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Abstract

Let K be a field of characteristic 0, G the direct sum of two copies of the additive group of integers. For
a total order •< on G, which is compatible with the addition, and for any C|, c2 € K, we define G-graded
highest weight modules M(i\, c2, -<) over the Virasoro-like algebra L, indexed by G. It is natural to call
them Verma modules. In the present paper, the irreducibility of M(i\, c2, -<) is completely determined
and the structure of reducible module M(c\,ci, -<) is also described.

2000 Mathematics subject classification: primary 17B10, 17B65, 17B68.
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1. Introduction

In [8], two classes of Lie algebras were defined, one is the Virasoro-like algebra, and
the other one is the class of Lie algebras from quantum tori (also called g-deformations
of the Virasoro-like algebra) which were studied in several references, for example,
[1,3,4,14]. Generalizations of the Virasoro-like algebra were introduced and studied
in [2], where their central extensions and derivations were determined. In the present
paper, we are going to study representations of the Virasoro-like algebra.

Let us first recall the definition of the Virasoro-like algebra, and then describe the
results in this paper. We shall assume in this paper that vector spaces are over a field K.
of characteristic 0.

Let G = Z©2 be the direct sum of two copies of the additive group of integers. Any
element x in G will be written as an integral vector x = (JC(1), X<2>). The Virasoro-
like algebra L = L(G) (over K) is by definition the Lie algebra with the DC-basis

Research supported by the NSF of China (Grant No. 10171064).
© 2006 Australian Mathematical Society 1446-7887/06 $A2.00 + 0.00

179

https://doi.org/10.1017/S1446788700013069 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700013069


180 Xian-Dong Wang and Kaiming Zhao [2]

[Lx | x e G — {0}} and the Lie bracket defined as follows:

(1.1) [Z.,, L,] = det Q L,+ >, Vx,yeG-{0},

where

x = (x , x ]
... .,. AA /y(1> y( 2 ) \

y ~ Ky ' y h \x)~ \xm xm) •

It is well known that L is a simple Lie algebra.
From [2, Theorem 5.1], we know that the universal central extension of L is

L = L(G) = L © Kct © Kc2, with the following Lie bracket:

[c,, L] = 0, i = l , 2 ,

Actually, for any positive integer n, Virasoro-like algebras indexed by Z"+l, called
Block algebras, were defined in [2].

It is clear that L has a natural G-gradation

( 1 . 3 ) L = ®X6GLX, Z o = K c , + 0£c2 , LX = KLx for x eG\{0}.

But this is not a triangular decomposition in the classical sense of [10]. Nevertheless,
once we fix a total order '-<' on G compatible with the group structure (as did in
[5,9]), then we have a triangular decomposition (see Lemma 2.1). Consequently we
are able to define G-graded highest weight modules M(cx, c2, <) for any c i , c 2 e K
which are called Verma modules over L in Section 2. On the other hand, since we
have a lot of compatible total orders on G we have different Verma modules for same
i\, c2 e K. So in Section 2, we deduce some nice properties about dense total orders
on G (see Lemma 2.1), which will be used in later proofs.

In Section 3, using similar methods used in [5] for generalized Virasoro algebra
case (certainly some different techniques have to be created) we prove that if the total
order ' V of G is dense (see the definition in Section 2) and (c,, c2) ^ (0, 0), then
Verma module M{c\, c2, <) over the Virasoro-like algebra L is irreducible; if '-<' is
dense and (ci, c2) = (0, 0), then M(£\, c2, <) has a unique proper submodule with
codimension 1; if '-<' is discrete (suppose a = (a(1),a<2)) is the minimal positive
element) and ao>ci + at2)c2 ^ 0, then M(t\, c2, <) is irreducible; and it is reducible
for other cases (see Theorem 3.1). We also show that for a non-trivial highest weight
the unique simple quotient of M(d\, c2, -<) has an infinite-dimensional weight space.

We hope our results in this paper can have some applications in physics since the
Lie algebra studied in the present paper has similar properties as the Virasoro algebra
and Heisenberg algebras.
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[3] Verma modules over Virasoro-like algebras 181

Some non-highest weight modules over L with 1-dimensional homogeneous sub-
spaces were constructed in [12], while another kind of highest weight modules were
introduced and studied in [13] where the Z-gradation is with respect to the first index
and the homogeneous subspaces are infinite dimensional.

