On the Singular Sheaves in the Fine Simpson Moduli Spaces of 1-dimensional Sheaves

Oleksandr Iena and Alain Leytem

Abstract

In the Simpson moduli space M of semi-stable sheaves with Hilbert polynomial $d m-1$ on a projective plane we study the closed subvariety M^{\prime} of sheaves that are not locally free on their support. We show that for $d \geqslant 4$, it is a singular subvariety of codimension 2 in M. The blow up of M along M^{\prime} is interpreted as a (partial) modification of $M \backslash M^{\prime}$ by line bundles (on support).

1 Introduction

Let \mathbb{k} be an algebraically closed field of characteristic zero, let V be a vector space over \mathbb{k} of dimension 3 , and let $\mathbb{P}_{2}=\mathbb{P} V$ be the corresponding projective plane. Consider a linear polynomial with integer coefficients $P(m)=d m+c \in \mathbb{Z}[m], d \in \mathbb{Z}_{>0}, c \in \mathbb{Z}$. Let $M:=M_{P}\left(\mathbb{P}_{2}\right)$ be the Simpson coarse moduli space [10] of semi-stable sheaves on \mathbb{P}_{2} with Hilbert polynomial P. As shown in [7], M is an irreducible locally factorial variety of dimension $d^{2}+1$, smooth if $\operatorname{gcd}(d, c)=1$.

Singular Sheaves

The sheaves from M are torsion sheaves on \mathbb{P}_{2}; they are supported on curves of degree d. Restricted to their (Fitting) support, most of the sheaves in M are line bundles with Euler-Poincaré characteristic c. The fibres of the morphism $M \rightarrow \mathbb{P} S^{d} V^{*},[\mathcal{F}] \mapsto$ Supp \mathcal{F} that sends a class of a sheaf to its support are Jacobians over smooth curves. Over singular curves the fibres can be seen as compactified Jacobians. Sheaves that are line bundles on their support constitute an open subvariety M_{B} of M. Its complement M^{\prime}, the closed subvariety of sheaves that are not locally free on their support, is in general non-empty. This way one can consider M as a compactification of M_{B}. We call the sheaves from the boundary $M^{\prime}=M \backslash M_{B}$ singular.

The boundary M^{\prime} does not have the minimal codimension in general. Loosely speaking, one glues together too many different directions at infinity. For example, for $c \in \mathbb{Z}$ with $\operatorname{gcd}(3, c)=1$, all moduli spaces $M_{3 m+c}$ are isomorphic to the universal plane cubic curve and $M_{3 m+c}^{\prime}$ is a smooth subvariety of codimension 2 isomorphic to the universal singular locus of a cubic curve [6].

[^0]
The Main Result

As demonstrated in [5], for $P(m)=4 m+c$ with $\operatorname{gcd}(4, c)=1$, the subvariety M^{\prime} is singular of codimension 2 . The main result of this paper is the following generalization of [5].

Theorem 1.1 For an integer $d \geqslant 4$, let $M=M_{d m-1}\left(\mathbb{P}_{2}\right)$ be the Simpson moduli space of (semi-)stable sheaves on \mathbb{P}_{2} with Hilbert polynomial dm -1 . Let $M^{\prime} \subseteq M$ be the subvariety of singular sheaves. Then M^{\prime} is singular of codimension 2.

Using our understanding of M^{\prime} and the construction from [6], we obtain, as a consequence, Theorem 4.7 which allows interpreting the blow up of M along M^{\prime} as a modification of the boundary M^{\prime} by a divisor consisting generically of line bundles.

Structure of the Paper

In Section 2 we recall the results from [9] and identify the open subvariety M_{0} in M of sheaves without global sections with an open subvariety of a projective bundle \mathbb{B} over a variety of Kronecker modules N. In Section 3, using a convenient characterization of free ideals of fat curvilinear points on planar curves from Appendix A, we show that a generic fibre of $M_{0}^{\prime}=M_{0} \cap M^{\prime}$ over N is a union of projective subspaces of codimension 2 in the fibre of \mathbb{B}. Thus it is singular of codimension 2 , which allows us to prove the main result. In Section 4 we briefly discuss how our analysis can be used to modify the boundary M^{\prime} by line bundles (on support).

Some Notations and Conventions

Dealing with homomorphisms between direct sums of line bundles and identifying them with matrices, we consider the matrices acting on elements from the right, i.e., the composition $X \xrightarrow{A} Y \xrightarrow{B} Z$ is given by the matrix $A \cdot B$. In particular, a section of a direct sum of line bundles $\mathcal{E}_{1} \oplus \cdots \oplus \mathcal{E}_{m}$ is identified with the row-vector of sections of $\mathcal{E}_{i}, i=1, \ldots, m$.

2 Basic Constructions

2.1 Kronecker Modules

Let \mathbb{V} be the affine space of Kronecker modules $(n-1) \mathcal{O}_{\mathbb{P}_{2}}(-1) \xrightarrow{\Phi} n \mathcal{O}_{\mathbb{P}_{2}}$. There is a natural group action of $G=\left(\mathrm{GL}_{n-1}(\mathbb{k}) \times \mathrm{GL}_{n}(\mathbb{k})\right) / \mathbb{k}^{*}$ on \mathbb{V}. Since $\operatorname{gcd}(n-1, n)=1$, all semistable points of this action are stable and G acts freely on the open subset of stable points \mathbb{V}^{s}. Then $\Phi \in \mathbb{V}^{s}$ if and only if Φ does not lie in the same orbit with a Kronecker module with a zero block of size $j \times(n-j), 1 \leqslant j \leqslant n-1$ [2, Proposition 15], [4, 6.2]. In particular, Kronecker modules with linearly independent maximal minors are stable. There exists a geometric quotient $N=N(3 ; n-1, n)=\mathbb{V}^{s} / G$, which is a smooth projective variety of dimension $(n-1) n$. For more details, consult [4, §6] and $[2, \S I I I]$.

The cokernel of a stable Kronecker module $\Phi \in \mathbb{V}^{s}$ is an ideal of a zero-dimensional scheme Z of length $(n-1) n / 2$ provided that the maximal minors of Φ are coprime. In this case the maximal minors d_{0}, \ldots, d_{n-1} are linearly independent and there is a resolution

$$
0 \rightarrow(n-1) \mathcal{O}_{\mathbb{P}_{2}}(-n) \xrightarrow{\Phi} n \mathcal{O}_{\mathbb{P}_{2}}(-n+1) \xrightarrow{\left(\begin{array}{c}
d_{0} \tag{2.1}\\
\vdots \\
d_{n-1}
\end{array}\right)} \mathcal{O}_{\mathbb{P}_{2}} \rightarrow \mathcal{O}_{Z} \rightarrow 0 .
$$

Moreover, Z does not lie on a curve of degree $n-2$. Let \mathbb{V}_{0} denote the open subvariety of $\Phi \in \mathbb{V}^{s}$ of Kronecker modules with coprime maximal minors. Let $N_{0} \subseteq N$ be the corresponding open subvariety in the quotient space.

This way one obtains a morphism from $N_{0} \subseteq N$ to the Hilbert scheme of zerodimensional subschemes of \mathbb{P}_{2} of length $l=(n-1) n / 2$ that sends a class of $\Phi \in$ \mathbb{V}^{s} to the zero scheme of its maximal minors. Since every zero-dimensional scheme of length l that does not lie on a curve of degree $n-2$ has a minimal resolution of type (2.1), this gives an isomorphism of N_{0} and the open subvariety $H_{0} \subseteq H=\mathbb{P}_{2}^{[l]}$ consisting of Z that do not lie on a curve of degree $n-2$. The complement of H_{0} is an irreducible hypersurface [3, p. 119].

