state operations.

https://doi.org/10.1017/5095679680000160X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000160X

Sparse matrix representations 151

3.2 Matrix representations

This paper compares four basic sparse matrix representations. These are a binary
tree scheme, a list of row-segments scheme, a generalised envelope scheme (Liu,
1991) and a quadtree scheme. A non-sparse representation is also implemented for
comparison. As has been mentioned earlier, our implementation of binary trees,
which form the base of the Binary tree representation scheme discussed below,
is slightly different from the corresponding scheme presented by Wainwright and
Sexton (1992). A few non-crucial differences can also be found between our and their
quadtree implementations due to our emphasis on representing triangular matrices
for the Choleski method. Our list of row-segments scheme is actually a simple
variation of their run-length encoding and in addition two two-matrix-copy schemes
are also discussed.

In the following section, we describe the data structures and implementations of
the four sparse representations together with the corresponding variations of the
forward/backward substitution steps in Haskell. To test the quadtree scheme and
as a reasonable basis for comparison with other schemes, we transform Choleski
factors derived in the generalised envelope form to quadtrees.

3.2.1 Binary trees and lists of row-segments
The implementation of equation (7) is straightforward:

chl_method :: Chl_factor -> S_Vector -> S_Vector
chl_method chl_factor b = x

where

x = backwd_subs chl_factor y

y = forwd_subs chl_factor b

where S_Vector is the data type defined in section 3.1. This function takes a Choleski
factor and a system RHS vector as input and derives a solution vector. The vector
y in equation (7) is implicit.

For both the binary tree scheme and the list of row-segments scheme, we have

type Chl_factor = (Diagonal, Array Int Sparse_vec)
where type Diagonal is defined as
type Diagonal = Array Int Double

This definition segregates the diagonal entries (the first component) from the re-
mainder. The difference lies in how Sparse_vec is defined. The same structure is
used for the implementation of the non-sparse representation except [Double] re-
places Sparse_vec. There is an alternative here, that arrays instead of lists are used
wherever appropriate. Assuming row-by-row storage, for the forward substitutions,
a list data structure is adequate because no random access to list entries is necessary.
For the backward substitutions, an array data structure is preferred but this still
does not prevent possible swapping and caching activities. We have investigated a
two-matrix-copy strategy to avoid the implications of both random accesses and

https://doi.org/10.1017/5095679680000160X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000160X

152 P. W Grant et al.

possible swapping and caching. Tests show that sequential access to all entries in a
list is actually slightly faster than to all entries in an array for the hbc compiler.
For the list of row-segments scheme, the Sparse_vec is

type Sparse_vec = [(Int, [Double])]

The Int component is used to specify the starting point of a non-zero row-segment
and the [Double] contains the row-segment. This is obviously a simple variation of
the following Haskell translation of the run-length encoding scheme

type run_len = Run_pair num num | List [num]

used by Wainwright and Sexton (1992) and our version should be more efficient.
This simplification is feasible because, in our case, the number to be excluded from
storage is always zero.

For the binary tree scheme, the Sparse_vec is

type Sparse_vec = S_array Double

The following is the code for forward substitution:

forwd_subs :: Chl_factor -> S_Vector -> S_Vector
forwd_subs chl_factor b = s_listArray bnds y
where
diag = fst chl_factor -- diagonal of Choleski factor
off_diag = snd chl_factor -- off diagonal of Choleski factor
bnds = s_bounds b -- vector bounds (1,n)
1 = fst bnds -—-1=1
y = (bt"1)/(diag!l) : -- Y1
[((b!"i)-inner_prod y (off_diag!i))/(diag!i) -- Yi
| i<-range (bounds off_diag) - 2<=i<=n
]

The expression for y is a straightforward implementation of equation (10). Notice
that y is actually a list version of the solution vector. This extra copy of the solution
vector allows us to avoid repeated updates to solution arrays (entry updates to the
S_array are O(logn)).

The inner_prod function multiplies two vectors of variable lengths (the longer
vector is truncated) and has signature

inner_prod :: [Double] -> Sparse_vec -> Double

To avoid direct column accesses to Choleski factors, the function backwd_subs
implements equations (12)—(14). The corresponding procedural operation can be
described as

b :=y -- equation (12)
for i := n to 1 step -1 do
begin

new_x := b[i] / diagl[il -- equation (14)

https://doi.org/10.1017/5095679680000160X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000160X

Sparse matrix representations 153

x[i] := new_x
b = b - new_x * off_diagl[i] -- equation (13)
end

where * denotes a vector scaling operation and off diagl[i] represents a full
Choleski factor row (expansion of row-segments filled out with zeros). The Haskell
version, which is slightly less terse than the procedural description due to explicit
initialisation of parameters and expression of recursion, is

backwd_subs :: Chl_factor -> S_Vector -> S_Vector
backwd_subs chl_factor y =
fst -- select only solution vector as the final result
(foldl gen_x (init_x,y) [m,n-1..1])
—-- successive updates of solution and RHS

where
init_x = s_array bnds [] -- initial (empty) solution vector
diag = fst chl_factor -- diagonal of Choleski factor
off_diag = snd chl_factor -- off diagonal of Choleski factor
bnds = s_bounds y —-- vector bounds
(1,n) = bnds -—-1=1
gen_x (x_vec,b) i = -- one update step
(
x_vec//" {i:=new_x], -- updated solution vector at i
nev_b -- updated RHS
)
where
new_x = (b!'"i) / (diag'i)
new_b = s_accum (-) b (scale_vec new_x (off_diag'!i))

Here, an extra solution list is not constructed because no vector-vector multiplication
is involved. The scale_vec function basically scales a vector and has signature

scale_vec :: Double -> Sparse_vec -> [Assoc Int Double]

The implementations of the functions inner_prod and scale_vec are straightfor-
ward.