2. Verma modules and dense orders

In this section we shall define Verma modules over L associated with a total order -<
on G, and deduce some properties for dense orders on G.

We fix a total order < on G which is compatible with the addition, that is, x < y
implies x + z < y + z for any z e G. By x >- y we mean that y < x. The symbols
x >: y, x •< y have the obvious meanings. Let

G+ := {x e G \x > 0), G_ := {x e G \x < 0}.

Then G = G+ U {0} U G_. It is clear that, for any x e G+,

(2.1) the set {y e G+ | my = x, for some m e N j is finite.

We denote the minimal element with respect to the order in this set by fi(x). Set

L+ = J2 Lx, L_=Y1 L" ^o = Kc, © Kc2.
xeG+ j:eC_

Then we have the triangular decomposition of L

(2.2) L = L _ © L 0 © L + .

The universal enveloping algebra U = U{L) of L can be factored as

U(L) = U(L.) ® U(L0) (g) U(l+).

As for Kac-Moody algebras [6] or the Virasoro algebra [7 j , we can use the standard
method to define Verma modules over L with respect to the above decomposition. For
any i\, c2 € K, let I(cu c2, -<) be the left ideal of U generated by the elements

[Lx | JC > 0 } U { c , -cuc2-d2\.

Then the Verma module over L, associated with -<, with parameters (d\, c2), is defined
as M(c,,c2,-c) := U/I(cuc2, -<). L_X>L_<2 • • • L_Xkv, k e H U (0), Xj € G, and
xt >•••>: x2 > xi > 0. Note that M(c\, c2, •<) is the highest weight module over
L in the sense that M{c\, c2, <) = ® t X ( ) Mx where Mo = Kv, and Mx for x < 0 is
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spanned by L-XlL_X2 • • • L-Xtv, with k e N, Xj e G, and xk > • •• t. x2 >z Xi >• 0

and x{ + x2 H 1- xr = —x. It is clear that M(ct, c2, -<) = 0 X ^ O ^ is a G-graded

L-module with respect to the gradation (1.3) and that there exists x e G+ such that
dim M_^ = oo.

We call a nonzero vector u € Mx a weight vector with weight x. We will use the
following notation and properties of the order >- on G. The notation follows [5].

Let B(x) denote the set {y e G | 0 < y < x} for any x e G+. The order >- is
called dense if

(2.3) #B(x) = oo, for any x e G+,

it is called discrete if

(2.4) there exists some a G G+, such that B(a) — 0.

If the total order >- is discrete, we denote the smallest positive element by a =
(<2(l), a{2)). Now we establish some properties of dense orders >- on G.

LEMMA 2.1. Suppose the order >• on G is dense.

(a) For any x, y e G+, we can choose an element x\ of B{x) such that det (£) ^ 0
for all a e B(xi).

(b) The order >- on G is standard in the sense that for any x, y € G+, there exists a
positive integer n such that nx >- y.

(c) There exists a series an = (Xn, Yn) e G+ for n £ N such that an > an+i, and
that, for any e 6 G+, there exists N € N satisfying otn -< e for all n > N.

(d) Suppose a{, b, e 1* = 1\ {0}, 1 < i < r. Then there exists e e G+ such that
for any (X, Y) € B(E), a,X + b,Y ^ 0, 1 < i < r.

REMARK. Orders satisfying the condition in (b) are also called Archimedean (see

[11]).

PROOF, (a) Without loss of generality, we may assume that x = n(x)andy = ii{y).
Let Xi = min{/x(x), /u(v)}, then JC/" , x\a) (and also yt

(l), y/2 ' ) are relatively prime
and B(x,) c B(x). If a e B(xi) and det (^) = 0, since y = fi(y) we then deduce
that there exists a positive integer k such that a = ky, which contradict the fact that
a < y. Thus det (^) ^ 0 for any a 6 B(xt).

(b) Suppose there exist x, yt e G+ such that nx -< yt for any n e H. Set

a, £ I, 0 -< x,• < x, 1 < i < m, ni e N .

https://doi.org/10.1017/S1446788700013069 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700013069
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It is easy to see that T(x) is a proper subgroup of G, T(x) f]ly\ = 0, and hence
T(x) = Z. From the definition of T(x) we know that for any y e G+, y £ T(x),we
have x < y. Thus the minimal positive element of T(x) is also the minimal positive
element in G. This contradicts the assumption of the lemma. So (b) follows.