2.2 Projective Bundles Over N

Let $\mathbb{U}_{1}=(n-1) \Gamma\left(\mathbb{P}_{2}, \mathcal{O}_{\mathbb{P}_{2}}(1)\right)$ and let $\mathbb{U}_{2}=n \Gamma\left(\mathbb{P}_{2}, \mathcal{O}_{\mathbb{P}_{2}}(2)\right)$. Consider the trivial vector bundles $\mathbb{V} \times \mathbb{U}_{1}$ and $\mathbb{V} \times \mathbb{U}_{2}$ over \mathbb{V} and the following morphism between them: $\mathbb{V} \times \mathbb{U}_{1} \xrightarrow{F} \mathbb{V} \times \mathbb{U}_{2},(\Phi, L) \mapsto(\Phi, L \cdot \Phi)$.

Lemma 2.1 The morphism F is injective over \mathbb{V}^{s}.
Proof Let $\Phi \in \mathbb{V}^{s}$ and assume $L \cdot \Phi=0$ for some non-zero $0 \neq L=\left(l_{1}, \ldots, l_{n-1}\right) \in \mathbb{U}_{1}$. Since $l_{i} \in \Gamma\left(\mathbb{P}_{2}, \mathcal{O}_{\mathbb{P}_{2}}(1)\right)$, the dimension of the vector space generated by $\left\{l_{i}\right\}_{i}$ is at most 3. So for some $B \in \mathrm{GL}_{n-1}(\mathbb{k})$ we get $L \cdot B=L^{\prime}=\left(l_{1}^{\prime}, l_{2}^{\prime}, l_{3}^{\prime}, 0, \ldots, 0\right)$ such that the first non-zero entries are linearly independent. Then since Φ is semistable if and only if $B^{-1} \Phi$ is semistable and since $L \Phi=(L B) \cdot\left(B^{-1} \Phi\right)=0$, we may assume without loss of generality that $L=\left(l_{1}, l_{2}, l_{3}, 0, \ldots, 0\right)$ and the first non-zero entries of L are linearly independent.

If $l_{1} \neq 0, l_{2}=l_{3}=0$, then $L \Phi=0$ implies that the first row of Φ is zero, which contradicts the stability of Φ.

If $l_{1} \neq 0, l_{2} \neq 0, l_{3}=0$, then the syzygy module of $\left(l_{1}, l_{2}\right)^{\mathrm{T}}$ is generated by $\left(l_{2},-l_{1}\right)$. So the columns of the first two rows of Φ are scalar multiples of $\binom{l_{2}}{-l_{1}}$ and hence, after performing elementary transformations on the columns of Φ, Φ is equivalent to a matrix with a zero block of size $2 \times(n-1)$, which contradicts the stability of Φ.

If $l_{i} \neq 0, i=1,2,3$, then the syzygy module of $\left(l_{1}, l_{2}, l_{3}\right)^{\mathrm{T}}$ is generated by three linearly independent generators $\left(0, l_{3},-l_{2}\right),\left(-l_{3}, 0, l_{1}\right)$, and $\left(l_{2},-l_{1}, 0\right)$, which implies that Φ is equivalent to a matrix with a zero block of size $3 \times(n-3)$, and this contradicts the stability of Φ.

Therefore, $\mathbb{V}^{s} \times \mathbb{U}_{1} \xrightarrow{F} \mathbb{V}^{s} \times \mathbb{U}_{2}$ is a vector subbundle, and hence the cokernel of F is a vector bundle of rank $6 \cdot n-3 \cdot(n-1)=3 n+3=3 d$, denoted by E.

The group action of $\mathrm{GL}_{n-1}(\mathbb{k}) \times \mathrm{GL}_{n}(\mathbb{k})$ on $\mathbb{V}^{s} \times \mathbb{U}_{1}$ and $\mathbb{V}^{s} \times \mathbb{U}_{2}$ induces a group action of $\mathrm{GL}_{n-1}(\mathbb{k}) \times \mathrm{GL}_{n}(\mathbb{k})$ on E, and hence an action of $G=\left(\mathrm{GL}_{n-1}(\mathbb{k}) \times \mathrm{GL}_{n}(\mathbb{k})\right) / \mathbb{k}^{*}$ on $\mathbb{P} E$. Finally, since the stabilizer of $\Phi \in \mathbb{V}^{s}$ under the action of G is trivial, it acts trivially on the fibres of $\mathbb{P} E$, and thus $\mathbb{P} E$ descends to a projective $\mathbb{P}_{3 n+2}$-bundle

$$
\mathbb{B} \xrightarrow{v} N=N(3 ; n-1, n)=\mathbb{V}^{s} / G .
$$

Let \mathbb{W} be the affine variety of morphisms

$$
\begin{equation*}
\mathcal{O}_{\mathbb{P}_{2}}(-3) \oplus(n-1) \mathcal{O}_{\mathbb{P}_{2}}(-2) \xrightarrow{A} n \mathcal{O}_{\mathbb{P}_{2}}(-1) \tag{2.2}
\end{equation*}
$$

Notice that \mathbb{W} can be identified with $\mathbb{V} \times \mathbb{U}_{2}$ by the isomorphism

$$
\mathbb{V} \times \mathbb{U}_{2} \rightarrow \mathbb{W}, \quad(\Phi, Q) \mapsto\binom{Q}{\Phi}
$$

The group $G^{\prime}=\left(\operatorname{Aut}\left(\mathcal{O}_{\mathbb{P}_{2}}(-3) \oplus(n-1) \mathcal{O}_{\mathbb{P}_{2}}(-2)\right) \times \operatorname{Aut}\left(n \mathcal{O}_{\mathbb{P}_{2}}(-1)\right) / \mathbb{k}^{*}\right.$ acts on $\mathbb{W} \cong$ $\mathbb{V} \times \mathbb{U}_{2}$. As shown in [9, Proposition 7.7], \mathbb{B} is a geometric quotient of $\mathbb{V}^{s} \times \mathbb{U}_{2} \backslash \operatorname{Im} F$ with respect to G^{\prime}.

2.3 Moduli Space $M_{d m-1}\left(\mathbb{P}_{2}\right)$

Let $d \geqslant 4, d=n+1$, be an integer. Let $M=M_{d m-1}\left(\mathbb{P}_{2}\right)$ be the Simpson moduli space of (semi-)stable sheaves on \mathbb{P}_{2} with Hilbert polynomial $d m-1$. In [9] it was shown that M contains an open dense subvariety M_{0} of isomorphism classes of sheaves \mathcal{F} with $h^{0}(\mathcal{F})=0$.

2.3.1 Sheaves in M_{0}

By [9, Claim 4.2] the sheaves in M without global sections are exactly the cokernels of the injective morphisms (2.2) with $A=\binom{Q}{\Phi}$, $\operatorname{det} A \neq 0, \Phi \in \mathbb{V}^{s}$. This allows one to describe M_{0} as an open subvariety in \mathbb{B}.

Let \mathbb{W}_{0} be the open subvariety of injective morphisms in \mathbb{W} parameterizing the points from M_{0}. Since the determinant of a matrix from the image of F is zero, one sees that $\mathbb{W}_{0} \subseteq \mathbb{V}^{s} \times \mathbb{U}_{2} \backslash \operatorname{Im} F$, which allows one to conclude that $M_{0}=\mathbb{W}_{0} / G^{\prime}$ is an open subvariety of \mathbb{B}.