3.2.2 A generalised envelope scheme

A generalised envelope scheme due to Liu (1991) has also been implemented in
Haskell. It involves the following four steps:

1. A minimum degree reordering is first applied to the initial system matrix to
minimise the number of non-zero entries in Choleski factors.

2. A postordering of the system matrix follows to minimise storage overhead.

3. A Choleski decomposition is performed on the reordered matrix.

4. A generalised envelope partition is then applied to the Choleski factor so that
it can be stored in a blockwise fashion to exploit all zero entries.

https://doi.org/10.1017/5095679680000160X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000160X

154 P. W. Grant et al.

e o
0O o
e o

o © e o
Fig. 2. An example of the generalised envelope partition.

This method divides a Choleski factor L into vertical blocks. A partition is made
between columns i and i4-1 if and only if /;;1; =0, as illustrated in Figure 2. The o in
Figure 2 denotes a non-zero entry. It can be shown that, within a vertical block, no
zero entries will appear inside the block envelope. and each non-zero row-segment
always ends at the last block column (Liu, 1991). Consequently, only e entries need
be stored once the envelope structure of each block is identified. This is clearly ideal
for a sparse representation. All we need to do is to identify the envelope structure
of each block to eliminate zero entries from storage. The structure identification can
be done by either establishing an elimination tree for L (Liu, 1986), or performing
a symbolic factorisation.
In our Haskell program the scheme is implemented as

type GE_scheme = Array Int GE_block
type GE_block = (Diagomal, S_array Row_seg)

type Row_seg = (Int, [Double])

where Diagonal is as defined in the last section. In other words, a Choleski factor is
represented as an array of blocks where each block is a tuple of a vector of matrix
diagonal entries and a binary tree of matrix rows, which allows us to omit zero rows.
Each non-zero row is then of type Row_seg where the Int component indicates the
starting point of the row-segment. Figure 3 illustrates the data structure used to
implement this scheme.

Again, tree structures are used for RHS vector and solution vector representation.

The Haskell implementation of this scheme has been based on that of the list
of row-segments scheme. Because of the complication in representing a Choleski
factor, the corresponding implementation of the forward/backward substitution
steps is necessarily more complex than those for the binary tree and the list of row
segments schemes. The actual implementation treats each block, which has more

https://doi.org/10.1017/5095679680000160X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000160X

Sparse matrix representations 155

Darray [| | [|
/L N
: (7
@ [.] ‘ ‘
' 1D arrays
tree ' ::/
| AN
[---)
: 7/
list

Fig. 3. Data structure for the generalised envelope method.

rows than columns, in the same way as a Choleski factor in the list of row-segments
scheme applying the same forward/backward substitution strategy to each block.
To accomplish the operation, a higher level recursion is introduced; each recursion
sweep derives a segment of the result vector and an updated equation RHS.

In fact, the difference between this scheme and the list of row-segments scheme
only lies in the way in which non-zero segments are organised (given that the
same reordering schemes are applied). It carries a penalty of having to employ
more complex implementations for the forward/backward substitution steps by the
introduction of an extra level of data structures.

3.2.3 A quadtree scheme

The quadtree scheme (Wise, 1992) is a two-dimensional representation scheme.
Wise (1992) discusses how the quadtree representation can be fitted into LU block-
decomposition for a functional language, but as before here we are more interested
in the performance of the forward/backward substitution steps on such a data
structure in the current sparse matrix context.

A standard quadtree representation recursively partitions a matrix into four
submatrices, dividing both matrix rows and columns. This scheme is thus not
biased towards rows or columns. Quadruple trees are natural data structures for
representing such partitions.

Because a Choleski factor L is lower triangular, our quadtree representation is
different from that presented by Wise (1992) and Wainwright and Sexton (1992).
Suppose we have

Ly
= 15
L [E L,] (£3)
The following Haskell declaration is used to reflect the structure of a triangular

matrix:

https://doi.org/10.1017/5095679680000160X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000160X

156 P. W. Grant et al.

data TriMat a =
TriM (TriMat a) (RectMat a) (TriMat a) -- L1 E L2
| SingTM a

The first and third parameters following the constructor TriM accommodate the
L, and L;. The bottom-left rectangular submatrix is accommodated by the second
parameter. The constructor SingTM stands for a one-entry matrix.
For the submatrix
E; E
E — [un kp] ’

Ey En
a standard quadtree is used:

data RectMat a =
RectM (RectMat a) (RectMat a) (RectMat a) (RectMat a)
-- E11 E12 E21 E22
| SingM a
| ZeroM

The constructor RectM represents a matrix with four rectangular submatrices. SingM
represents tree leaves (one entry matrices). An alternative definition for tree leaves
is to use nodes representing four leaves instead of one, but this will not improve the
complexity of the associated algorithms. ZeroM represents a zero matrix of any size,
which can occur frequently in the quadtree splittings because we are dealing with
matrices which normally have large blocks of zeros.

To show the implementation difference, the Haskell translation of the quadtree
declaration used by Wainwright and Sexton is given below:

data QuadT = Quad QuadT QuadT QuadT QuadT | Diag num

They use the Diag num to represent a diagonal matrix with a unique diagonal value.
Such a matrix structure is unlikely to appear in our current context where the Diag
matrices would reduce to singletons and so our alternative approach using SingM
has equivalent power. Our extra ZeroM constructor allows simpler pattern matching
and expression of zero matrices than the equivalent expression Diag 0.