(c) For any x € G+, choose y' e B(x). If 2 / < x, we set y = y', otherwise
we set y = x — y'. It is clear that 2v -< x. Thus we have proved that for any
x e G+, there always exists y e G+ such that 2y ^ x. Thus we can choose a series
an = (Xn, Yn) € G+ for n e N such that an > 2an+i for all n e N. We claim that this
series is what we are looking for. Indeed, for any e € G+, from (b) we know that there
exists N e N such that 2Ne > a0, which implies e > aN. Therefore (c) is proved.

(d) We may assume that (bh at) € G+ for / = 1, 2, . . . , r. Using (a) we can easily
derive (d). •

3. Irreducibility of Verma modules

In this section, we shall determine the necessary and sufficient conditions for the
Verma module M (c i, c2, -<) to be an irreducible L -module. Note that we do not require
the modules to be G-graded irreducible. Actually, if M(cu c2, <) is irreducible, then
it is certainly G-graded simple, but the converse is generally not true.

The method we are going to use is similar to the one used in [5] for generalized
Virasoro algebra case. Since the Virasoro-like algebra and generalized Virasoro
algebras have very different structure, we have to create some new techniques.

The main result of the paper is the following theorem.

THEOREM 3.1. Letcuc2 e K.

(1) Suppose that the order V on G is dense. Then M{c\,c2, <) is an irreducible
L-module if and only if (t\, c2) ^ (0, 0). Moreover, M'(0, 0, <) := Yl*<o Mx< is an
irreducible submodule of M(0, 0, -<) of codimension 1.
(2) Suppose that the order '>' on G is discrete. Then M(c\, c2, -<) is an irreducible

L-module if and only i/a(1)C| + a<2)c2 ^ 0, where a = (a(l>,a(2)) is the minimal
positive element in G.

PROOF. (1) Denote the highest weight vector in M(ct , c2, <) by v. Let M0 ^ 0 be
any given weight vector in M(cu c2, <), that is, M0 e Mxo for some JC0 € G. For each
m e N, set

(3.1) Vm:=
0<v<m.vi v,eC+

It is clear that Lx Vm C Vm for any x e G+.
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CLAIM 1. We have L-Xv e U(L)u0forany x € G+.

We use the sequence an = (Xn, Yn) € G+ from Lemma 2.1 (c) such that for any
e € G+, there exists J V e N satisfying ctn < e for all n > N. It is not difficult to see
that limn_oo Xn = lim^oo Yn = oo. Here and later on, all limits are the ordinary ones
and have nothing to do with the order on G. We may assume (choosing, if necessary,
a subsequence) that lim,,..^ Xn/Yn = ft exists (maybe oo). We divide the proof of
Claim 1 into three steps as follows.

STEP 1. There exists some weight vector u € U(L)u0 (of weight >.) such that, for
r e N, u = L^£r • • • L_E|u (mod Vr_i), where £j e G+, er < • • • < £\, andsome

It is clear that ua e Vr\ Vr_! for some r e N. If r < 1, our claim clearly holds. So
we assume that r > 1. Hence we have

uo = 2 . ayL_yi • • • L^},rv (mod K- i ) .

where y = (y{ yr). Let / := {(yi, ..., yr) \ ay ^ 0}. By our assumption, 7
and / is finite. For any y := (yt, ..., yr), and y' := (y\,..., y'r) € / , we define

(3.2) y >- y if and only if there exists some I < s < r such that
ys > y's, and y, — y't for any t > s.

Let.* := (jt|, . . . , xr), JC, < • • • < xr,be the unique maximal element in / , and

a, = min ({>',-, y, - y} \ y_ e I, i ^ j;i, j = 1, 2, . . . , r] n G+).

Then for any £) e B(a,), xr — et > y, if >', ^ j : r for any y_ — (yu y2, ..., )v) e /•
Thene! ^ y, for any v € / . By Lemma 2.1 (a) we may also assume tha te / 'Ve/ 2 ' ^ /3
and det (*') ^ 0. By the formula

Lx,.r, L\v = s det

and commutator relations for L, and noting that j : r — e, — _yi >- 0 for any y e I, it is
easy to see that

«i : - Z.,,_f|M0 = ^ a^L .^L- , , , • • • Z,__Vr_,v (mod Vr_,),

a n d w , ^ Vr_i. Define / ( l ) : = {(e{, yu y2, ..., yr-t) \ a\u ^ 0} ^ 0. Moreover,

x" 1 : = (£, , A:I vr_i) is the unique maximal element in 7 ( l ) .