Let $\mathbb{B}_{0}=\left.\mathbb{B}\right|_{N_{0}}$ be the restriction of \mathbb{B} to the open subscheme $N_{0} \subseteq N$. From the exact sequence (2.1) it follows that a matrix $A=\binom{Q}{\Phi} \in \mathbb{W}, \Phi \in \mathbb{V}_{0}$, has zero determinant if and only if A lies in the image of F. Therefore, the fibres of \mathbb{B} over N_{0} are contained in M_{0} and thus $\mathbb{B}_{0} \subseteq M_{0}$. As shown in [11], the codimension of the complement of \mathbb{B}_{0} in M is at least 2 .

2.3.2 Sheaves in \mathbb{B}_{0}

Sheaves in \mathbb{B}_{0} are exactly the twisted ideal sheaves $\mathcal{J}_{Z \subseteq C}(d-3)$ of zero-dimensional schemes Z of length l lying on a curve C of degree d such that Z is not contained in a curve of degree $d-3$. In other words the sheaves \mathcal{F} in \mathbb{B}_{0} are given by the short exact sequences $0 \rightarrow \mathcal{F} \rightarrow \mathcal{O}_{C}(d-3) \rightarrow \mathcal{O}_{Z} \rightarrow 0$ with $Z \subseteq C$ as described.

A fibre over a point [Φ] from N_{0} can be seen as the space of plane curves of degree d through the corresponding subscheme of l points. The identification is given by
the map $v^{-1}([\Phi]) \ni[A] \mapsto\langle\operatorname{det} A\rangle \in \mathbb{P}\left(S^{d} V^{*}\right)$. Indeed, if two matrices over [Φ] are equivalent, then their determinants are equal up to a non-zero constant multiple, and hence the map above is well defined. On the other hand, if two matrices $A=\binom{Q}{\Phi}$ and $A^{\prime}=\binom{Q^{\prime}}{\Phi}$ have equal determinants, then $Q-Q^{\prime}$ lies in the syzygy module of the maximal minors of Φ and hence (cf. (2.1)) is a linear combination of the rows of Φ, which means that A and A^{\prime} are equivalent.

3 Singular Sheaves

Let M^{\prime} be the subvariety of singular sheaves in M and let $M_{0}^{\prime}=M^{\prime} \cap M_{0}$. Let us consider the restriction of v to M_{0}^{\prime} and describe some of its fibres.

3.1 Generic Fibres

Let N_{c} be the open subset of N_{0} that corresponds to l different points. Under the isomorphism $N_{0} \cong H_{0}$, it corresponds to the open subvariety $H_{c} \subseteq H_{0}$ of the configurations of l points on \mathbb{P}_{2} that do not lie on a curve of degree $d-3$.

Let $[\Phi] \in N_{c}$ and let $Z=\left\{\mathrm{pt}_{1}, \ldots, \mathrm{pt}_{l}\right\}$ be the corresponding zero-dimensional scheme. Let m_{1}, \ldots, m_{l} be the monomials of degree $d-3$ in variables x_{0}, x_{1}, x_{2} ordered, say, in lexicographical order:

$$
m_{1}=x_{0}^{d-3}, \quad m_{2}=x_{0}^{d-4} x_{1}, \quad m_{3}=x_{0}^{d-4} x_{2}, \quad \ldots
$$

Since Z does not lie on a curve of degree $d-3$, the matrix

$$
\left(\begin{array}{ccc}
m_{1}\left(\mathrm{pt}_{1}\right) & \ldots & m_{l}\left(\mathrm{pt}_{1}\right) \\
\vdots & \ddots & \vdots \\
m_{1}\left(\mathrm{pt}_{l}\right) & \ldots & m_{l}\left(\mathrm{pt}_{l}\right)
\end{array}\right)
$$

has full rank. Assume without loss of generality that $\mathrm{pt}_{1}=\langle 1,0,0\rangle$. Then the matrix is

$$
\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
m_{1}\left(\mathrm{pt}_{2}\right) & m_{2}\left(\mathrm{pt}_{2}\right) & \ldots & m_{l}\left(\mathrm{pt}_{2}\right) \\
\vdots & \vdots & \ddots & \vdots \\
m_{1}\left(\mathrm{pt}_{l}\right) & m_{2}\left(\mathrm{pt}_{l}\right) & \ldots & m_{l}\left(\mathrm{pt}_{l}\right)
\end{array}\right)
$$

and therefore the matrix

$$
\left(\begin{array}{cccc}
m_{1}\left(\mathrm{pt}_{2}\right) & m_{2}\left(\mathrm{pt}_{2}\right) & \ldots & m_{l}\left(\mathrm{pt}_{2}\right) \\
\vdots & \vdots & \ddots & \vdots \\
m_{1}\left(\mathrm{pt}_{l}\right) & m_{2}\left(\mathrm{pt}_{l}\right) & \ldots & m_{l}\left(\mathrm{pt}_{l}\right)
\end{array}\right)
$$

has full rank and thus there exists a homogeneous polynomial q of degree $d-3$ vanishing at the points $\mathrm{pt}_{2}, \ldots, \mathrm{pt}_{l}$, with the coefficient 1 in front of the monomial $m_{1}=x_{0}^{d-3}$. Therefore, the forms $x_{0}^{2} x_{1} q$ and $x_{0}^{2} x_{2} q$ vanish at Z. Notice that $x_{0}^{2} x_{1} q$ has the monomial $x_{0}^{d-1} x_{1}$ but does not have $x_{0}^{d-1} x_{2}$, and $x_{0}^{2} x_{2} q$ has $x_{0}^{d-1} x_{2}$ but does not have $x_{0}^{d-1} x_{1}$.

Let \mathcal{E} be a sheaf over [$\Phi]$. By Lemma A. 1 it is singular at pt_{1} if and only if pt_{1} is a singular point of the support C of \mathcal{E}. The latter holds if and only if in the homogeneous polynomial of degree d defining C, the coefficients of the monomials $x_{0}^{d-1} x_{1}$ and $x_{0}^{d-1} x_{2}$ vanish. Therefore, taking into account the considerations above, sheaves
over [Φ] singular at pt_{1} constitute a projective subspace of codimension 2 in the fibre $F:=v^{-1}([\Phi]) \cong \mathbb{P}_{3 d-1}$. Since our argument can be repeated for each point pt_{i}, $i=1, \ldots, l$, we conclude that the sheaves over [Φ] singular at pt_{i} constitute a projective subspace F_{i} of codimension 2 in the fibre $v^{-1}([\Phi]) \cong \mathbb{P}_{3 d-1}$.

Now let us clarify how the linear subspaces in the fibre corresponding to different points pt_{i} intersect with each other. First of all notice that Z must contain a triple of non-collinear points because otherwise Z must lie on a line. Therefore, in addition to the assumption $\mathrm{pt}_{1}=\langle 1,0,0\rangle$, we can assume without loss of generality that $\mathrm{pt}_{2}=$ $\langle 0,1,0\rangle, \mathrm{pt}_{3}=\langle 0,0,1\rangle$. Then the conditions for being singular at these three different points read as the absence of the following monomials in the equation of C :

$$
\begin{array}{cl}
x_{0}^{d-1} x_{1}, x_{0}^{d-1} x_{2} & \text { for the point } \mathrm{pt}_{1} \tag{3.1}\\
x_{1}^{d-1} x_{0}, x_{1}^{d-1} x_{2} & \text { for the point } \mathrm{pt}_{2} \\
x_{2}^{d-1} x_{0}, x_{2}^{d-1} x_{1} & \text { for the point } \mathrm{pt}_{3}
\end{array}
$$

These conditions are clearly independent of each other. Moreover, these conditions are independent from the conditions imposed on the curves of degree d by the requirement $Z \subseteq C$. This is the case since the forms $x_{0}^{2} x_{1} q$ and $x_{0}^{2} x_{2} q$ constructed above clearly do not have monomials $x_{1}^{d-1} x_{0}, x_{1}^{d-1} x_{2}$ and $x_{2}^{d-1} x_{0}, x_{2}^{d-1} x_{1}$. This produces a way to construct the curves through Z with only one of the monomials from (3.1).

