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1. Introduction

In this paper we shall use the integral operator method of Bergman,
B[l— 6], to investigate solutions of the partial differential equation

82u d2u 82u s 8u
(11) + + + + 0

where s > — 1. In particular, information concerning the growth, and loca-
tion of singularities, of solutions of (1.1) will be obtained. Equations of the
form (1.1) with s = 1, 2, • • • arise from the («-|-&4-l)-dimensional Laplace
equation An+k+xu = 0 in the "axially symmetric" coordinates xx, • • •#„, p
where the relationship between cartesian and "axially symmetric" coordinates
is given by

We shall refer to equation (1.1) as the generalized axially symmetric
potential equation of wth order (GASPN), as is done in W(l]. The special case
n — 1 has been extensively studied. Reference is made to Gilbert, G[l—4],
ErdeTyi, E[l], Henrici, H[2-4], and Gilbert and Howard, GH[l -2] .

2. Integral operators generating solutions to the GASPN

We first obtain a set of particular solutions to the GASPN. The motiva-
tion and notation is mainly that of Appel and Kampe de Feriet, A-de F[l],

* This research was supported at the University of Maryland in part by the Air Force
Office of Scientific Research under Grant AFOSR 400—64 and by the National Science
Foundation under Grants NSFGP-2067 and GP-3937.
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332 R. P. Gilbert and H. C. Howard [2]

to which the reader is referred for details.
We define Wm ...m (xlt • • • ,xn,p) by means of the generating function

W == {{x1-a1)
i+ •'• • +(xn-an)*+pi]-i<n+>-v as follows:

(2.1) W= | ^•••a^W"...^.

From the expression for W it is clear that

(2 2) W« = ( - 1 ) " d"
K ' ' "»•••"• ( W ) ! • • • ( « ) ! a < » • • • & £
where ,« = »*!+ • • • +w n and r2 = #f+

We now show that the Wjj' _ are s
notes, by an elementary computation, that

We now show that the Wjj' _ are solutions of the GASPN. First one-
i

for j = 1, 2, • • • ,n. From this we get

P
(2.4) '-1 '

H â
Using the Leibniz product rule on the right hand side of (2.4) and recalling,
(2.2) we see that (2.4) can be written as

f2 51 o — W{s) — WU) 4- (m 4-1) W(t)

/ = 1, 2, • • •, n. Adding these equations for / = 1, 2, • • •, n we get

(2.6)

But one readily shows from (2.1) and the definition of W that W{^...m^
is a homogeneous function in xx, • • •, xn, p of degree — (,a+«+s—1), so-

Substituting this in (2.6) gives the equation
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[3] Integral operator methods for symmetric potentials 333

A W" 4- D«+»+s-1-ft-tt] 1
1 " p Op

= /I JV(f) -I W(a) -I — W!s) — 0
l » j)pi l " p dp 1 "

which shows the GASPN is satisfied by WjJ'...M • One notes that up to
this point the variables (a;,, p) and the parameter s may be taken to be
arbitrary complex quantities if desired. The reason for the restriction on s
will become apparent later.

We shall now obtain an integral operator generating solutions to the
GASPN. Defining first the polynomials V<£\...mn(ti, • • •, £„) by the relation

(2.8) (1-2 2 ^ ^ + 2 ««)-*<»+-»= I d?*---<C'V%...mu{er~M
1 1 mx,- • •,mn~0

we obtain a connection between V$...m and W^ ...m by noting that

| <•> • • • <C»W«...ra<i = [x\+ • • • +xl+p*-2 2 atxt+ I <»;]-»<•+-»
mv • ••,!»„ = 0 1 1

( 2 . 9 ) = (^-i ,^

Thus ^ m v . . . i m n ( ^ 1 ( . . . , » „ p ) = r- '"+"+'- i>FW...m i i ( | 1 , • • ., fB), where
I,- = sjr and ^ = »«!+ • • • +wn.