In this manner we can easily prove by induction on s the following statement for

.9 = 2 r.
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(1) Let

as = m i n ({z,, z , - Zj \ z = (zi,..., z r ) e I{s~l), i ̂  jU, j = l,...,r]n G+).

Then we can choose ss € B(as) such that xr-s+i — sx > z, if Zi # xr-s+i for
any z_ — (Z\,Zi, •••, zr) e /(v""!). We may also assume that £s

(1)/e,<2) / /3 and
det (* ' - ' ) ?^0.
(2) LetM, := LXt_i+l-eius-,. Then

u,=

andus i Vr_i.
(3) Let / ( s ) := {(ev, . . . , £ , , ) / , , . . . , yr_,) | a ^ ^ 0}. Then /(v> ^ 0. Moreover,

x}s] := (ss,.. .,e\,X{,..., xr-s) is the unique maximal element in / ( v ) .

Now our Step 1 follows immediately by letting s = r with u = ur. •

STEP 2. There exists some x e G+ i'Mc/z ?fta? L_xv e U(L)uo.

By the result of Step 1, there is a weight vector w e U(L)u0 (of weight X) of the
form

0<k<r

where yv, es e G+, for all s, and £r -< • • • •< £|. We can assume without loss of
generality that A. ̂  0 (in fact, — A. = st + s2 -\ h sr).

Let Io := [(yu ..., yk) \by_^ 0}, y(0) := min{er, y{ \ y_ := {yu ..., yk) e / 0 } .
Let e e B(y(0)). Recall that u is a weight vector of weight X -< 0. Then, using the
commutation relations for L, we have

L_x^u = f(-X-£)L_Ev+ J2 by_g,_(-k-e)L.ev
\<k<r

= \f(-k-e)+ J2
' l<k<r

y\<--<yk
where

f(-k-e)

= det( 7£^ )det( - £ - Y-.detf ^ ~£' V
\-A-£/ \-A.-£r-£/ \-X-£r £2-£/

- k - yi-sj \-k-yt

https://doi.org/10.1017/S1446788700013069 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700013069


186 Xian-Dong Wang and Kaiming Zhao [8]

Let £ = (X, Y), £, = (a,, £,), 1 < i < r, then

A(X, K) :=f(-k-s) + J2 blgl(-k-e) = fr(X,Y) + --- + f0(X,Y),
l<k<r

where / ( X , K) is a homogeneous polynomial of degree i (0 < / < r) in terms of
X, Y, and / r (X, K) = ni=i( a<^ ~ btX), where at ^ 0, b: ^ 0 are integers.

Set Zn = Xn/Yn for n e N (already chosen at the beginning of the proof). We see
that {Zn | n e 1} is an infinite series consisting of rational numbers, and we have the
following two cases.

Case I: lim,,-,^ Zn = oo.
It is clear that lim,,^^ Z" ' = 0 , and

i=\

Since limn_00/-(X,,, KJ/X^ = 0 for 0 < / < r - 1 there exists /n such that
A(Xm, Ym) £ 0. Let £ = (Xm, Ym), then 0 ^ L_Eu € f/(L)«0 as required.

Case II: l imn_^ Zn = fi ^ oo.
From Step 1 we know that the real number f$ £ a,/bj for 1 < / < r. Thus

hm — = I I (a, - b,P) ^ 0.
" 1 = 1

Since l im^oo/ (X, , , KJ/K; = 0 for 0 < i < r - 1, there exists m such that
A(Xm, Ym) £ 0. Let e = (Xm, Km), then 0 £ L_ev € U{L)u0.

Thus Step 2 has been proved. •

STEP 3. L_xv e W = U(L)u0forall x e G+.

From Step 2, we know that there exists £ e G+, such that L_f v e W. For e' e G+

with £' -( £ and det (f) 7̂  0, we have

L_f.i; = ( det ( | 1 Le^,L.ev € U(L)u0.