We conclude that for every pair of different indices $\operatorname{codim}_{F} F_{i} \cap F_{j}=4$. Moreover, for every triple of different indices i, j, v corresponding to three non-collinear points $\mathrm{pt}_{i}, \mathrm{pt}_{j}, \mathrm{pt}_{v}$ from Z, we have $\operatorname{codim}_{F} F_{i} \cap F_{j} \cap F_{v}=6$. Finally we obtain the following.

Lemma 3.1 The fibres of M_{0}^{\prime} over N_{c} are unions of l different linear subspaces of $v^{-1}([\Phi]) \cong \mathbb{P}_{3 d-1}$ of codimension 2 such that each pair intersects in codimension 4 and each triple corresponding to three non-collinear points intersects in codimension 6 . In particular the fibres are singular.

Remark 3.2 One can show that $\operatorname{codim}_{F} F_{i} \cap F_{j} \cap F_{v}=6$ for every triple of different indices i, j, v corresponding to three different points $\mathrm{pt}_{i}, \mathrm{pt}_{j}, \mathrm{pt}_{v}$ from Z.

Remark 3.3 In general it is not true that F_{i} intersect transversally. For example, for $d=6$ and $Z=\left\{\mathrm{pt}_{1}, \ldots, \mathrm{pt}_{10}\right\}$ with

$$
\begin{array}{llll}
\mathrm{pt}_{1}=\langle 1,0,0\rangle, & \mathrm{pt}_{2}=\langle 0,1,0\rangle, & \mathrm{pt}_{3}=\langle 0,0,1\rangle, & \mathrm{pt}_{4}=\langle 0,1,1\rangle, \\
\mathrm{pt}_{5}=\langle 0,1,-1\rangle, & \mathrm{pt}_{6}=\langle 1,-2,0\rangle, & \mathrm{pt}_{7}=\langle 1,2,-1\rangle, & \mathrm{pt}_{8}=\langle 1,1,-2\rangle, \\
\mathrm{pt}_{9}=\langle 1,-1,1\rangle, & \mathrm{pt}_{10}=\langle 1,1,-1\rangle, & &
\end{array}
$$

we have $\operatorname{codim}_{F} F_{1} \cap F_{2} \cap F_{3} \cap F_{4}=8$, but $\operatorname{codim}_{F} F_{1} \cap F_{2} \cap F_{3} \cap F_{4} \cap F_{5}=9$.

3.2 Fibres Over N_{1}

Let N_{1} be the open subset of $N_{0} \backslash N_{c}$ that corresponds to $l-2$ different simple points and one double point. Let $[\Phi] \in N_{1}$ and let $Z=\left\{\mathrm{pt}_{1}\right\} \cup\left\{\mathrm{pt}_{2}, \ldots, \mathrm{pt}_{l-1}\right\}$ be the corresponding zero-dimensional scheme, where pt_{1} is a double point. Without loss of
generality, applying if necessary a coordinate change, we may assume that pt_{1} is given by the ideal $\left(x_{1}^{2}, x_{2}\right)$.

3.2.1 Sheaves Singular at the Double Point

Since Z does not lie on a curve of degree $d-3$, the matrix

$$
\left(\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
0 & 1 & 0 & \ldots & 0 \\
m_{1}\left(\mathrm{pt}_{2}\right) & m_{2}\left(\mathrm{pt}_{2}\right) & m_{3}\left(\mathrm{pt}_{2}\right) & \ldots & m_{l}\left(\mathrm{pt}_{2}\right) \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
m_{1}\left(\mathrm{pt}_{l-1}\right) & m_{2}\left(\mathrm{pt}_{l-1}\right) & m_{3}\left(\mathrm{pt}_{l-1}\right) & \ldots & m_{l}\left(\mathrm{pt}_{l-1}\right)
\end{array}\right)
$$

has full rank. Therefore, there exist homogeneous polynomials q and q^{\prime} of degree $d-3$ vanishing at the points $\mathrm{pt}_{2}, \ldots, \mathrm{pt}_{l-1}$ such that q does not have monomial $x_{0}^{d-4} x_{1}$ but has term x_{0}^{d-3}, and q^{\prime} does not have monomial x_{0}^{d-3} but has term $x_{0}^{d-4} x_{1}$. This implies that the forms $x_{0}^{2} x_{2} q$ and $x_{0}^{2} x_{1} q^{\prime}$ vanish at Z.

Let \mathcal{E} be a sheaf over [$\Phi]$. Let C be its support. By Lemma A. 2 one concludes that \mathcal{E} is singular at pt_{1} if and only if in the homogeneous polynomial of degree d defining C, the coefficients of the monomials $x_{0}^{d-2} x_{1}^{2}$ and $x_{0}^{d-1} x_{2}$ vanish. Therefore, taking into account the considerations above, sheaves over [Φ] singular at pt_{1} constitute a projective subspace of codimension 2 in the fibre $v^{-1}([\Phi]) \cong \mathbb{P}_{3 d-1}$.

3.2.2 Sheaves Singular at Simple Points

Assume in addition that $\mathrm{pt}_{2}=\langle 0,0,1\rangle$. We can still do this without loss of generality because Z cannot lie on a line. Then the matrix above is

$$
\left(\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 0 & \ldots & 1 \\
m_{1}\left(\mathrm{pt}_{3}\right) & m_{2}\left(\mathrm{pt}_{3}\right) & m_{3}\left(\mathrm{pt}_{3}\right) & \ldots & m_{l}\left(\mathrm{pt}_{3}\right) \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
m_{1}\left(\mathrm{pt}_{l-1}\right) & m_{2}\left(\mathrm{pt}_{l-1}\right) & m_{3}\left(\mathrm{pt}_{l-1}\right) & \ldots & m_{l}\left(\mathrm{pt}_{l-1}\right)
\end{array}\right) .
$$

Then, as in 3.1, we obtain a homogeneous polynomial $q^{\prime \prime}$ vanishing at $Z \backslash\left\{\mathrm{pt}_{2}\right\}$ with coefficient 1 in front of the monomial $m_{l}=x_{2}^{d-3}$. Then the polynomials $x_{1} x_{2}^{2} q^{\prime \prime}$ and $x_{0} x_{2}^{2} q^{\prime \prime}$ vanish at Z. The former has $x_{1} x_{2}^{d-1}$ but does not have $x_{0} x_{2}^{d-1}$, and the latter has $x_{0} x_{2}^{d-1}$ but does not have $x_{1} x_{2}^{d-1}$. This means that the sheaves over [Φ] singular at pt_{2} constitute a projective subspace of codimension 2 in the fibre $v^{-1}([\Phi]) \cong \mathbb{P}_{3 d-1}$. This also shows that the sheaves over $[\Phi]$ singular at pt_{j} such that pt_{1} and pt_{j} do not lie on a line constitute a projective subspace of codimension 2 in the fibre $v^{-1}([\Phi]) \cong \mathbb{P}_{3 d-1}$.

Suppose there exists a point pt_{j} such that pt_{1} and pt_{j} lie on a line. Without loss of generality we can assume that in this case $\mathrm{pt}_{j}=\langle 0,1,0\rangle$. Then we can construct a homogeneous polynomial $q^{\prime \prime \prime}$ of degree $d-3$ through $Z \backslash\left\{\mathrm{pt}_{j}\right\}$ with coefficient 1 in front of the monomial x_{1}^{d-3}. Then the polynomials $x_{0} x_{1}^{2} q^{\prime \prime \prime}$ and $x_{1}^{2} x_{2} q^{\prime \prime \prime}$ vanish at Z. The former has $x_{0} x_{1}^{d-1}$ but does not have $x_{1}^{d-1} x_{2}$, and the latter has $x_{1}^{d-1} x_{2}$ but does not have $x_{0} x_{1}^{d-1}$. This means that the sheaves over $[\Phi]$ singular at pt_{j} such that pt_{1} and pt_{j} lie on a line constitute a projective subspace of codimension 2 in the fibre $v^{-1}([\Phi]) \cong \mathbb{P}_{3 d-1}$. This concludes the proof of the following lemma.