To make this scheme applicable to matrices of any size, a given matrix, L, is
first augmented to a size of 2™ x 2" by filling in 0’s. The augmented matrix is than
divided equally and recursively into quarters. The extra memory required for storing
the augmented part is not significant because zero sub-matrices are automatically
trimmed from quadtrees.

Figure 4 illustrates a quadtree matrix representation.

Wainwright and Sexton (1992) point out that operations explicitly isolating matrix
rows represented by quadtrees should be avoided. To do this, we use a recursive
forward/backward substitution implementation. To make the implementation feasi-
ble, we use binary trees to express vectors. In the following equations, the notation

a | . . .
[al } is used to represent a vector with two subbranches and we explicitly use the
2

Bin tree representation for our S_array (defined in section 3.2.1).

https://doi.org/10.1017/5095679680000160X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000160X

Sparse matrix representations 157

"o
e e
L1 &
° o
o/ oo
¢

E ole

© o0 o

Fig. 4. Quadtree representation of a lower triangular sparse matrix.

Suppose the equation to be solved is Ly = b, or

NN
E L[|y b, |
A forward substitution calculating y = L™!b can be achieved by first performing a

forward substitution on L;y; = by, and then on Ly, = by — Ey, to gety; = Ll‘lbl,
and y, = L7!(b, — Ey,). This represents a recursive forward substitution algorithm:

forwd_subs :: (TriMat Double) -> (Bin_tree Double)
~> (Bin_tree Double)

forwd_subs (TriM 11 e 12) (Fork s bl b2) = -- forwd_subs L B
Fork s y1 y2 - X
where

y1l = forwd_subs 11 bil

y2 = forwd_subs 12 (subbv b2 (multmv e y1))
forwd_subs (SingTM v1) (Leaf v2) = Leaf (v2 / v1)
forwd_subs _ v@Null = v

The backward substitution of equation L”x =y, or

RN

can be written in a similar manner using this quadtree recursive scheme. Notice
that the quadtree data structure does not support a natural representation for the
backward substitution algorithm outlined by equations (12)-(14) and therefore these
equations are not adopted.

The essential operations involved in the above functions are clearly the multiplica-
tion Ex,, described by the function multmv, and the multiplication ETx,, described

https://doi.org/10.1017/5095679680000160X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000160X

158 P. W. Grant et al.

by the function multmtv. The matrix-vector multiplication operation also appears in
the Conjugate Gradient method. Wainwright and Sexton conclude that the quadtree
representation is particularly suitable for this kind of operation (Wainwright and
Sexton, 1992). Rewriting Ex; as

[En Ep] [X11] _ [Eiixi1 + Eppxp2]

Ey En X12 Ezx11 + Exnxyp

means Ex; can also be recursively evaluated, and so too can E7x,. Unlike the other
schemes, row-oriented operations and column-oriented operations (with respect to
E), appearing in the matrix-vector multiplications Ex; and ETx, respectively, can
be expressed equally well using the same quadtree. The actual implementation of

these operations in Haskell is straightforward.
Vector addition and subtraction are also involved here and they can be expressed

in terms of sub-tree operations as
a by | _ [arEth
a; b | [axth

The corresponding Haskell implementation is omitted.

3.2.4 A Two-copy list of row-segments scheme

Another possible way of achieving efficient backward substitutions is to use a column
version of the factor matrix L. From the one-copy representation schemes discussed
above, the list of row-segments has been chosen as a basis for implementing such
a two-copy scheme; storing the other copy of the L factor as an array of lists of
column segments. The binary tree scheme is not seen to be appropriate for building
a two-copy scheme. It is important for a two-copy scheme to support efficient vector-
vector multiplications, optimal time complexity being O(n). However, tree structures
have an associated complexity of O(nlogn) because of the O(log n) access time. The
generalised envelope scheme uses the same fundamental data structure as in the list
of row-segments scheme. There is no need to introduce a two-copy implementation
for the quadtree scheme as this by nature is a two-dimensional approach.

The implementation of the two-copy scheme is straightforward. The forward
substitution implementation is adopted without change. The backward substitution
implementation is very similar to the forward substitution implementation except
that the construction of the auxiliary solution list starts from its tail (calculating x,
first) rather than its head.

3.2.5 Use of Glasgow mutable arrays

As an extension to the two-copy list of row-segments scheme, another set of experi-
ments has been conducted to test the use of Glasgow mutable arrays. Here, Glasgow
mutable arrays instead of trees (S.array) have been used to represent RHS and
solution vectors. The use of Glasgow mutable arrays for representing Choleski fac-
tors is not necessary because these are constant factors and do not therefore require

https://doi.org/10.1017/5095679680000160X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000160X

Sparse matrix representations 159

updates. The forward/backward substitution implementations have been changed
to take full advantages of the mutable arrays.

One obvious advantage is that such an implementation can at least reuse the RHS
vector space for storing the solution vector. A practical implementation has revealed
two further advantages of employing mutable arrays that use in-place updates.
First, the auxiliary solution lists used in the two-copy list of row-segments scheme
are no longer necessary here, saving further space. Second, letting forward/backward
substitutions share a common substitution implementation becomes very natural.