For suitably chosen contours Sfc) (ft = 1, 2, • • • , » ) (homologous to
zero), and such that IJ£=i©fc ^ e s outside a sufficiently large polycylinder1,
we have by Cauchy's formula for several complex variable that

x{ 2 cr

1 We might restrict these further, by demanding that each QEt lies outside a suitably large
disk.
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Multiplying both sides b y >•-<*,+• •+*«>-<«+s-i) g j v e s

(2.11)

If the function,

(2.12) g(C

converges uniformly on the compact set (£r) e JlJJ_,©t, we may interchange
the orders of summation and integration, and thereby obtain an integral
representation for solutions of GASPN in the form,

W(X) = 1 aK...KW^...K{xlt •••,xn,p)=
(2.13) *'•••*•

where

and

tl • • • f n

We remark that this representation for W(X), [X == (a^, • • - ,*„,?)] is
valid in the small; it is valid in a sufficiently small neighborhood of an
initial -point of definition X° for the function element represented by the
s e r i e s d e v e l o p m e n t 2k<*kWk}(X), (k = k1,-- •, k n ) .

In the future we shall refer to the operator 81 [g] = Stjf'fg] which maps
holomorphic functions of n complex variables (2.12) onto solutions of the
GASPN equation with the form (2.13), as the GASPN operator of the first
kind.

We shall now show it is possible to find an integral operator 9t-1[W],
which plays the role of an inverse operator for 91 [g]. We recall first that the
polynomials U£>v...tmJl;1, • • -, f j , A. de F. [1], defined by the generating
function

(2-14) „

^ 2
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[5] Integral operator methods for symmetric potentials 335-

for a biorthogonal system with the V$(£). Indeed, Erde"lyi, E[2] (pg. 277,
Vol. 2) gives the result that

vanishes, except when M = L, i.e. tnt = lt (i = 1, 2, • • •, n), and has the
value

2jiirt -T(is+1) r(s+m)

(2m+«+s—1) r(|[«+s—1]) r&m^ • • -mj'

when M = L, where m = m^ " • • +*«n. Using this result we see by
formal computation that

K-0

1*11 s i IK=

(itn+s-1^ v r(fei)!-'-(feJ!(2fe+n+s-I) U) "I.
T ( i s + l ) X 4 L r Q + s W s p • • • {Znr)K * K)\

X

where K s= ftx, A2, • • •, kn, and k = ^ + ^ 2 + • • • +^B- The restriction
s > — 1 is clearly necessary to ensure the convergence of the integral in (2.16).

In order to show that the kernel,

converges to a holomorphic function of the variables2 (|; £r) in a domain
c C2n, such that there exists a domain

58(B) C U S3'2"' n {I = I0} = a3<2"» n fi, where fi = {0 ̂  ||f || ^ 1; | { = real}
Jefl

we compare the general term in S with the general term of the generating
function for the Ul

k
a). The purpose for this is to show the existence of a germ,

or function element g(£r) which exists in S3'"'.
The associated radii of convergence fl, • • •, fn of a power series

2 %?i l • • • fn" satisfy the relation [F.I] (pg. 48)

where k = kt^- • • • -\-kn, f
k = f\l • • • f*«, etc. Hence for each fixed value

8 The variables f, (i = 1, • • •, n) axe complex unless otherwise noted.
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of £, the associated radii of convergence of 2*^K' (£)?* satisfy,
1

^1 " " " ^n * - ° o

that is, for |f k\ < fk (k = 1, • • •, n) the series representation of the generating
function converges. From (2.14) it is clear that for f E A = U?=i{[f,l = E}-
where e > 0 is sufficiently small, we may compute finite associated radii
(?!,''',?„)• Likewise, one may compute the associated radii of convergence
for the series in 8(£; fr), for £ e J, to be (rlt f2, • • •, rn) also since

\ r(k+s) KK

By the Weierstrass comparison theorem plus Hartogs' theorem [B.M.I] pg.
141 this establishes ffi(£; rf) as a holomorphic function of (2») complex varia-
bles in AxA*(A* = J[n

i=1{\rl:i\ >rj1}). In fact, it is clear that the series
for S(f; r£) converges in each polycylinder Ax A*, which does not meet