Lemma 3.4 The fibres of M_{0}^{\prime} over N_{1} are unions of $l-1$ different linear subspaces of $v^{-1}([\Phi]) \cong \mathbb{P}_{3 d-1}$ of codimension 2 . In particular the fibres are singular.

3.3 Main Result

Now we are able to prove Theorem 1.1.

Singularities

Notice that a generic fibre of a surjective morphism of smooth varieties must be smooth. Therefore, since a generic fibre of M_{0}^{\prime} over N is singular as demonstrated in 3.1, we conclude that M_{0}^{\prime} is singular. Therefore, M^{\prime} is a singular subvariety in M.

Dimension

Since, as shown in [11], the codimension of the complement of \mathbb{B}_{0} in M is at least 2, in order to demonstrate that $\operatorname{codim}_{M} M^{\prime}=2$, it is enough to show that $\operatorname{codim}_{\mathbb{B}_{0}} \mathbb{B}_{0} \cap$ $M^{\prime}=2$. Denote $\mathbb{B}_{c}=\left.\mathbb{B}\right|_{N_{c}}, \mathbb{B}_{1}=\left.\mathbb{B}\right|_{N_{1}}$. Since the complement of $N_{c} \sqcup N_{1}$ in N_{0} has codimension 2 , it is enough to show $\operatorname{codim}_{\mathbb{B}_{c} \cup \mathbb{B}_{1}} M^{\prime} \cap\left(\mathbb{B}_{c} \sqcup \mathbb{B}_{1}\right)=2$. The latter follows immediately since the codimension of fibres of M_{0}^{\prime} over $N_{c} \sqcup N_{1}$ is 2 . This concludes the proof.

Smooth Locus of M^{\prime}

Proposition 3.5 The smooth locus of M^{\prime} over N_{c} coincides with the locus of sheaves corresponding to $Z \subseteq C$ such that only one of the points in Z is a singular point of C.

Proof Notice that $H_{c} \cong N_{c}$ can be seen as an open subscheme in $S^{l} \mathbb{P}_{2}$. Taking the composition of a local section (in analytic or étale topology) of the quotient $\prod_{1}^{l} \mathbb{P}_{2} \rightarrow$ $S^{l} \mathbb{P}_{2}$ with the projection $\prod_{1}^{l} \mathbb{P}_{2} \rightarrow \mathbb{P}_{2}$ to the j-th factor, we get, locally around a given $Z_{0} \in H_{c}, l$ different local choices $N_{c} \cong H_{c} \supseteq U \xrightarrow{p_{j}} \mathbb{P}_{2}, j=1, \ldots, l$ of one point in $Z \in U \subseteq H_{c}$. Shrinking U if necessary, we can assume that $\mathbb{B} \rightarrow N_{c}$ is trivial over U. Then by 3.1 the subvariety $\left.S_{j} \subseteq \mathbb{B}\right|_{U}$ of those sheaves given by $Z \subseteq C$ that are singular at point $p_{j}(Z) \in \mathbb{P}_{2}$ is isomorphic to a product of U with a linear subspace of $\mathbb{P}_{3 d-1}$ of codimension 2, i.e., with $\mathbb{P}_{3 d-3}$. Therefore, S_{j} is smooth. Notice that $\left.M^{\prime} \cap \mathbb{B}\right|_{U}$ is isomorphic to the union of $S_{j}, j=1, \ldots, l$. Therefore $\bigcup_{j} S_{j} \backslash \bigcup_{j \neq i} S_{j} \cap S_{i}$ is smooth, which proves the required statement.

4 Modifying the Boundary by Line Bundles

4.1 Normal Spaces at $M^{\prime} \cap \mathbb{B}_{c}$

Let $[\mathcal{F}] \in \mathbb{B}_{c} \cap M^{\prime}$ be the isomorphism class of a singular sheaf represented by a curve C of degree d and a configuration of l points $Z \subseteq C, Z=\left\{\mathrm{pt}_{1}, \ldots, \mathrm{pt}_{l}\right\}$. Assume without loss of generality that $Z \cap \operatorname{Sing} C=\left\{\mathrm{pt}_{1}, \ldots, \mathrm{pt}_{r}\right\}:=Z^{\prime}, 0<r \leqslant l$.

Using, for every $j=1, \ldots, r$, the local choice of a point p_{j} and the morphism $M \rightarrow$ $\mathbb{P S}^{d} V^{*},[\mathcal{G}] \mapsto \operatorname{Supp} \mathcal{G}$, we obtain locally around $[\mathcal{F}]$ a morphism $\mathbb{B}_{c} \supseteq U_{[\mathcal{F}} \xrightarrow{\rho_{j}} C_{d}$ from a neighbourhood of $[\mathcal{F}]$ to the universal planar curve C_{d} of degree d, i.e., to the variety of pairs $\left(C^{\prime}, \mathrm{pt}^{\prime}\right)$, where pt^{\prime} is a point of a curve C^{\prime} of degree d. For a fixed $1 \leqslant j \leqslant r, \rho_{j}$ sends an isomorphism class of a sheaf given by a pair consisting of a curve C^{\prime} of degree d and a configuration $\left\{\mathrm{pt}_{1}^{\prime}, \ldots, \mathrm{pt}_{l}^{\prime}\right\} \subseteq C^{\prime}$ to the pair $\left(C^{\prime}, \mathrm{pt}_{j}^{\prime}\right)$.

This induces a linear map of the tangent spaces $\mathrm{T}_{[\mathcal{F}]} \mathbb{B}_{c} \rightarrow \mathrm{~T}_{\left(C, \mathrm{pt}_{j}\right)} C_{d}$. Let C_{d}^{\prime} denote the universal singular locus of C_{d}. Since ρ_{j} maps S_{j} to C_{d}^{\prime}, we also obtain the induced linear map on the normal spaces

$$
N_{[\mathcal{F}]}^{(j)}:=\mathrm{T}_{[\mathcal{F}]} \mathbb{B}_{c} / \mathrm{T}_{[\mathcal{F}]} S_{j} \xrightarrow{N_{[\mathcal{F}]}\left(\rho_{j}\right)} \mathrm{T}_{\left(C, \mathrm{pt}_{j}\right)} C_{d} / \mathrm{T}_{\left(C, \mathrm{pt}_{j}\right)} C_{d}^{\prime}=: N_{\left(C, \mathrm{pt}_{j}\right)} .
$$

Lemma 4.1 The linear map $N_{[\mathcal{F}]}^{(j)} \xrightarrow{N_{[\mathcal{F}]}\left(\rho_{j}\right)} N_{\left(C, \mathrm{pt}_{j}\right)}$ constructed above is an isomorphism of 2-dimensional vector spaces.

Proof Let $F=v^{-1}(v([\mathcal{F}]))$ be the fibre of $[\mathcal{F}]$. As already noticed, F can be seen as the space of curves of degree d through Z. For a fixed $j \in\{1, \ldots, r\}$ let F_{j}^{\prime} be the fibre of S_{j} over $v([\mathcal{F}])$, which can be seen as the subspace of F of those curves through Z singular at pt_{j}. Let $F_{\mathrm{pt}_{j}}$ be the space of curves of degree d through pt_{j} and let $F_{\mathrm{pt}_{j}}^{\prime}$ be its subspace of curves singular at pt_{j}.