Since
' £

det ( )L_( t + f )u = L_cL_ev — L_tL_£u e U(L)u(),

it follows that L_,f +f)u 6 U(L)UQ. In general, using the formula

/ e ' \
det I lL_(f.+(n+i)f,u = L_EL_(E+n£)v - L_(f'+,,f)L_fu,
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we can easily see that L-(e>+ne)v € U(L)u0 for any n 6 Z+. Since the order is standard,
we deduce that for all x e G+, we have n such that s' + (n + l)e > e' + ns > x, and
at least one of the determinants det (e +"e) and det (£+("+1>£) is not 0, say the first one
is not zero. Hence

L_,u = c(L-x+e>+neL-ie'+ne)v) G W = U(L)u0,

where c is a nonzero constant. Step 3 is true. Thus Claim 1 follows. •

Now choose e, e' e G+, such that det (*) ^ 0, we have

LeL_cv = (£(1)c, + sa)d2)v 6 £/(£)«<>, e = (e(1), e(2)),

Le,L^v = (£'(1>c, + el(2)c2)v 6 I/(L)«0, e' = (e'(I), e'(2))

from which we see that the module M(c\,c2, <) is generated by any nonzero weight
vector if and only if (c,, c2) ^ (0, 0). On the other hand, if (cu c2) = (0, 0), from
Step 3, we see that

M'(0,0, <):= ^T KL-Xl • • • L-Xtv0

xi xi,eG+,k>0

is generated by any nonzero weight vector with nonzero weight.
Suppose p = V\ + • • - + vr 6 M(t\, c2, -<) where vt € MXi \{0} withxi •< • • • -< xr.

Choosey 6 G+ with X\ < —y < x2. We know that there exists w e U(L+)y such that
wvi ^ 0. Thus wp = wvj e U(L)p which is a weight vector with weight JCI + y.
Thus from Claim 1 and the above argument, part (1) follows.

(2) Suppose the order V on G is discrete. Then al c G where a is as in (2.4). For
any x e G, we write x > al if x >• na for any n € 2. Let //+ := [x e G \ x >• aZ],
//_ = - / / + . It is not difficult to see (by (2.3)) that G = al U //+ U //_. Let
Ma(ci,c2, -<) be the submodule of M(i\,c2, <) generated by the highest weight
vector v as a module over the subalgebra L(aZ) which is a Heisenberg algebra over K
with the basis: {a(1)ci +aa)c2, Lai \ i e 1}.

It is clear that U(H+)Ma(cu c2, <) = 0. Since

it follows that the irreducibility of L-module M(c{ ,c2,<) would imply the irreducibil-
ity of L(aZ)-module Ma (c,, c2, -<) which is a highest weight Heisenberg module with
c = a(l)ct + a(2)c2. It is well known that L(aZ)-module Ma(cu c2, <) is irreducible
if and only if c ^ 0. Thus if M{c{ ,c2,<) is irreducible, then c ^ 0.

Conversely, suppose awd\ 4- amc2 ^ 0, that is, Ma(c{, c2, <) is an irreducible
highest weight L(aZ)-module. Let UQ £ Fv be any nonzero weight vector in
M(ci, c2, <). Then u0 e Vr\ Vr-{ for some r 6 N where Vm is defined as in (3.1).
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CLAIM 2. We have U(L)u0 D Ma(cu c2, -<) ^ {0}.

Write

uo= ^ tyL-y', •••L_y.L_yi •••L.yr_iv ( m o d V r _ , ) ,

y\ XeH+.y, >r-.eaZ+

where y = ( y , , . . . , y, . , , y\,..._, y^). Let / := {(y , , . . . , yr_s, y j , . . . , y's) | a^ ^ 0}.
By our construction, / ^ 0 and / is finite. For any y, z € / , we still use the definition
for y x z as defined in (3.2). Let

x : = ( x u . . . , x r - m , x [ , . . . , x ' m ) , x [ , . . . , x ' m e H + , x u . . . , x r ^ m e a l +

be the unique maximal element in / . Since y[ £ aZ, then det (̂ j) ^ 0, and we have

ay
i)L_y[---L-y:_iL-.aL-yi---L^yr_iv (mod Vr_,),

>| >,'_,£//+, vi >,_,€aZ+

andw(l) i Vr-i- Define

Let i(1> := (a, xt,..., xr_m, xj, . . . , x^_,) be the unique maximal element in 7(l).
Now for s = 2 , . . . , r, we define recursively and prove by induction that

(1) Let u(s) := LXm^{-au{s - 1). Then

u{s) = J^ a ^ L - y \ • • • L-y:-,U-aL-yi • • • L-y,-,v

y\ v,'_i€ H+.y\ ,...,yr-,€.al.+
V j ^ - i Vf'-i-yi ^••• iy r _ /

and u(s) £ Vr_{.