{ }
If | e Q == {0 ^ mil ^ 1; | f = real}, then for t, = iza = i(zj, • • -, z°n)

we have (£, C) = t(l. °̂) ^ a real, and ||f||2 = (iz°, iz°) = — ||z°||2, where
z( = real. Also, we have that (»(£ °̂) — 1/—1|20||2) ^ (mil2—1) for all
£ 6 .£?". We conclude that there exists a complex neighborhood of £ = M°,
91 (iz°), such that 9J(JZ°) n @ = <̂ . We conclude ®(|; rf) is a holomorphic
function of the n complex variables (r^, • • •, r£n) for (r£) e 9t(«°) for each
fixed | e Q". This shows that the domain S3(M) ^ ^. Consequently we realize
that our integral representation,

I
'urnsi

constitutes an inverse integral operator for GASPN in the following sense;
given a function w(X) with a representation (2.13), then there exists a
holomorphic function element g(Cr) with the local representation g(£r) =
2t~1M given above.

In the following sections we will investigate further the analytic
properties of these operators.

3. Singularities of functions of several complex variables represented
by integrals

In this section we prove several results concerning holomorphic func-
tions represented by integrals whose kernels are singular on analytic sets.
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[7] Integral operator methods for symmetric potentials 337

These results are generalizations of those appearing in [G.3,4,]. The results,
for the most part are more general than we actually need here; we prove
them in this form for future reference.

LEMMA 3.1. Let K(z; f) ^K(zlt — , z n ; t , x , • • •, £n) be an analytic func-
tion of (m-\-n) complex variables, and regular analytic in the product domain
(35(M)x93(m)), where 23<m) ^ I I ^ - i ^ 1 1 - Furthermore, let the singularities of
K(z; C) He on the analytic set ©(»+•»-" = {S(z; f) = 0}. Then the analytic
function F(z) represented in 2>(n) by

has a continuation which is regular at all points (z) that may be connected to
S)(n) by an arc G^11 such that no point of S^1' lies on the set n™«o®J.n+ml>>
(g(n+m-l) ^ jg(n+m-l)i and @<n+m-l) ^ {S^Jz; £) = 0}, (/J. ^ 1).

(Remark: The superscripts in I)'"1 indicate the complex dimensionality
of the domain.)

PROOF. The representation for F(z) is clearly valid for all points (z)
which may be reached by analytic continuation along a contour Ej*J
starting from some point in 2>(n) providing no point of (£[*} lies in ©(n+m-1)

for (£) e A{m) = Yl^i^/i- These points (z) are contained in what we shall
refer to as the initial domain of definition of F(z). It is clear that it may be
possible to extend F(z) by deforming its domain of integration, provided
that in so doing we do not pass over a singularity of the integrand. We ask,
when is it no longer possible to avoid an "encroaching" singularity and
continue F(z) past a point (zt)? This may be answered in the negative sense
by realizing when it is always possible to deform A(m) about a point (f) = (a)
for which S(zx; a) = 0. If not all of the terms 8S(z1; o^jdC/, vanish3, then
we may approximate S(2X; f) in a suitably small poly-disk A{m)(e) E=

dS dS

where we assume without loss of generality that dSJddfa, a) =̂= 0. It is
clear that in this case we may choose arbitrarily (»»— 1) of the contours,
that is we choose CA = a/,+e/,/2e1^" for /x = 2, 3, • • •, m. The last contour
we choose to be £x = ^-{-pe** where p < et is such that

' We are answering the question by finding when it is possible to avoid a singularity, not
when it may not be possible to avoid it.
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In this case Sfo; C) *= 0 for (f) in the set *<•»> = {|CX—<«xl = /»} x I I ^ i { I C , - « , l
= e^/2}, and we may avoid the singularity (£) = (a) by deforming Aim) to
follow a portion of A(ro) about this point. This concludes our proof.