Our analysis in 3.1 implies that ρ_{j} induces an isomorphism

$$
\mathrm{T}_{C} F / \mathrm{T}_{C} F_{j}^{\prime} \cong \mathrm{T}_{C} F_{\mathrm{pt}_{j}} / \mathrm{T}_{C} F_{\mathrm{pt}_{j}}^{\prime},
$$

which concludes the proof, because both S_{j} and C_{d}^{\prime} are locally trivial over N and \mathbb{P}_{2}, respectively, and hence $N_{[\mathcal{F}]}^{(j)} \cong \mathrm{T}_{C} F / \mathrm{T}_{C} F_{j}^{\prime}, N_{\left(C, \mathrm{pt}_{j}\right)} \cong \mathrm{T}_{C} F_{\mathrm{pt}_{j}} / \mathrm{T}_{C} F_{\mathrm{pt}_{j}}^{\prime}$.

4.2 R-bundles

Let \mathcal{U} denote the universal family on $M \times \mathbb{P}_{2}$. Consider a germ of a morphism γ of a smooth curve T to \mathbb{B}_{c} mapping $0 \in T$ to $\gamma(0)=[\mathcal{F}]$. Let \mathcal{F} be the pullback of \mathcal{U} along $\gamma \times \mathrm{id}_{\mathbb{P}_{2}}$.

If γ is not tangent to S_{j} at [$\left.\mathcal{F}\right]$, then \mathcal{F} represents [$\left.\mathcal{F}\right]$ as a flat 1-parameter degeneration of sheaves $\left[\mathcal{F}_{t}\right]=\gamma(t)$ non-singular at point $p_{j}(v \circ \gamma(t))$, where $\mathcal{F}_{t}=\left.\mathcal{F}\right|_{\{t\} \times \mathbb{P}_{2}}$. If γ is not tangent to S_{j} at [$\left.\mathcal{F}\right]$ for all $j=1, \ldots, r$, then \mathcal{F} is a degeneration of nonsingular sheaves to $\mathcal{F}=\mathcal{F}_{0}$.

Let $\widehat{T \times \mathbb{P}_{2}} \xrightarrow{\sigma} T \times \mathbb{P}_{2}$ be the blow-up $\mathrm{Bl}_{\{0\} \times Z^{\prime}}\left(T \times \mathbb{P}_{2}\right)$ and let $D_{1}=D_{1}\left(Z^{\prime}\right)$ be its exceptional divisor, which is a disjoint union of projective planes $D_{1}\left(p_{j}\right) \cong \mathbb{P}_{2}$, $j=1, \ldots, r$.

The fibre of the flat morphism $\widetilde{T \times \mathbb{P}_{2}} \xrightarrow{\sigma} T \times \mathbb{P}_{2} \xrightarrow{p r_{1}} T$ over 0 is a reduced surface $D\left(Z^{\prime}\right)=D\left(p_{1}, \ldots, p_{r}\right)$ obtained by blowing-up \mathbb{P}_{2} at $\left\{\mathrm{pt}_{1}, \ldots, \mathrm{pt}_{r}\right\}$ and attaching the surfaces $D_{1}\left(\mathrm{pt}_{j}\right) \cong \mathbb{P}_{2}, j=1, \ldots, r$, to $D_{0}\left(Z^{\prime}\right)=D_{0}\left(\mathrm{pt}_{1}, \ldots, \mathrm{pt}_{r}\right)=\mathrm{Bl}_{Z^{\prime}} \mathbb{P}_{2}$ along the exceptional lines L_{1}, \ldots, L_{r}.

Let \mathcal{E} be the sheaf on $\overline{T \times \mathbb{P}_{2}}$ obtained as the quotient of the pullback $\sigma^{*}(\mathcal{F})$ by the subsheaf $\mathscr{T} r_{\mathcal{J}_{D_{1}}}\left(\sigma^{*}(\mathcal{F})\right)$ generated by the sections annihilated by the ideal sheaf $\mathcal{J}_{D_{1}}$ of the exceptional divisor D_{1}.

Lemma 4.2 Assume that for all $j=1, \ldots, r, \gamma$ is not tangent to S_{j} at [F]. Then the sheaf \mathcal{E} is a flat family of 1 -dimensional sheaves. Its fibres $\mathcal{E}_{t}, t \neq 0$, are non-singular sheaves on \mathbb{P}_{2}, the fibre $\mathcal{E}=\mathcal{E}_{0}$ is a 1-dimensional non-singular sheaf on $D\left(Z^{\prime}\right)$.

Proof We shall show that our definition of \mathcal{E} locally coincides with the construction from [6].

Fix some local coordinates x_{i}, y_{i} at pt_{i}. Then in some neighbourhood U_{i} of pt_{i} the sheaf \mathcal{F} is just an ideal sheaf of pt_{i} on C and hence can be given as the cokernel of a morphism

$$
2 \mathcal{O}_{U_{i}} \xrightarrow{A} 2 \mathcal{O}_{U_{i}}, \quad A=\left(\begin{array}{cc}
x_{i} & y_{i} \\
a_{i} & b_{i}
\end{array}\right)
$$

for some polynomials a_{i}, b_{i} in x_{i}, y_{i}. As $\mathrm{pt}_{i} \in \operatorname{Sing} C$ for $i=1, \ldots, r, a_{i}$ and b_{i} do not have constant terms.

Let \mathcal{U}_{d} denote the universal family on $C_{d} \times \mathbb{P}_{2}$. Then for a fixed $j \in\{1, \ldots, r\}$, locally around the point $[\mathcal{F}] \times \mathrm{pt}_{j} \in \mathbb{B}_{c} \times \mathbb{P}_{2}, \mathcal{U}$ is isomorphic to the pullback of \mathcal{U}_{d} along $\rho_{j} \times \mathrm{id}_{\mathbb{P}_{2}}$. Then \mathcal{F} is isomorphic locally around $0 \times \mathrm{pt}_{j}$ to the pullback of \mathcal{U}_{d} along $\gamma_{j} \times \mathrm{id}_{\mathbb{P}_{2}}$, where $\gamma_{j}=\rho_{j} \circ \gamma$.

The latter means that the family \mathcal{F} is given around $0 \times \mathrm{pt}_{j}$ as a cokernel of the morphism

$$
\left.2 \mathcal{O}_{T \times U_{j}} \xrightarrow{\left(\begin{array}{l}
x_{j} \\
v_{j} \\
v_{j}
\end{array} w_{j}\right.}\right)+t \cdot B(t), ~ 2 \mathcal{O}_{T \times U_{j}}, \quad B(t)=\left(\begin{array}{cc}
b_{11}(t) & b_{12}(t) \\
b_{21}(t) & b_{22}(t)
\end{array}\right),
$$

where $b_{11}(t), b_{12}(t)$ take values in \mathbb{k} and $b_{21}(t), b_{22}(t)$ are polynomials of degree not bigger than d.

The blow-up ${\widehat{T \times \mathbb{P}_{2}}}_{2}$ over $0 \times \mathrm{pt}_{j} \in T \times \mathbb{P}_{2}$ is locally just the blow-up $\mathrm{Bl}_{0 \times \mathrm{pt}}^{j}{ } T \times U_{j}=$: $\widehat{T \times U}_{j}$. It can be seen as a subvariety in $T \times U_{j} \times \mathbb{P}_{2}$ given by the (2×2)-minors of the matrix $\left(\begin{array}{ccc}t & x_{j} & y_{j} \\ u_{0} & u_{1} & u_{2}\end{array}\right)$, where u_{0}, u_{1}, u_{2} are some homogeneous coordinates of the last factor \mathbb{P}_{2}. The canonical section s of $\mathcal{O}_{T \times \mathbb{P}_{2}}\left(D_{1}\right)$ is locally given by $t / u_{0}, x_{j} / u_{1}$, and y_{j} / u_{2}.