To use the Glasgow mutable arrays, it is necessary to include monads (Peyton
Jones and Wadler, 1993) in the code to allow state-based computations. The ba-
sic functions used are thenStrictlyST, seqStrictlyST and returnStrictlyST.
Functions thenStrictlyST and seqStrictlyST expect two arguments. Function
thenStrictlyST first evaluates its first argument, yielding a result, and then ap-
plies its second function argument to the result. Function seqStrictlyST be-
haves similarly except the result of its first argument is always ignored. Function
returnStrictlyST does nothing except packages its only argument with a state.
These functions have their lazy counterparts, namely, thenST, seqST and returnST,
but we prefer the eager ones to avoid space leakages (Peyton Jones et al., 1994). The
first two functions sequence the evaluations of their arguments. The third returns
a result. An extra function processListST is defined on top of these functions to
simplify the implementation; it sequences the evaluations of the entries of a list.

processListST [] = returnStrictlyST (]
processListST (x:xs) =
x ‘thenStrictlyST‘ (\r ->
processListST xs ‘thenStrictlyST‘ (\rs ->
returnStrictlyST (r:rs)))

The following is the substitution code implementing both equations (10) and (11):

gen_x list mat x =
-— list: specifying the order of entry computation order
-- mat: copy of Choleski factor to be used
-- x: RHS
processListST [
readDoubleArray x i ‘thenStrictlyST‘* (\v ->
-- read Xi (RHS) into v

if i==first then -- save the first solution entry
writeDoubleArray x i (v/(diag!i))
else -- save other solution entries

mult_x (off_diag!i) ‘thenStrictlyST¢ (\prods ->
writeDoubleArray x i ((v-sum (concat prods))/(diag!i)))

)

| i <- list -- go through all vector entries

where

https://doi.org/10.1017/5095679680000160X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000160X

160 P. W. Grant et al.

first = head list
-- first=1 or n depends on the substitution required

diag = fst mat -- diagonal of Choleski factor
off diag = snd mat -- off diagonal of Choleski factor
mult_x row = -— vector—entry multiplication for a row

processListST [
processListST [
readDoubleArray x i ‘thenStrictlyST‘ (\xv ->
-- read Xi into xv
returnStrictlyST (xv * v))
—— return the product of vector entries
| (i,v) <- zip [j..] as
-- go through all entries in a row segment
]
| (j,as) <- row -— go through all row segments

]
The actual forward /backward substitutions are simply

forwd_subs mat b = gen_x (range (boundsOfByteArray b)) mat b

backwd_subs mat b = gen_x [n,n-1..1] mat b
where
(1,n) = boundsOfByteArray b

specifying different computation sequences and they are called in

chl_method (chl_fac,chl_fac_t) b scalar =
forwd_subs chl_fac b ‘seqStrictlyST¢
backwd_subs chl_fac_t b ‘seqStrictlyST‘
processListST [
readDoubleArray b i ‘thenStrictlyST‘ (\v ->
writeDoubleArray b i (v*scalar))
| i <~ range (boundsOfByteArray b)
]

where chl_fac and chl fac_t represent the copies of the Choleski factor, and
bounds0fByteArray returns the bounds of a Glasgow mutable array.

Compared with its predecessor, this implementation is less clear due to the
presence of monads but less complex due to the omission of solution lists.

4 Results
4.1 Test problems and test schemes

Four test problems, listed in Table 2, have been adopted. These problems are small
in engineering terms but realistic and their details are discussed in references cited
in Table 2. In practice, it is not uncommon to see problems with more than 10*

https://doi.org/10.1017/5095679680000160X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000160X

Sparse matrix representations 161

Table 2. Four test problems

Test
problem Geometry Size of A Non-zeros in L sparsity (%) Reference
1 cavity 121 x 121 819 11.1 (Hawken et al., 1990)
2 glass oven 209 x 209 1443 6.6 (Ding et al., 1993)
3 cavity 441 x 441 4239 43 (Hawken et al., 1990)
4 L-shape 854 x 854 5946 1.6 (Al-Hussany et al., 1992)
Table 3. Summary of test schemes
No. Abbreviation Scheme Mat. structure Mat. represented Vec. structure
1 non-sp non-sparse array of lists L tree
2 bin-tree binary tree array of trees L tree
3 env gen. envelope array of trees of lists L tree
4 row-seg row-segment array of lists of lists L tree
5 q-tree quadtree quadtree L tree
6 row-seg2 row-segment array of lists of lists L and L7 tree
7 row-seg2-G row-segment array of lists of lists L and LT Glasgow

mutable array

mesh elements, resulting in system matrices of equivalent sizes. In Table 2, sparsity
is a percentage measure of non-zero entries in L factors.

The platform for the reported experiments was a Sun Sparc-1 workstation with
40Mb RAM. Except for the row-seg2-G scheme which has to employ the Glasgow
0.21 Haskell compiler to use mutable arrays, the hbc 0.999.4 compiler supplied by
Chalmers University has been adopted.

Two sets of tests have been performed to determine the space and time efficiencies
of these test schemes. To get accurate estimates of the differences due to adopting the
various schemes, the computation of system RHSs, system matrices,and Choleski
decompositions are excluded from the statistics. In a realistic solution process,
a system RHS must be assembled at run time and this may involve a lot of
computation. Experiments show a typical RHS assembly for equation (5) takes
twice as much time as the forward/backward substitutions. A typical system matrix
assembly, which is performed only once, takes a hundred times as much. The time
spent on a Choleski decomposition is equivalent to that on forward/backward
substitutions (notice the equations for a Choleski decomposition are very similar to
those for forward/backward substitutions).

Seven test schemes are examined in this paper, and are summarised in Table 3.
Test scheme non-sp is non-sparse and is included for comparison.