LEMMA 3.2. Let /,(*; f) = /,(*lf • • •, *„; flf • • -, f j (»- = 1, 2, • • •) 6e
analytic functions of (n-\-m) complex variables, and regular-analytic in the
product domain (®<n)xIJ£=193j1

1)). Furthermore, let the singularities of
f,(z; £) lie on the analytic set ©iy*""11 = {Sv(z; £) = 0}. Then the continuation
of the function element given in %w by F(z) = (Ij2ni)m Jgt • • •/sw/i(2; C)
/2(z, £)*££, wAere 2M (/* = 1,2, • • -, m) are rectifiable curves, is regular at all
points not contained in the set

u n &Mr~l}) \(n(

where

PROOF. Applying the envelope method to each /v(z; f) separately yields
n^o®^™"1 '- Applying the Hadamard method [G.I] and [H.I] with respect
to the variable Ci, assuming at least one of the terms dSv/dCi ̂  0, yields4

^(n+m-i) n @(»+m-i) n @(»+™-D for e a c h ^ ^ 2. The condition for a point

(*.'C) e §i?^mll) is that '(dSJd&KdSJd^idSJdClKdSJdZ} for p S 2, if
the terms dSild£/i(jj,^l) do not vanish. This is clearly the same as the
condition (z, ?) e ^i,,^. (If terms dS2/dtA = 0 the condition is trivially satis-
fied.) We notice therefore, that it does not matter which one of the ^-varia-
bles is first eliminated by the Hadamard method, i.e.

g(«+»-i) = ^ " " - D , (v = l, 2, • • •, m).

This concludes our proof.
A somewhat less sharp estimate of the set of possible singularities may

be obtained by applying the envelope method to the entire integrand.
If

9I<«+™-i) = {Sl(z; Z)S2(z; f) = 0},

9l(«+m-1) ^ j | i St+St ^ = 0 ) , [p. = 1, 2, • • -, m),

then the candidates for singularities must lie on the set f]^=0^
+m~1)-

4 If BSJBt, = dS,ld£v = 0 for all v = 1, 2 », then we have the set (Jj=i niLo®/(.>"
which we have already included in the set of possible singularities.
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4. Singularities of generalized axially symmetric potentials

As an interesting application of the preceding lemmas we consider
those solutions of GASPN, which are represented by the operator 2l[g(ff)],
where g(£r) is singular on the analytic set © 1 0 = {y>(£r) = 0}. We denote
the singularities of the kernel by

(4.1) @J_# = { i _ 2 (

then

(4.2) ©,,„ = {:„ =

and

( ) n >, { }

These are apparent singularities which arise from the kernel, and are not
related to the function g(&).

The set

occurs when we use the Hadamard method to eliminate f x between @1>0 and
®2,o provided Ci # l i • Considering the points (f, £) e ^l^~1) we reanze they
are contained in the set,

where Q(TJ; xj = {nx-^^hl^ni, and a;, = $,r, r\v = £vr, (i> = 1, 2, • • • ,«) .
Since )̂(>y) is a function of the ^-variables alone, i.e. not a function of the
(ar)-variables, and furthermore since ipfa) is a holomorphic-regular function
of the (jy)-variables, the above relation can hold only when either (i) rjv = z,
is a zero of dfldrjr, or (ii) a zero of dipjdr], with a zero of dipldr/^, or (iii) ip is
independent of r\x and TJP .s In the case where ?jy = xv is a zero of dipjdrj, we
have

(4.4) Qft* = {{x, r,)\xy = Vv; x, e ^ . ^ E <?, for p * v}.

