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Abstract. We prove that the lowest upper bound for the number of limit cycles of
small nonconservative polynomial deformations of degree n of the Hamiltonian
vector field

is M - 1 .

A consequence is that the lowest upper bound for the number of limit cycles of
generic w-parameter deformations of cusps is n — 1.

1. Introduction
Let XH be the Hamiltonian vector field XH = y d/dx + (x2- 1) d/dy. The vector field
XH has two singular points: a saddle point s and an elliptic point e. Let H be a
Hamiltonian inducing the vector field XH and let he = H(e), hs = H(s) be the values
of the Hamiltonian in the singular points. The level set of the Hamiltonian H\hs)
contains a separatrix loop y(hx) and for each he[he,hs) there exists a compact
connected component y(h) of H~'(h) contained in the domain G bounded by
y(hj. The component y(h), h e (he, ftv] is homeomorphic to a circle and we orient
it clockwise.

Let 9>n be the space of polynomial vector fields of degree less than or equal to
n. For a vector field

Y = A— +B — e&n,3x dy

we denote by wY = -Bdx + A dy the one form dual to Y. For Ye &„ we define the
Abelian integral IY associated with Y by:

1=
J T( h )

IY(h)=\ wY,he[K,hs\ (1)

t Current address: Laboratoire de Topologie, Universite de Bourgogne, U.A. 755 du CNRS, BP 138,
21004 Dijon Cedex, France.

https://doi.org/10.1017/S0143385700005721 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700005721


524 P. Mardesic

Let N be a compact neighbourhood of G and let X: e<-^>XF, e e R, be a C^-family
of C°°-vector fields defined on N, of the form

XF=XH + eY+o{e), Y &9n, eeR. (2)

We call X a polynomial deformation of XH of degree <n. X is a nonconservative
deformation of XH if

/y*0. (3)

We prove:

THEOREM 1. Let X be a nonconservative polynomial deformation of degree <n of
XH. Then there exists E > 0 such that the vector fields Xe, \e\ < E, have at most n — l
limit cycles in N.

Furthermore, there exists a polynomial vector field Ye 9n, IY ^ 0 , such that for a
polynomial deformation X of XH, of the form (2), there exists E > 0 such that the
vector fields XF for 0 < |e| < E, have n — l limit cycles in N.

To formulate Theorem 2 we need the notion of a cusp introduced by Roussarie
in [8].

A cusp is a germ in Oe R2 of a vector field Xo satisfying the condition that its
2-jet j2Xo(0) is differentiably equivalent to

y-T+(x2 + Pxy)—, |8eR.
dx dy

THEOREM 2. Generically every n-parameter deformation of a cusp has locally at most
n — l limit cycles and there exist generic n-parameter deformations of cusps having
locally n — l limit cycles.

2. Preliminaries
Let X be a nonconservative polynomial deformation of degree n of XH. From (2)
it follows that there exists £ > 0 such that for | e | < £ every vector field XF has
precisely two singular points eF and sF in N and (eF, sF)-»(e, s) for e-»0. By affine
changes of coordinates close to the identity we can bring the singular points eF and
sF into e and 5.

We note that the form (2) and the nonconservative character of the deformation
X are preserved by these changes of coordinates. Therefore, we can assume without
loss of generality, that e and s are the only singular points in N of the vector fields
XF, \e\ < E. It follows that all limit cycles in N of the vector fields A",,, |e| < E, cut
the segment o- = [e, s]. For |e| < E we consider the Poincare map PF defined on a
of the vector field XF. The limit cycles of XF are given by isolated fixed points of
Pt (different from e). That is by isolated zeros (different from e) of the difference
function Af = Pf - id. We parametrize the points of cr by the values of the Hamil-
tonian. From the Perturbation lemma [1] it follows:

. (4)

Here / = IY is the Abelian integral associated, by (1), to the vector field Y appearing
in (2) and o(e) is a C^-function on [he, hs) x ( - £ , E), which is of order o(e) on
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any compact subset of [he,hs). We denote Af = e~'AF, e^O. We note that the
functions AP for ee ( - £ , £ ) and / are Cx on [he,hs) (I is actually analytic).
Therefore, it follows from (4), that for each a e(he, hs), restricting £ > 0 if necessary,
we have that the number of isolated zeros of AP, 0< |e| < £, on [he, a] is less than
or equal to the number of zeros of / on [he, a].

On the contrary, since the functions At. and / are in general not Cx in h = hs, it
can happen that for every e # 0 , |e| small, there exist r zeros ht{e) i = 1 , . . . , r of
AF tending to hs for e -» 0, where r is greater than the multiplicity of hs as a zero
of /. Therefore, the zeros /j,(e), i = 1 , . . , , r of AP do not correspond to the zeros of
/ on [he, hs), nor can be included in zeros of / on [he, hs]. However, a bound for
the number r of zeros of AP tending to hs, for e -» 0, can be given in function of the
principal term of the asymptotic development of / in the point hs. We have the
following lemma due to Roussarie.