The average complexities of the data structure traversals involved in the for-
ward/backward substitution operations for all schemes are presented in Table 4.
Numerical calculations are discounted as they are identical for the sparse schemes ex-
cept for the bin-tree scheme. The bin-tree scheme does not explicitly exclude zero

https://doi.org/10.1017/5095679680000160X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000160X

162 P. W. Grant et al.

Table 4. Average data structure traversal complexities

Scheme abbreviation Forward substitution Backward substitution
bin-tree (dy+n+1+logn)n (d+{(s+1)m+1)logn)n
env ((s+Vn+1+@Gn+1)lognn (sn+({(s+b+1)n+1)logn)n
TOW-seg ((s+1)n+1+logn)n (sn+{(s+)n+ 1)logn)n
g-tree n, g

row-seg2 ((s+ Dn+1+1logn)n ((s+Vn+1+logn)n
row-seg2-G (sn+Dn (sn+ 1)n

entries. Consequently, the forward substitution computation in the bin-tree scheme
has been implemented to perform numerical computations even if a zero entry is en-
countered. We exclude the non-sp scheme from the data structure traversal analysis
as comparison with other sparse schemes is not meaningful; it performs the least
amount of data structure traversals but performs the most numerical computations.

The forward and backward substitutions are segregated in the table since their
implementations differ. s represents the matrix sparsity defined at the beginning
of this section. It is assumed that the number of resultant block partitions in the
generalised envelope scheme is proportional to the vector size n and characterised by
the coefficient b (bn being the number of generalised envelope blocks). Experiments
show b is of order 0.1. n, denotes the number of terminal nodes in a truncated
quadtree and should be viewed as a function of n?.

A major difficulty involved in the complexity analysis is the parameterisation of
traversing Choleski factor rows when they are represented by pruned trees, and
there are sn non-zero entries in each row. This means at least snlogn traversals
must be performed to go through all branches in a tree. Additionally, we also have
the cost of locating the roots of removed subtrees. The number and the location of
these roots are dependent on the sparsity pattern of the matrix rows. Generally, the
pattern of row sparsity is dependent on how finite element mesh nodes are labelled,
or equivalently how system matrices are ordered. Such orderings are normally used
to produce certain optimal (or near optimal) matrix structures, resulting in different
sparsity patterns.

Let n, denote the total number of null subtree roots and m; the location depth
of the ith such root. Therefore, 2~™n is the total number of zero leaves in the
subtree removed at node i. In the implementation of the forward substitution, a
subtree root i is visited 27™n times to retrieve the value for each subtree leaf. In
the implementation of the backward substitution, due to the nature of the involved
computation (vector scaling), the equivalent operation can be done more efficiently
and each root is only visited once. Thus, the total numbers of traversals required
to go through a sparse tree for the forward and backward substitutions, d; and d,
respectively, are

dy = snlogn+nd 27"m (16)

i=1

https://doi.org/10.1017/5095679680000160X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000160X

Sparse matrix representations 163

Table 5. Separated complexities for one-copy schemes 2—4

Scheme Forward substitution) Backward substitution
abbreviation b S lpyp y zuY Y {lyixp} X
bin-tree nlogn (di +n)n n nllogn sn’logn don nlogn
env nlogn (s+1+blognn* n nllogn sn’logn (s+blogn)n®> nlogn
row-seg nlogn (s + Dn? n ntlogn sn’logn sn? nlogn
n,
d; = snlogn+ Z m. (17)
i=1
If we assume non-zero entries are evenly distributed and all subtrees have the same
height
1—
h = log ﬂ,
r
(1 — s)n being the total number of non-zero entries in the tree, then, all
n
i=1 —h=1 —.
m; =logn g1 .
In this case (16) and (17) simplify to
dy = snlogn+(1 —s)nlog% (18)
dy = snlogn+n,log 1"' - 19)

We now briefly explain our complexity analysis for each scheme. Schemes
bin-tree, env, and row-seg use equation (10) for the forward substitution and
equations (12)—(14) for the backward substitution. The main operations involved in
equation (10) include accessing b;, vector-vector multiplications) l;,y,, and the con-
struction of y vector (the rest have constant complexities). The equations (12)—(14),
for a specific j, have these main operations: access of zU~! entries, update of zU) tree
branches (excluding update of tree leaves), computation of {I,;x,li = 1,2,..,n — j}
(update of tree leaves), and construction of x. All schemes store b, x and zU) as trees.
Schemes bin-tree, env and row-seg initially represent vector y as a list before it
is converted into a tree at the final stage to reduce the overall complexity.

The individual operation complexities of these schemes are shown in Table 5 and
explained below.

bin-tree : This scheme represents matrix rows by truncated trees. This affects
operations 3_ li,y,, zU) and {l,ix,}. The complexity associated with 3 l;,y, is
O((d; + n)n) because the cost of traversing /; and y are d; and n respectively.
The complexity associated with {I,x,} is similar but x is not traversed. For
each j, there are now only sn non-zero zU) entries that need to be updated and
each update traverses log n tree branches.

env : In this case, matrix row storage is list based. Compared with the bin-tree
case, only Y iy, and {l,;x,} entries in table 5 need to be modified. For both

https://doi.org/10.1017/5095679680000160X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000160X

164 P. W. Grant et al.

the forward and backward substitutions, accessing all non-zero entries in /; for
a specific i requires sn traversals plus an overhead of bnlogn operations (bn
being the assumed number of generalised envelope blocks) to locate all row-
segment heads in different blocks (see figure 3). For the forward substitution,
an extra n term must be added to account for the traversal of vector y.

row-seg : This can be viewed as a special case of the env scheme where the cost
for locating the heads of row-segments is a constant.