As in [6] one "divides" the pullback $\sigma^{*}(A+t B(t))$ by s and obtains a family \mathcal{E}^{\prime} of one-dimensional sheaves given by a locally free resolution

$$
0 \rightarrow 2 \mathcal{O}_{\overline{T \times U_{j}}}\left(D_{1}\right) \xrightarrow{\phi(A, B)} 2 \mathcal{O}_{\overline{T \times U_{j}}} \rightarrow \mathcal{E}^{\prime} \rightarrow 0 .
$$

We claim that this construction coincides with taking the quotient by the subsheaf annihilated by $\mathcal{J}_{D_{1}}$. This follows from a diagram chase on the following commutative
diagram with exact rows and columns.

More precisely, one shows that \mathcal{K} is exactly the subsheaf of $\sigma^{*} \mathcal{F}$ annihilated by s.
Now the flatness of \mathcal{E} and the local freeness of \mathcal{E} on its support follow from [6, Lemma 5.1 and its preceding discussion].

Remark 4.3 Notice that the fibre of $\sigma^{*} \mathcal{F}$ over $0 \in T$ is not a 1-dimensional sheaf. Its support contains D_{1}. The subsheaf $\mathscr{T o r}_{\mathcal{J}_{D_{1}}}\left(\sigma^{*}(\mathcal{F})\right)$ of $\sigma^{*}(\mathcal{F})$ is the maximal subsheaf supported completely in D_{1}.

Remark 4.4 The sheaf \mathcal{E}_{0} depends only on the derivative of γ at 0 , i.e., only on the induced map $\mathrm{T}_{0} T \rightarrow \mathrm{~T}_{[\mathcal{F}]} \mathbb{B}_{0}$ of tangent spaces.

Definition 4.5 The sheaf \mathcal{E}_{0} on $D\left(Z^{\prime}\right)$, as above, is called an R-bundle associated with the pair $Z \subseteq C, Z^{\prime}=Z \cap \operatorname{Sing} C$.

The following generalizes [6, Definition 5.5].
Definition 4.6 Two R-bundles \mathcal{E}_{1} and \mathcal{E}_{2} associated with $Z \subseteq C$ on $D\left(\mathrm{pt}_{1}, \ldots, \mathrm{pt}_{r}\right)$ are called equivalent if there exists an automorphism ϕ of $D\left(\mathrm{pt}_{1}, \ldots, \mathrm{pt}_{r}\right)$ that acts identically on the surface $D_{0}\left(\mathrm{pt}_{1}, \ldots, \mathrm{pt}_{r}\right)$ such that $\phi^{*}\left(\mathcal{E}_{1}\right) \cong \mathcal{E}_{2}$.

Theorem 4.7 Assume that the components F_{1}, \ldots, F_{r} intersect transversally at $[\mathcal{F}]$. Then the equivalence classes of R-bundles associated with $Z \subseteq C$ are in one-to-one correspondence with the points of the product of projective lines $\prod_{j=1}^{r} \mathbb{P} N_{[\mathcal{F}]}^{(j)}$.

Proof The classes of R-bundles around $D_{1}\left(\mathrm{pt}_{j}\right)$ are parameterized by $\mathbb{P} N_{\left(C, \mathrm{pt}_{j}\right)} \cong$ $\mathbb{P} N_{[\mathcal{F}]}^{(j)}$ by [6, Proposition 5.6] and Lemma 4.1. Since the components F_{1}, \ldots, F_{r} intersect transversally, the map $\mathrm{T}_{[\mathcal{F}]} \mathbb{B}_{c} \backslash \bigcup_{j=1}^{r} \mathrm{~T}_{[\mathcal{F}]} S_{j} \rightarrow \prod_{j=1}^{r} \mathbb{P} N_{[\mathcal{F}]}^{(j)}$ is surjective, which means that the class of an R-bundle around a given exceptional plane $D_{1}\left(\mathrm{pt}_{j}\right)$ is independent of the class of the R-bundle around other planes $D_{1}\left(\mathrm{pt}_{i}\right), i \neq j$. This concludes the proof.

Remark 4.8 The assumption of Theorem 4.7 is always satisfied at least for $r \leqslant 3$ by Remark 3.2. In particular, it is the case for $d=4$. Remark 3.2 also implies that the locus of $[\mathcal{F}] \in \mathbb{B}_{c}$ that do not satisfy the assumption on transversality lies at least in codimension 7.

Remark 4.9 All possible R-bundles can be produced simultaneously as fibres of a family of sheaves over (an open subset of) $\widetilde{M}:=\mathrm{Bl}_{M^{\prime}} M$. Indeed, pull back the universal family over M to a family $\boldsymbol{u}_{\widetilde{M}}$ over \widetilde{M}. Let

$$
\overline{\widetilde{M} \times \mathbb{P}_{2}} \rightarrow \tilde{M} \times \mathbb{P}_{2}
$$

be the blow-up along the subvariety in $\widetilde{M} \times \mathbb{P}_{2}$ where $\mathcal{U}_{\widetilde{M}}$ is singular, pull $\mathcal{U}_{\widetilde{M}}$ back and consider the quotient $\widetilde{\mathcal{U}}$ by the subsheaf annihilated by the ideal sheaf of the exceptional divisor of this blow-up.

Let $\mathbb{B}_{\text {gen }}$ denote the open locus of those $[\mathcal{F}] \in \mathbb{B}_{0}$ satisfying the conditions of Theorem 4.7. Then $\widetilde{\mathbb{B}}_{\text {gen }}:=\mathrm{Bl}_{M^{\prime} \cap \mathbb{B}_{\text {gen }}} \mathbb{B}_{\text {gen }}$ is smooth by [8, Theorem 1.2 and Theorem 1.3]. The fibre of the exceptional divisor over $[\mathcal{F}] \in \mathbb{B}_{\text {gen }}$ coincides with the product $\prod_{j=1}^{r} \mathbb{P} N_{[\mathcal{F}]}^{(j)}$. The restriction of $\widetilde{\mathcal{U}}$ to $\widetilde{\mathbb{B}}_{\text {gen }}$ is a flat family of 1-dimensional non-singular sheaves: non-singular $(d m-1)$-sheaves together with R-bundles associated with $Z \subseteq C, Z \cap$ Sing $C \neq \varnothing$.

This allows us to see the blow-up $\widetilde{\mathbb{B}}_{\text {gen }}$ as a process that substitutes the boundary $M^{\prime} \cap \mathbb{B}_{\text {gen }}$ by a divisor consisting of non-singular 1-dimensional sheaves, which generalizes the construction from [6].

4.3 Further Work

A more detailed discussion of the relation of the blow-up $\mathrm{Bl}_{M^{\prime}} M$ with modifying the boundary of M by line bundles should follow in a separate paper.

A On the Ideals of Points on Planar Curves

Let $R=\mathcal{O}_{C, p}$ be a local \mathbb{k}-algebra of a curve C at point $p \in C$. Let $I \subseteq R$ be an ideal of R. As a submodule of a free module, I is a torsion-free R-module. If R is regular, i.e., if p is a smooth point of C, then I is free. Therefore, the non-regularity of R is a necessary condition for the non-freeness of I.