If we have case (ii), then {dy>(r))ldr)v = a.{rf) = 0} n {dipj^ = /%) = 0}
is in general an (n—2)-complex dimensional analytic set, and we have

* We rule this last case out in virtue of the fact that the singularities of v(»j) must lie on an
analytic set.
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reducing to a (2M—2) dimensional set. In this latter case we have actually
eliminated two rj^-variables in the sense that the (rj) variables now span a
(w—2)-dimensional space. In this case the system of equations in the (!)-
variable associated with the analytic sets ^i^T1' (fi = 2, 3, • • •, n) an either
<Slj0, or ©2 0 is over determined and the intersection (4.4) is of complex
dimension ^ (»—2). Using analytic completion methods (see Bochner and
Martin pg. 70, [B.M.I]) we can show that these singularities are removable,
hence the only possible singularities must occur for case (i) on the previous
page. We then have for case (i)

(4.5) n {(*. *?)!*, = *!/. x, 6 C\ n„ eC\fi-^v}n e8>0 = {||x[| = r}

(4.6) n {{x, V) \xv = t,,; xM 6 C\ ^ 6 ^ , ^ » } n @M = {y>[z) = 0},

and

( fl ^ r 1 1 ) n (S1>0 n @M = {(*)|y(«) = 0, and ||x|| = r),

that is the real singularities lie on the intersection of the surface y> = 0
with the p = 0 plane.

Finally, we consider the points contained in

" n I dw(v) \

p°(r) = n ©!.„ = n r -^r= 0; ̂  = ^r-y > °
the set P"(r) is in general a set of real dimension zero. We now introduce the
set,

which is a set upon which the integral may be singular.
We summarize the above discussion with the following theorem.

THEOREM 4.1. Let W(X) = Wflgitr)] be a solution of the GASPN
equation, where g(fy) is a holomorphic function of the n-complex variables
(fr) = (dr, • • •, £nr). Furthermore, let the only singularities of g(£r) lie on
the analytic set © ~{ip(C,r) = 0}. Then W(X) is regular for all points X =
(xlt • • •, xn, p) which are not contained on the following set A^*~2) u/l^""1',
where

4»-*> s Mx) = 0} n (p = 0}
and

= r;r e P*(r)}.

where P°(r) is defined above.
We next add a further result concerning the singularities of holomorphic
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[11] Integral operator methods for symmetric potentials 341

functions represented by integrals, which will be of use in studying the prop-
erties of the operator tyr1.

LEMMA 4.2. Let K(z; f) = K(zlt • • •, zn; £lt • • •, £m) be an analytic
function of (m-\-n)-complex variables, and regular-analytic in the product
domain (2)(n)x33(m)). Let F be topologically an m-dimensional cycle whose
boundary dF remains fixed. Furthermore, let the singularities of K(z; f)
lie on the analytic set ©j)"

+m~1) = {S(z; £) = 0}. Then the analytic function
F(z) represented in S)(n» by

has a continuation which is regular at all points (z) that do not lie on the set

PROOF. By the Cauchy-Poincare" theorem, Fuks [F.I; pg. 264] we know
that

\K{z; Qd^A • • • Adtn = ( K(z; £)d^A • • • Ad£n,

where F' is obtained by continuously deforming F, leaving dF fixed, pro-
viding that in the domain bounded by {F—F')K{z; f) is for fixed (z) regular
analytic in f. The proof then follows along the same lines as lemma 3.1 by
showing the set f]r^,0^

+ml) corresponds to those points we cannot avoid
by letting J" follow an ^-dimensional polycircle about.

The points lying on ftThave a special status since we cannot vary them,
and must be therefore considered as candidates for singularities.

We conclude therefore that the points (z) which correspond to points
of ©£•+•—x> = {S(z; C) = 0} when (?) lies on the boundary, (f) e &T, may
be singularities of F(z). This proves our result.

We next consider this result applied to the case of the operator Sf-^W].
Let us suppose that the GASPN function W(X) is singular on the analytic
set S l o = {&(X) — 0}. The kernel may be seen to be singular on the set
[G. H.1,2],

The sets <Sg are given by

and
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We compute f l ^ o © ^ " 1 ' = {llfll - 0}, since summing £„{£„[(£, | ) - 1 ]
-^IICII1} o v e r /» y i e l d s llf H*(f. flHICII1 = (C £)IICIIf- One may also obtain
this result by direct elimination of the f ̂ .