The quadtree scheme uses a recursive substitution algorithm (see in section 3.2.3
for detail) which operates on trees for both forward and backward substitutions.
The algorithm falls into a classical category whose associated complexity has the
same order as the number of leaves in the trees, n, in this case.

For row-seg2 and row-seg2-G, because of the use of the column version of
Choleski factors and the associated backward substitution algorithm, the complex-
ities for forward and backward substitutions become identical, and hence we only
analyse the forward substitution case here. For row-seg2, complexities are the same
as that for row-seg forward substitution. For row-seg2-G, the complexities for
accessing all b; and constructing y are O(n). The complexity for computing > li,y,
is O(sn?). These are reflected in Table 4.

According to Table 4, theoretical comparisons of these scheme can be made.
Among the schemes other than the q-tree, the row-seg2-G is obviously the best on
time efficiency, followed by the row-seg2 which used a better backward substitution
algorithm. The row-seg scheme is better than the env scheme because of the non-
existence of the bn entry in its complexities. Since from (16) and (17) d; and d; are
always larger than sn, the row-seg is better than the bin-tree scheme.

It is, however, somewhat difficult to compare the bin-tree and env schemes
at this stage, but the fact that the bin-tree scheme involves more numerical
computation, as explained earlier, places it at a disadvantage. It is also difficult
to compare the q-tree scheme with the others due to the complete difference in
the adopted substitution algorithms. Furthermore, the parameter n,, the number of
quadtree leaves, not only takes into account all non-zero entries but also some zero
entries in the system matrix.

One comment on the experiments is that results presented in Tables 6 and 7
for the row-seg2-G scheme are not directly comparable with the remainder as the
compilers used are different (Glasgow compiler for row-seg2-G and hbc for the
rest). This is reflected in both space and time profiling, but does not prevent us from
drawing some general conclusions. Some simple tests show that the hbc immutable
arrays are slower than Glasgow mutable arrays, but faster than Glasgow immutable
arrays, as far as data retrieval is concerned. As for entry update, Glasgow mutable
arrays are much more efficient than the others on both time and space accounts
(one order of magnitude for time efficiency).’

4.2 Space efficiency

Here statistics of maximum space consumption are gathered from ten executions of
the algorithms by using two heap profilers that come with the two Haskell compilers

https://doi.org/10.1017/5095679680000160X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000160X

Sparse matrix representations 165

Table 6. Comparison of maximum space consumption (Kb)

Test scheme non-sp bin-tree env row-seg q-tree row-seg2 row-seg2-G
Test problem 1 331.1 156.5 136.0 1093 1145 51.3 60.5
Test problem 2 847.0 2838 259.7 196.7 206.1 92.3 103.4
Test problem 3 3038.6 707.3 597.7 4632 6104 244.6 287.3

Test problem 4 - 1124 639.2 9669 380.0 416.3

employed (Runciman and Wakeling, 1993; Sansom and Peyton Jones, 1992). The
Glasgow profiler is only used for the row-seg2-G scheme. These results include
both space used for storing static Choleski factors and that used for generating
intermediate results. Space used by system modules is not taken into account.
Table 6 summarises the gathered statistics, where blank entries occur due to heap
space exhaustion during the assembly of system matrices.

Several observations can be drawn from the table:

e All sparse schemes are capable of saving more than 50% space resource
over non-sparse implementations, and the larger the problem, the more these
sparse schemes can save. The two-copy representations are better space saving
schemes.

o It is somewhat surprising to see that the row-seg scheme uses about twice as
much space as the row-seg2 scheme, with similar findings for other one-copy
schemes 2 and 3. Close examinations of some profile reports show that most
space is used by the S_arrays, and accordingly it is the repeated lazy updates
of RHSs in the backward substitution step that cause this overhead. Two-copy
schemes can avoid this problem because the alternative backward substitution
implementation, equation (11), can be used efficiently.

e The two-dimensional quadtree representation, q-tree, performs poorly on
space consumption. The cause is attributed to the lazy evaluation of many
submatrix-subvector multiplications (similar to the row-seg case).

o The row-seg2 scheme is consistently better than the row-seg2-G scheme.
However, a close study of relevant profiles reveals that the Glasgow Haskell
compiler reports more space usage for the static copies of the Choleski factors.
For example, for problem 4, the Glasgow compiler space usage by the matrix is
398.3K b whilst the hbc usage is 255.7K b. This means the row-seg2-G actually
uses less space, excluding the static Choleski factors, a saving attributable to
in-place updates.

4.3 Time efficiency

The average timings over ten executions for the algorithms are presented in Table 7,
using the UNIX time command. These tests have been performed to measure the
relative speeds. Again the executable for the row-seg2-G has been generated by the
the Glasgow compiler using mutable arrays and the rest have been that of hbc (using

https://doi.org/10.1017/5095679680000160X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000160X

166 P. W. Grant et al.

Table 7. Comparison of time efficiency (sec per solution)

Test scheme non-sp bin-tree env row-seg q-tree row-seg2 row-seg2-G
Test problem 1 52 1.3 09 0.9 02 03 0.2
Test problem 2 16.9 29 1.7 1.7 0.4 0.6 04
Test problem 3 115.8 98 47 5.1 1.8 1.6 12
Test problem 4 - - 81 84 53 3.5 1.7

immutable arrays). The Glasgow code is somewhat slower in general even though its
mutable arrays provide faster array operations (especially for entry update which is
one hundred times faster than that provided by hbc immutable arrays). However, it
is difficult to estimate the overall influence on speed brought about by the Glasgow
mutable arrays.