A. 1 Ideals of Simple Points on a Curve

Let $\mathfrak{m}=\mathfrak{m}_{C, p}$ be the maximal ideal of R and let $\mathbb{k}_{p}=R / \mathfrak{m}$ be the local ring of the structure sheaf of the one point subscheme $\{p\} \subseteq C$. The following is a slight reformulation of the well-know fact about local 1-dimensional rings [1, Proposition 9.2].

Lemma A. 1 The maximal ideal \mathfrak{m} is a free R-module if and only if R is regular.

Proof If \mathfrak{m} is free, then \mathfrak{m} is a principal ideal and therefore R is regular. If R is regular, then \mathfrak{m} is principal and thus free, since R is a domain in this case.

A. 2 Ideals of Fat Curvilinear Points on a Planar Curve

Assume that C is a planar curve locally defined as the zero locus of $f \in \mathbb{k}[x, y]$. Assume $p=0$, consider a fat curvilinear point Z at p given by the ideal

$$
\left(x-h(y), y^{n}\right) \subseteq \mathbb{k}[x, y], \quad h(y \in \mathbb{k}[y]), h(0)=0, \operatorname{deg} h<n,
$$

and assume that Z is a subscheme of C. Let $I \subseteq R$ be its ideal.
Since we assumed $Z \subseteq C$, one can write

$$
f=\operatorname{det}\left(\begin{array}{cc}
x-h(y) & y^{n} \\
u(y) & v(x, y)
\end{array}\right), \quad u(y) \in \mathbb{k}[y], v(x, y) \in \mathbb{k}[x, y] .
$$

Lemma A. 2 Keeping the notations as above, let R be a non-regular ring, i.e., let p be a singular point of C. Then I is non-free if and only if $u(0)=0$.

If I is free, then it is generated by $x-h(y)$ and there is an isomorphism

$$
R \cong I, \quad r \mapsto r \cdot(x-h(y)) .
$$

Proof First we will show that I is generated by one element if and only if $u(0) \neq 0$. Since $R=\mathbb{k}[x, y]_{(x, y)} /(f)$, it is enough to answer the question when the ideal

$$
\left(x-h(y), y^{n}, f\right) \subseteq \mathbb{k}[x, y]_{(x, y)}
$$

equals (ξ, f) for some $\xi \in \mathbb{k}[x, y]_{(x, y)}$.
$" \Leftarrow ":$ If $u(0) \neq 0$, then $\left(x-h(y), y^{n}, f\right)=(x-h(y), f)$.
" \Rightarrow ": Let $\left(x-h(y), y^{n}, f\right)=(\xi, f)$. Without loss of generality we can assume that

$$
\xi \in\left(x-h(y), y^{n}\right) \quad \text { and } \quad \xi=a \cdot(x-h(y))+b \cdot y^{n}
$$

for some $a, b \in \mathbb{k}[x, y]_{(x, y) \text {. In }}$. order to show that $u(0) \neq 0$, we suppose that the contrary holds true, i.e., $u(0)=0$.

Since one can embed $\mathbb{k}[x, y]_{(x, y)}$ into the ring of formal power series $\mathbb{k}[[x, y]$, we are going to consider the elements of $\mathbb{k}[x, y]_{(x, y)}$ as power series in x, y.

Since $x-h(y) \in(\xi, f)$, then $x-h(y)=c \cdot \xi+d \cdot f=c a(x-h(y))+c b y^{n}+d f$. As the orders of $c b y^{n}$ and $d f$ are at least 2 , we conclude that a and c are units. We can assume without loss of generality that $\xi=x-h(y)+\eta(x, y)$, ord $\eta(h(y), y) \geqslant n$. As $y^{n} \in(\xi, f)$, it must hold $y^{n}=C \xi+D f$ for some C and D. Since by our assumption $u(0)=0$, evaluating this equality at $x=h(y)$, we conclude that

$$
y^{n}=C(h(y), y) \cdot \eta(h(y), y)+D(h(y), y) \cdot\left(-u(y) \cdot y^{n}\right) .
$$

Therefore, C must be a unit and ord $\xi(h(y), y)=\operatorname{ord} \eta(h(y), y)=n$.
Substituting x by $h(y)$ in the equality $x-h(y)=c \cdot \xi+d \cdot f$, we get

$$
0=c(h(y), y) \cdot \eta(h(y), y)+d(h(y), y) \cdot\left(-u(y) \cdot y^{n}\right) .
$$

Since c is a unit, it contains a non-zero constant term, and hence the product

$$
c(h(y), y) \cdot \eta(h(y), y)
$$

has order n. On the other hand, since $u(0)=0$ by our assumption, the order of $d(h(y), y) \cdot u(y) y^{n}$ is at least $n+1$. We obtain a contradiction, which shows that our assumption was wrong.

Notice that if I is free, then it must be one-generated. On the other hand, we see that if I is one-generated, then it is generated by $x-h(y)$. In this case $u(0) \neq 0$ and therefore f is not divisible by $x-h(y)$. Thus $x-h(y)$ is not a zero divisor in R and there is an isomorphism $R \cong I, r \mapsto r(x-h(y))$. The latter means that I is one-generated if and only if it is free, which concludes the proof.
Acknowledgements The authors wish to thank an anonymous referee for helpful comments, improvements, and suggestions.

References

[1] M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra. Addison-Wesley, Reading, MA, 1969.
[2] J.-M. Drezet, Fibrés exceptionnels et variétés de modules de faisceaux semi-stables sur $\mathbb{P}_{2}(\mathbb{C})$. J. Reine Angew. Math. 380(1987), 14-58.
[3] $\frac{\text { 57-139 }}{}$, Variétés de modules alternatives. Ann. Inst. Fourier (Grenoble) 49(1999), no. 1, v-vi, ix, 57-139.
[4] G. Ellingsrud and S. A. Strømme, On the Chow ring of a geometric quotient. Ann. of Math. (2) 130(1989), 159-187. http://dx.doi.org/10.2307/1971479
[5] O. Iena, On the singular sheaves in the fine Simpson moduli spaces of 1-dimensional sheaves supported on plane quartics. arxiv:1305.2400v2 [math.AG]
[6] , Universal plane curve and moduli spaces of 1-dimensional coherent sheaves. Comm. Algebra 43(2015), no. 2, 812-828. http://dx.doi.org/10.1080/00927872.2013.849265
[7] J. Le Potier, Faisceaux semi-stables de dimension 1 sur le plan projectif. Rev. Roumaine Math. Pures Appl. 38(1993), no. 7-8, 635-678.
[8] L. Li, Wonderful compactification of an arrangement of subvarieties. Mich. Math. J. 58(2009), no. 2, 535-563. http://dx.doi.org/10.1307/mmj/1250169076
[9] M. Maican, On two notions of semistability. Pacific J. Math. 234(2008), no. 1, 69-135. http://dx.doi.org/10.2140/pjm.2008.234.69
[10] C. T. Simpson, Moduli of representations of the fundamental group of a smooth projective variety. I. Inst. Hautes Études Sci. Publ. Math. (1994), no. 79, 47-129, 1994.
[11] Y. Yuan, Moduli spaces of semistable sheaves of dimension 1 on \mathbb{P}^{2}. Pure Appl. Math. Q. 10(2014), no. 4, 723-766. http://dx.doi.org/10.4310/PAMQ.2014.v10.n4.a5
University of Luxembourg, Campus Kirchberg, Mathematics Research Unit, 6, rue Richard Coudenhove-
Kalergi, L-1359 Luxembourg City, Grand Duchy of Luxembourg
e-mail: oleksandr.iena@uni.lu alain.leytem@uni.lu

[^0]: Received by the editors May 26, 2016; revised August 3, 2016.
 Published electronically September 27, 2016.
 AMS subject classification: 14D20.
 Keywords: Simpson moduli spaces, coherent sheaves, vector bundles on curves, singular sheaves.