(2)

/(" := { ( ^ ^ 5 , y , yr-,, y\,..., y,'-,) I 4 ' ^ 0} ^ 0.
Moreover, v limes

i ( v ) : = ( a , . . . , a , x i , . . . ,xr_m,x[, . . . , ^ _ s )

is the unique maximal element in /{v).
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Letting s = m and noting that u{m) is a weight vector, we get that 0 ^ u{m) e
U(L)u0 fl Ma(ci, c2, -<) as required. Thus Claim 2 is proved.

From Claim 2 we see that M{i\ ,c2,<) is generated by any nonzero weight vector
as L-module.

Supposep = u+V\-\ 1-iv € M(di, c2, <), whereu e U(L(la))v, vt e MXi\{0}
with JC, ^ Za and x, -< • • • < xr. Choose y e G+ with x\ + y e Ta. From Claim 2 we
know that there exists w e U(L+)V such that wv\ ^ 0. It is clear that x,+ y e la or
Xj+y > Za, anyway we always have x\ + y < x2 + y < • • • -< xr + y. If xt + y > la
we see that wvt = 0, otherwise wvt e U(L(la)). Thus wp e U{L(la))v (not
necessarily a weight vector) which is a nonzero vector. Since the L(Za))-module
U(L(la))v is irreducible, Part (2) of the theorem follows. •

Next we shall study reducible Verma module M(cx, c2, <) in Theorem 3.1 (2).
Without loss of generality we may assume that the order < is defined as follows:
(/, j) < (i', / ) if and only if j < j ' , or j = j ' and / < i'. We know that a = (1, 0) is
the minimal positive element in G with respect to -<. From Theorem 3.1 (2) we see
that M(t\, c2, -<) is reducible if and only if d\ = 0. We simply denote M(0, c2, <) by
M(c2). It is clear that M(c2) has a unique maximal proper G-graded submodule J.
Then we have the irreducible L-module M'(c2) = M(c2)/J, which has the induced
G-gradation M'{c2) = ®x<0M'x. It is clear that M'(0) is a one-dimensional trivial
L-module. Next we suppose c2 ^ 0, and easily see that

(3.3) L(t,0)v = 0, M\k _,, = KL,t,_,)V, V k e Z.

The following result tells us that not all weight spaces of M'(c2) are finite dimensional.

THEOREM 3.2. Let c2 ^ 0. Then the vectors L(_I,_I,L(I,_!>«, L(_2,-i)L(2._i)U,
L(_n _|)L(n _DU e A/('o _2) of M'{c2) are linearly independent for all positive integer n.

PROOF. Suppose there was a linear relation

n

( 3 . 4 ) ^ «/£(_ ,• ._ , ,£( , • , _ , )U = 0 ,

where a, e K. For any k > n, applying L^A) to (3.4) and using (3.3) we deduce that
£" = 1 a,(& - /')2Lu._|1u = 0, for all k > n, that is,

(3.5) 5 ^ a , - ( * - i ) ? = 0 , V i t>n .
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Since the left-hand side of (3.5) is a polynomial in k, it holds for all k el. Applying
L(kA) (1 < k < n) to (3.4) and using (3.5) for these k we deduce that

= 0,

which gives ak = 0. This completes the proof. •

From Theorems 3.1 and 3.2, we know that not all weight spaces of any G-graded
irreducible L-modules (except for trivial one) given from M{c\,c2, <) are finite
dimensional.

If the index group G ~ Z" with n > 2, we can define Verma modules
M{cu .. .,cn, <) over Virasoro-like algebras L(G) with respect to a total order '-<'.
We do not study the irreducibility of these Verma modules here since in this case the
order -< and the skew symmetric bilinear form </> will be very complicated and we do
not think the corresponding statement as neat as Theorem 3.1. Certainly it is a very
interesting problem.
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