LEMMA 1 [7]. The Abelian integral I has an asymptotic development of the form
+ 1 logf , (5)

where

t = h, - h. (6)

Furthermore, there exist a > 0, £ > 0 such that if I - Bmtm, Bm^0(I~ Amtm+l log t,
Am # 0) then for 0 < | e | < £ the function Af has at most r = 2m (r = 2m + \ resp.)
zeros on the interval (0, a).

It can be shown that for every V E ^ the associated Abelian integral I = IY can
be extended analytically from the segment [he, h>) to the domain D = C\{h > hs}
[3], [6]. We denote by 3>n the space of Abelian integrals denned by 3>n = {IY • Ve &„}•
We have the following bound due to Petrov of the number of zeros of Abelian
integrals.

LEMMA 2 [6]. Let I e $>„, 7^0. Then I has at most n zeros in D.
To prove Theorem 1 we shall improve the bound for the number of zeros of

Abelian integrals in function of the principal part of the asymptotic development (5).

3. The Main Lemma
LEMMA 3. Let IeJn, 7^0 and let r be defined by Lemma 1. Then I has at most
n — r zeros in D.

Furthermore, there exists an Abelian integral I e 3n having n — 1 distinct simple zeros
in the interval {he, hs).

To prove Lemma 3 we first perform the change of coordinates (6) to bring the
point hs into f,=0. The point he is mapped to te = hs — he, the interval {he,hj to
(0, te) and the domain D to D = C\{f<0}. We consider the Abelian integrals
I = I(t)eJ',, as functions on D. Obviously the change of coordinates (6) carries
over the zeros of /(It) on D to zeros of /(() on D preserving their number.
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Furthermore, we use the fact that there exists an isomorphism <I> of the vector
spaces R" and J>n, <b: R" -» $„ [5]. The isomorphism <I> is given by:

where,

[(n-l)/2] [n/2]-l

7(0 = I «.-r70+ Z ftr'/,. (7)

Here /0 , / | £ i n are the Abelian integrals associated with the one-forms wo = ydx
and o>i = xy dx. We define a norm || || on J?n as the norm induced by «£ from the
Euclidean norm on R". We note that convergence in the norm || || on $„ is equivalent
to uniform Cx convergence on compact subsets of D.

Furthermore, by a direct calculation or from [2] it follows that the coefficients
a0, b0, a, and bx of the asymptotic developments of 70, 7,

Io=ao+bot log t+ o(t log t)

(8)

(9)

log t + o(t log 0,

satisfy

a, b

Proof of Lemma 3. For 7 e ^ n , 7 ^ 0 let r be defined by Lemma 1. Let x be the
number of zeros of / in D and let K c D be a compact neighbourhood of the set
of zeros of /. There exists e > 0 such that every Abelian integral J e3>n satisfying
||7 - 71| < e has x zeros in K. We will construct an Abelian integral Im e $„ satisfying
||7m - 71| < e having r distinct zeros f,, i = 1 , . . . , r, U e D\K. Thus Im will have at
least x + r zeros in D. So applying Lemma 2 to Im(t) we will obtain x + r<n , thus
proving the first statement of the lemma.

To construct Im let us assume first that

I~Bmtm, Bm*0. (10)

We will obtain ImeJn as a result of m successive perturbations of 7, each time
creating two new zeros. From (8), (9) and (10) it follows that m-s[(n-\)/2].
Therefore, the Abelian Integral / ' of the form

7' = a , r - | 7 ( , + /3 , r - 1 7 , + 7, (11)

is an element of &„. We will show that there exists T > 0 , such that for 0< f < T
taking t, = /, t2 = 2t, there exists a unique solution (a,,/?,) of the system

'rlIl(t2) = -I(t2). (12)

That is the Abelian integral 7' defined by (11), where (a , , /3,) is the unique solution
of (12) satisfies

/ l ( r , ) = / 1 ( r 2 ) = O. (13)
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Furthermore, we will show that taking t> 0 sufficiently small we can satisfy

\\I]-I\\<e/m. (14)

Indeed, the determinant of the system (12) is given by

(t\

(15)

From (8), (9) and (15) it

tm~

(20'"
follows

70(0 fM-7,(f)

"70(20 (20m"'/i(2/)

Wm^(t) = 2ni-\a0b]-a,b0)r""l\ogt + o(t2n"llogt), aob, -a,bo#0. (16)