The following observations can be made:

e Most sparse representations reduce the execution time by at least 80% com-
pared with the non-sparse representation. The row-seg2-G scheme, which
reduces the execution time by up to 99%, is the most efficient scheme. Even
the bin-tree scheme which involves much more numerical computation than
the other sparse schemes is much faster than the non-sp scheme, indicating
the importance of space saving.

e Two-copy schemes are better than the one-copy schemes 2-4, due to the
differences in their adopted backward substitution implementations.

e The g-tree and row-seg2 schemes have performance similar to that of the
row-seg2-G scheme for the first three moderate sized test problems. However
the row-seg2-G scheme displays a clear performance advantage, namely, less
retardation as problem size increases further.

o The worse schemes are those using the slower backward substitution algorithm
which updates RHSs (as in equation (12)—(14)) introducing a logn factor
into the complexity. These include the non-sp, bin-tree, env and row-seg
schemes.

5 Conclusions and remarks

In this paper, we have examined several sparse matrix representation schemes
in relation to Choleski forward/backward substitution operations. Sparse matrix
representation is very important for solving large numerical engineering problems,
as it is simply impractical to store full matrices for very large problems. The
advantage of using sparse representations has been clearly demonstrated by our
experiments.

Although the Choleski forward/backward processes are mathematically straight-
forward, our investigation found many intricacies in their implementation. The
main difficulties occur on account of the need for both row-oriented operations
and column-oriented operations. This places certain representation schemes at a

https://doi.org/10.1017/5095679680000160X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000160X

Sparse matrix representations 167

disadvantage. Various strategies have been developed to avoid inefficient operations,
such as random access to row entries and entry updates to immutable functional
arrays. Starting from a straightforward implementation of the forward/backward
substitution equations (10) and (11) for one-copy schemes 2—4, an auxiliary solution
list was introduced to avoid repeated updates to the solution vector. This resulted in
a time improvement. An alternative algorithm for backward substitution was then
adopted to avoid random access to row entries but this led to repeated updates to
system RHSs, introducing a logn factor instead of n as for its predecessor, into the
data structure traversal complexity. The need to investigate two-dimensional and
two-copy schemes became obvious. An original concern over the two-copy schemes
was that they may be space demanding, but it turns out that they were better both
in terms of time and space saving. The emergence of the Glasgow mutable arrays
opens a new avenue for the solution of these problems and invites further study.
Initial tests show that this facility eliminates the need for auxiliary solution lists and
leads to better time and space efficiencies. Our main concern here is the practical
difficulty of developing codes utilising monad states, where it is often difficult for
us to comprehend error messages and to locate errors. The awkward syntax, that is
somewhat procedural, is another disadvantage.

Although the quadtree scheme is time efficient over other one-copy schemes,
possibly assisted by an advantageous recursive algorithm, it is space demanding
(though eager evaluation may help here). Wainwright and Sexton (1992) state that
the quadtree is suitable for expressing matrix-vector multiplications. We have shown
that it is also appropriate for expressing both row-oriented and column-oriented
operations on a common representation.

Based on our experience, we make the following general comments on functional
programming;:

Expressiveness: Functional programming is more expressive than procedural pro-
gramming. It produces more concise code. The essential part of our complete
implementation of the Taylor-Galerkin/pressure-correction algorithm is less
than 2000 lines (for 2D problems only) which favourably compares with our
Fortran implementation of about 7000 lines.

Debugging: It has been our experience that most errors (at least 80%) are detected
at the compilation stage.

Coding effort: Becoming familiar with functional programming is not easy for a
programmer only experienced in procedural programming. This increased the
difficulty of constructing an implementation.

Modification: Once the implementation has been constructed, modifying a functional
program is much easier than a procedural program. Particularly when the
pattern matching technique is used, changing some complex data structures
can be easily realised by changing the parameter patterns.

Parallelisation: We have had some experience in parallelising our functional im-
plementation which has demonstrated that functional programming is a
more appropriate vehicle for parallel programming than procedural program-
ming (Grant et al., 1993a; Grant et al,, 1994).

https://doi.org/10.1017/5095679680000160X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000160X

168 P. W Grant et al.

Arrays: With immutable arrays, the desirable operation of updating array entries in-
place is unavailable. The Glasgow monadic mutable array does eliminate some
problems in functional programming but also introduces extra programming
difficulties.

Efficiency: A complete Haskell sequential implementation of the Taylor-Galerkin/
pressure-correction algorithm (using the hbc compiler) is an order of magni-
tude slower than an equivalent Fortran implementation (Grant et al., 1993b).
Compared with procedural programs, functional programs generally need more
space. The extra space is normally consumed by lazy evaluations, immutable
array update and auxiliary data storage for efficient functional implemen-
tations. By using better implementations in the future, this extra cost may
be reduced. In this investigation, storing two copies of a Choleski factor for
problem 4 and using the hbc compiler takes 256 Kb space. This is roughly
2.5 times as much as required by procedural implementations, and likely to
be due to the fact that values are boxed. The unboxed Glasgow mutable ar-
rays for vector representation are no more space demanding than procedural
implementations.

Although currently the performance of functional programs is still falling be-
hind that of equivalent procedural programs for numerical computation, the recent
development in functional programming research has shortened the discrepancy a
great deal and made the application of this technology to non-trivial engineering
problems possible. It is particularly encouraging to see that, in this investigation, the
use of mutable functional arrays makes our functional program space competitive
as space consumption has been a major obstacle for many large applications.