For the inverse operator the points on the set ^i^"1 ' (/* = 2, 3, • • •, n)
do not simplify as for the operator 21 [g]. We have

As before the Hadamard [H.I], [G.I] plus envelope method [G.3]
yields potential singularities on D^U^i2^1' n ®i,o n ©2,0; however, here we
are no longer able to use the methods of separating independent variables as
in the earlier case.

The integrand also has singularities on n̂ =o©i,/>> *-e- ^or a u

(f) e P<°» = n j - i{ ( f ) l^* /^ = 0} o {(£)\0(X) = 0}; however, since these
points are not connected with the ^-variables through 0(X) = 0 they
do not lead to singularities of the integral in the usual manner. It is
clear that the integral operator may not be well-defined if the domain of
integration contains points of the set P{0). However, if it is defined then the
points (f) 6 ©2,0 r> P{0) may be possible singularities of the associate function
defined by the integral operator.

We mention lastly, that depending on the value of s, singularities may
occur because of the coincidence of points on the boundary, {(f)| | | | | | = 1},
with ©2 0. These points are contained in the set U||£||-i {(£)!(£> f) = 1}
( £ j = r e a l ; i = ! , • • • , n ) .

5. Integral operators for special cases of GASPN

In this section we shall give another pair of operators associated with
the GASPN, valid when the parameter s in Equation (1.1) is a positive
integer, Indeed we have the following representation for V{£ .. m (li, • • •, f „)
= F$(f), [A de F.I] (pg. 256)

where the usual notation for the scalar product of two vectors has been used.
As in section II we generate a solution to the GASPN by multiplying

both sides of (5.1) by
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and summing. It is assumed that the requisite interchanges of integration
and summation are justified by uniform convergence. One has as a represen-
tation for a solution W(X) = W(xlt • • •, xn, p) as

W(X) ES
AT-0

( ' ;

where (i = m1-\- • • • + mn with m{ non-negative integers. This may be written
more compactly as

(5.3) W(X)=^[/]=«1 l i , r-««+-»
JJ oautu

where a.n<s is the constant multiplying the integrand in (5.2) and
a = V l —1||||2+»(^ I)- TAJ'S representation is valid in the exterior of a
hypersphere. Kelvin's transformation may be used to continue it to the
interior of the hypersphere.

By means of the biorthogonality of the sets {V$(£)} and {£/$(!)}
(see section II) we can generate an operator inverse to A[f]. Indeed, from
[A. de F.I] (pg. 263), we have

ff
JJos\\t

K (2fi+n+s-l) r($[n+s-l])r(s)mi\ • • • mn\

By use of this we have that

A-i[W] = !•-'{ W(X)K(tla; r, $)d»$

(5 5) J J s i i " | s

ra) \ra ' ra

where the kernel K(tjo; r, |) is given by
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K{tla; '' « = r ( | J
£ml . . . / m

(5-6) xi-^

that is, (5.5) is an inverse operator for the operator W(X) = A[f\. We
remark that we may extend these definitions of A [/] and its inverse by intro-
ducing integration over ^-dimensional chains, F where we hold the boundary
dr = {t\ ||*|| = 1} fixed. Hence

(5.7) W(X) = A\j] = «n,,''-(n+'-1) J f-^~ (l-ll'll1)1-1**"'.

where &T== #| \\t\\ = 1}, and

(5.8) f(tlro) = A-*[W] = JG ^(X)JC(//a; r, f)d-{

where flG s {f| | | | | | = 1}. We may then investigate the singularities of
these functions using the methods introduced in section 3.

6. Inequality for GASPN functions defined by integral operators

In this section we shall find bounds for GASPN functions in terms of
their associates. (See Bergman [B.I] for results of this kind in the case of
harmonic functions of three variables.) We introduce first the notation

(6.1)

where D is an arbitrary, w-circular domain, and

(6.2)

where g(z) s= Sc-o'1*,.---,*,,2*1'"" '< &• We now consider the GASPN
functions defined by the operators 3l[/] and A[g], where / = /(l/£r), and
g = g(t/ra) respectively.