So there exists T > 0 such that Wm_,(f) # 0 for 0 < ?< T, implying that the system
(12) has a a unique solution (a, , /?,) f o r O < / < 7 . We claim that (a, , /3,)-»0, for
/-*0. Indeed, from (12), using (8) and (10) we have

alWm.l(t) = tm-lI(2t)Il(t)-(2t)m-1I(t)It(2t)

= Bm2""lalt
2m-l + o(t2m-'). (17)

Now (16) and (17) imply that a, -> 0 as f -» 0. Analogously /6, -> 0 as ? -»0. So taking

0 < / < T sufficiently small we can satisfy (14) and t,, t2e D\K. Thus / ' has at least

x + 2 zeros in D. Let us note that the asymptotic behavior of / ' in t = 0 is given by

Repeating this argument (replacing / by / ' ) after m steps we obtain an Abelian

integral /'" eJn having at least x + 2m zeros in D.

If the asymptotic behavior of / in / = 0 is given by

I ~ Amtm+I log t, Am*0, (18)

it is easy to see that there exists a small perturbation I°e $n of / of the form

1° — rv t"'l 4- I

having one additional zero / 0 > 0 close to / = 0. So we reduce case (18) to case (10).
We now prove the second statement of the lemma. Suppose first that n = 2k + 1 .

Let / = tkIoeJ'n. We note that / has one zero (in the point / = te) in D. Proceeding
as in the proof of the first statement of the lemma we obtain an Abelian integral
Ike^n having n=2k+l distinct zeros in D. They are all simple by Lemma 2.
Moreover, we can achieve that the 2k new created zeros / ,>0 , f = l , . . . ,2fc are
arbitrarily close to zero, so tt e (0, te). Returning to the old variable h = hs-t we
obtain n -1 = 2k simple distinct zeros ht = h, — t,, i = 1 , . . . , n -1 of I(h) satisfying
h,e(he,hs).

If n = 2k, then it is easy to see that there exists an Abelian integral / e 3>n of the
form / = a,/''~l/0 + )81/''"1/1 such that the asymptotic behavior in zero of / is given
by I ~Ak^tt

k log t. Now proceeding analogously as in the case n = 2k + l we finish
the proof of the lemma.

4. Proofs of the Theorems 1 and 2 and a concluding Remark
Proof of Theorem 1. Let YeSPn be a polynomial vector field and let X be a
nonconservative deformation of XH of the form (2). We assume that e and * are
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the only singular points of the vector fields XF, \e\ < E, in TV. The number of limit
cycles of a vector field XF, \s\ < E, is given by the number of isolated zeros of AF

on (he,hs). Let / = / y # 0 be the Abelian integral associated to Y and let r be
defined as in Lemma 1.

By Lemma 1 there exist ae(he,hs) such that reducing £ > 0 if necessary, we
have that the function AP,0< |e | < E has at most r isolated zeros in the interval (a, hs).

On the other hand by Lemma 3 the Abelian integral / has at most n - r isolated
zeros on [he, hs). Therefore, reducing E > 0 if necessary, from (4) it follows that
for 0<|e | < E the function AP has at most n — r isolated zeros on the interval [he, a].
Thus Af has at most n isolated zeros on the interval [he, hs). Since for 0< |e |<£ '
the function Af has at least a simple trivial zero in h = he, the first statement of the
theorem follows.

The second statement of the theorem follows from the second statement of Lemma
3 using (4).

Proof of Theorem 2. We note first that Theorem 1 remains true if we let the vector
field Y in (2) vary through a compact subset of 0>n (with the C^-topology). The
proof of Theorem 2 is obtained by replacing [8, Theorem 12] in [8] by this version
of Theorem 1 and noting the relations preceeding [8, Theorem 9].

Remark. Let us consider more generally a Hamiltonian vector field of the form

where P(x) is a polynomial of degree p. We assume that XH has a separatrix loop
y passing through a saddle point s, and that all trajectories in the domain G bounded
by y are homeomorphic to circles except one elliptic singular point e. Let TV be a
compact neighbourhood of G, which contains no other singular points.

We conjecture that the lowest uniform upper bound for the number of limit cycles
in N of small nonconservative polynomial deformations of degree <n of XH given
by (19) is equal to the lowest uniform upper bound for the number of nontrivial
zeros of the associated Abelian integrals. Here, we consider the Abelian integrals
as analytic functions defined in a neighbourhood D c C o f [he, hs).

We note that from a general result of Varchenko [9] it follows that such a uniform
upper bound for the number of zeros of Abelian integrals associated to nonconserva-
tive polynomial deformations of degree <n exists.

By [5] we have that for the space of Abelian integrals under consideration there
exists an isomorphism analogous to (7). The only point missing for the proof of
the conjecture is that certain properties (of specific Abelian integrals arising in the
generalization of (7)) generalizing (8) are satisfied. For p = 3 this is verified in [4].
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