Acknowledgements

This research has been supported by grants from the UK Science and Engineering
Research Council and the Department of Trade and Industry, UK (SERC GR/
F 99076 C2117 and SERC GR/J12321). The authors are grateful for the detailed
comments and constructive advice from anonymous referees which has led to many
improvements in this paper.

References

Al-Hussany, A. F. H.,, Townsend, P. and Webster, M. F. (1993) Computer simulation of
temperature build-up in the radial filling of disc-shaped cavities. In Proc. Computational
Mechanics in UK, pp. 49-54. Swansea, UK, January 1993. Association for Computational
Mechanics in Engineering, UK.

Augustsson, L. (1993) Haskell B user’s manual. Department of Computer Sciences, Chalmers
University of Technology, Sweden, October.

Cuvelier, C., Segal, A. and van Steenhoven, A. A. (1986) Finite Element Methods and Navier-
Stokes Equations. Reidel Publishing Co.

Davie, A. J. T. (1992) An Introduction to Functional Programming Systems Usirig Haskell.
Cambridge University Press.

https://doi.org/10.1017/5095679680000160X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000160X

Sparse matrix representations 169

Ding, D., Townsend, P. and Webster, M. F. (1993) Computer modelling of transient thermal
flows of non-Newtonian fluids. J. Non-Newtonian Fluid Mechanism, 47: 239-56.

Duff, 1. S, Erisman, A. M. and Reid, J. K. (1986) Direct Methods for Sparse Matrices.
Clarendon Press.

Grant, P. W, Sharp, J. A., Webster, M. F. and Zhang, X. (1992) A Haskell implementation
of a Generalized Envelope method for sparse matrix factorization. In Proc. ATABLE-92,
pp. 247-260. Montreal, Canada, June.

Grant, P. W, Sharp, J. A,, Webster, M. F. and Zhang, X. (1993a) Functional programming
for a computational fluid dynamics problem. In Proc. Computational Mechanics in UK, pp.
75-79. Swansea, UK, January. Association for Computational Mechanics in Engineering,
UK.

Grant, P. W,, Sharp, J. A., Webster, M. F. and Zhang, X. (1993b) Some issues in a functional
implementation of a finite element algorithm. In Proc. FPCA 93, pp. 12-17. Copenhagen,
Denmark, June. ACM SIGPLAN/SIGARCH.

Grant, P. W,, Sharp, J. A., Webster, M. F. and Zhang, X. (1994) Experiences of parallelising
finite element problems in a functional style. Software — Practice and Experience, to appear.

Hageman, L. A. and Young, D. M. (1981) Applied Iterative Methods. Academic Press.

Hawken, D. M., Tamaddon-Jahromi, H. R., Townsend, P. and Webster, M. F. (1990) A Taylor-
Galerkin-based algorithm for viscous incompressible flow. Int. J. Num. Meth. Fluids, 10:
327-351.

Hudak, P, Peyton Jones, S. L. and Wadler, P, editors (1992) Report on the Programming
Language Haskell, A Non-strict Purely Functional Language (Version 1.2). SIGPLAN
Notices, May.

Liu, J. W, H. (1986) A compact row storage scheme for Choleski factors using elimination
trees. ACM Trans. Math. Software, 12: 127-148, June.

Liu, J. W. H. (1991) A generalized envelope method for sparse factorization by rows. ACM
Trans. Math. Software, 17: 112-129, March.

Peyton Jones, S. L., Launchbury, J. and Partain, W. (1994) GHC prelude: Types and
operations. Technical report, Computing Science Department, Glasgow University.

Peyton Jones, S. L. and Wadler, P. (1993) Imperative functional programming. In ACM
Symposium on Principles of Programming Languages, pp. 71-84. Charleston, SC, January.
Runciman, C. and Wakeling, D. (1993) Heap profiling for lazy functional languages. J.

Functional Programming, 3(2): 217-245, April.

Sansom, P. M. and Peyton Jones, S. L. (1992) Profiling lazy functional programs. In Proc.
Functional Programming, Glasgow. Workshops in Computing. Springer-Verlag.

Spivey, M. (1990) A functional theory of exceptions. Science of Computer Programming, 14(1):
25-42, June.

Townsend, P. and Webster, M. F. (1987) An algorithm for the three-dimensional transient
simulation of non-Newtonian fluid flows. In G. N. Pande and J. Middleton, editors,
Proc. Int. Conf. Num. Meth. Eng.: Theory and Applications, 11, pp. T12/1-11. Swansea, UK.
NUMETA, Nijhoff, Dordrecht.

Wainwright, R. L. and Sexton, M. E. (1992) A study of sparse matrix representations for
solving linear systems in a functional language. J. Functional Programming, 2(1): 61-72,
January.

Wilkinson, J. H. and Reinsch, C. (1971) Handbook for Automatic Computation, Linear Algebra,
vol. II. Springer-Verlag.

Wise, D. S. (1992) Matrix algorithms using quadtrees (invited talk). In Proc. ATABLE-92,
pp. 11-26. Montreal, Canada, June.

https://doi.org/10.1017/5095679680000160X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000160X

170 P. W. Grant et al.

Zhang, X., Webster, M. F, Sharp, J. A. and Grant, P. W. (1994a)} Computational fluid dynamics
application. In C. Runciman and D. Wakeling, editors, Applied Functional Programming,
chap. 9. UCL Press.

Zhang, X., Webster, M. F.,, Sharp, J. A. and Grant, P. W. (1994b) Parallelisation for com-
putational fluid dynamics. In C. Runciman and D. Wakeling, editors, Applied Functional
Programming, chap. 12. UCL Press.

https://doi.org/10.1017/5095679680000160X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000160X