To be specific in the case of the operator 2l[/] let us choose for our n-
circular domain the unit hypersphere in the maximum norm, i.e.
A = {(2)\ ML < !} . where \\z\\m = maxlitSn\zk\. We notice that if
(1/ff) E AR then max1 £ t £ n ljtk < Rr or (£)$Al/rR which follows from

RCk\ ̂  mnk\rR£;k\ > 1.
Let us now introduce
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(6.3) * [ / ; J J r i ] = sup

and take R = I jr. We assume that r, and hence R, is fixed. Then f or 11 £ 11 m 2: 1
and taking as our domain of integration the set I R - I { £ K

 = e'e*} w e have

(6.4)

We now proceed to obtain a lower estimate for I = |1— 2(£, £) + |l£ll2l by
considering its extremum as t,K = e'e* varies. Since the quantity / S: 0
we have a minimum for ?K = | K (K = 1, • • •, n) and this yields,

hence,

( 6 ' 5 )

— pn+s-l

Thus we have a bound for those x's and p such that x\ -\— • +x\+p2 = r2.
But W(X) satisfies a maximum principle and we therefore have

W(X)<

for all x\+x\-\ \-x$ +P
i>: I//?2. We list this result as a theorem.

THEOREM 6.1. Let W{X) be a GASPN function whose "^-associate
is holomorphic regular for (fr) in the exterior of a (maximum-norm)

hypersphere, \\z\\m < R. Furthermore, if M(f;AR] = sup(Cr)MJ/(l/fr)|, and
X* = xl+---+xz

n+p*, then

We next consider the GASPN functions generated by the operator A \g(tlra)].
Again let us use as a reference domain the (euclidean) hypersphere | \z\ \ e ;S R.
We notice, that

for | , t real, and hence that

We conclude that if (tlp)eAR, i.e. (OezlpiJ) that (tlra)eAR. Since the
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domain of integration is taken to be \\t\\e ^ 1 we must have pR 2; 1 if
(tjra) e AR for all t in the domain of integration. We proceed as before to
obtain the bound,

(6.6)
mn+s]) Mig;AR] rr

l I I I N '* '
for | |^||e Sn p 3: 1/i?. Since this bound is essentially of the same type as
given in Theorem 6.1, we will not list this result as a separate theorem.

For a conclusion we shall list some extensions of results obtained by
Gol'dberg ([F.I] pg. 339) concerning the growth of entire functions in C
to the case of GASPN functions. We recall the results of Gol'dberg below. Let

(9.7) ^ K
/{- •co In K

and

be associated with the entire function f(z) = ^M-O^M2"' then one has

(6.9) A[£>] = lim
HKII.-oo - I n |«jr|

and

(6.10) {eXo[D]yiK = 0m{||ii

where \\K\\a = Ax+ • • • +kn is the "addition" norm, dK[D] = sup(s)eD|zK|,
and zK = zj>, • • •, ẑ ». We list the following extension of Gol'dberg's results.

THEOREM 6.2. Let W(X) be a GASPN function whose %-associate
is an entire function of the variables (1/f*1) e C, with the following expansion
about (1/fr) = (0),

Then we have the bounds

(6.11)

for arbitrary e > 0,
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(6.12) \W(X)\ ^ el°lA«]+s')R\ for \\X\\. ^ - j - > 0,

arbitrary e' > 0, and where

PROOF. These results are direct transplantations of the results of
Gol'dbergif one computes in our case dK[AR] = supU)€4R|2K| = Rki+"+k» =

We remark in closing that it is possible to obtain numerous other growth
properties using different norms to specify ^-circular domains, and that it is
also possible to obtain lower bounds for the maximum of |W(.2L)| on the
spheres \\X\\t = Ro using the methods given in earlier papers by Gilbert
[G.3] and Gilbert and Howard [G.H.I,2]. We intend to investigate these
other properties in a later paper on GASPN.
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