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On the Singular Sheaves in the Fine
Simpson Moduli Spaces of
1-dimensional Sheaves

Oleksandr Iena and Alain Leytem

Abstract. In the Simpson moduli space M of semi-stable sheaves with Hilbert polynomial dm − 1
on a projective plane we study the closed subvariety M′ of sheaves that are not locally free on their
support. We show that for d ⩾ 4, it is a singular subvariety of codimension 2 in M. _e blow up of
M along M′ is interpreted as a (partial) modiûcation of M ∖M′ by line bundles (on support).

1 Introduction

Let k be an algebraically closed ûeld of characteristic zero, letV be a vector space over
k of dimension 3, and let P2 = PV be the corresponding projective plane. Consider
a linear polynomial with integer coeõcients P(m) = dm + c ∈ Z[m], d ∈ Z>0, c ∈ Z.
Let M ∶= MP(P2) be the Simpson coarsemoduli space [10] of semi-stable sheaves on
P2 with Hilbert polynomial P. As shown in [7], M is an irreducible locally factorial
variety of dimension d2 + 1, smooth if gcd(d , c) = 1.

Singular Sheaves

_e sheaves from M are torsion sheaves onP2; they are supported on curves of degree
d. Restricted to their (Fitting) support,most of the sheaves in M are line bundleswith
Euler–Poincaré characteristic c. _e ûbres of the morphism M → PSdV∗, [F] ↦
SuppF that sends a class of a sheaf to its support are Jacobians over smooth curves.
Over singular curves the ûbres can be seen as compactiûed Jacobians. Sheaves that are
line bundles on their support constitute an open subvarietyMB ofM. Its complement
M′, the closed subvariety of sheaves that are not locally free on their support, is in
general non-empty. _is way one can consider M as a compactiûcation of MB . We
call the sheaves from the boundary M′ = M ∖MB singular.

_e boundary M′ does not have the minimal codimension in general. Loosely
speaking, one glues together too many diòerent directions at inûnity. For example,
for c ∈ Z with gcd(3, c) = 1, all moduli spaces M3m+c are isomorphic to the universal
plane cubic curve andM′

3m+c is a smooth subvariety of codimension 2 isomorphic to
the universal singular locus of a cubic curve [6].
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The Main Result

As demonstrated in [5], for P(m) = 4m+cwith gcd(4, c) = 1, the subvarietyM′ is sin-
gular of codimension 2. _emain result of this paper is the following generalization
of [5].

_eorem 1.1 For an integer d ⩾ 4, let M = Mdm−1(P2) be the Simpson moduli space
of (semi-)stable sheaves on P2 with Hilbert polynomial dm − 1. Let M′ ⊆ M be the
subvariety of singular sheaves. _en M′ is singular of codimension 2.

Using our understanding of M′ and the construction from [6], we obtain, as a
consequence,_eorem 4.7 which allows interpreting the blow up ofM along M′ as a
modiûcation of the boundary M′ by a divisor consisting generically of line bundles.

Structure of the Paper

In Section 2we recall the results from [9] and identify the open subvarietyM0 in M of
sheaveswithout global sectionswith an open subvariety of a projective bundleB over
a variety of Kronecker modules N . In Section 3, using a convenient characterization
of free ideals of fat curvilinear points on planar curves from Appendix A, we show
that a generic ûbre of M′

0 = M0 ∩ M′ over N is a union of projective subspaces of
codimension 2 in the ûbre of B. _us it is singular of codimension 2, which allows us
to prove themain result. In Section 4 we brie�y discuss how our analysis can be used
to modify the boundary M′ by line bundles (on support).

Some Notations and Conventions

Dealing with homomorphisms between direct sums of line bundles and identifying
them with matrices, we consider thematrices acting on elements from the right, i.e.,
the composition X AÐ→Y BÐ→Z is given by the matrix A ⋅ B. In particular, a section of a
direct sum of line bundles E1 ⊕ ⋅ ⋅ ⋅ ⊕ Em is identiûed with the row-vector of sections
of Ei , i = 1, . . . ,m.

2 Basic Constructions

2.1 Kronecker Modules

Let V be the aõne space of Kronecker modules (n − 1)OP2(−1)
ΦÐ→ nOP2 . _ere is a

natural group action of G = (GLn−1(k) ×GLn(k))/k∗ on V. Since gcd(n − 1, n) = 1,
all semistable points of this action are stable and G acts freely on the open subset of
stable points Vs . _en Φ ∈ Vs if and only if Φ does not lie in the same orbit with a
Kroneckermodulewith a zero block of size j×(n− j), 1 ⩽ j ⩽ n−1 [2, Proposition 15],
[4, 6.2]. In particular,Kroneckermoduleswith linearly independentmaximal minors
are stable. _ere exists a geometric quotient N = N(3; n − 1, n) = Vs/G, which is a
smooth projective variety of dimension (n − 1)n. For more details, consult [4, §6]
and [2, §III].
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_e cokernel of a stableKroneckermoduleΦ ∈ Vs is an ideal of a zero-dimensional
scheme Z of length (n − 1)n/2 provided that themaximal minors of Φ are coprime.
In this case the maximal minors d0 , . . . , dn−1 are linearly independent and there is a
resolution

(2.1) 0→ (n − 1)OP2(−n)
ΦÐ→ nOP2(−n + 1)

⎛
⎝
d0⋮
dn−1

⎞
⎠

ÐÐÐÐ→ OP2 → OZ → 0.

Moreover, Z does not lie on a curve of degree n−2. LetV0 denote the open subvariety
of Φ ∈ Vs of Kronecker modules with coprime maximal minors. Let N0 ⊆ N be the
corresponding open subvariety in the quotient space.

_is way one obtains a morphism from N0 ⊆ N to the Hilbert scheme of zero-
dimensional subschemes of P2 of length l = (n − 1)n/2 that sends a class of Φ ∈
Vs to the zero scheme of its maximal minors. Since every zero-dimensional scheme
of length l that does not lie on a curve of degree n − 2 has a minimal resolution of
type (2.1), this gives an isomorphism of N0 and the open subvariety H0 ⊆ H = P[l]

2
consisting of Z that do not lie on a curve of degree n− 2. _e complement of H0 is an
irreducible hypersurface [3, p. 119].

2.2 Projective Bundles Over N

Let U1 = (n − 1)Γ(P2 ,OP2(1)) and let U2 = nΓ(P2 ,OP2(2)). Consider the trivial
vector bundlesV×U1 andV×U2 overV and the following morphism between them:
V ×U1

FÐ→V ×U2, (Φ, L)↦ (Φ, L ⋅Φ).

Lemma 2.1 _emorphism F is injective over Vs .

Proof LetΦ ∈ Vs and assume L⋅Φ = 0 for somenon-zero 0 /= L = (l1 , . . . , ln−1) ∈ U1.
Since l i ∈ Γ(P2 ,OP2(1)), the dimension of the vector space generated by {l i}i is at
most 3. So for some B ∈ GLn−1(k) we get L ⋅ B = L′ = (l ′1 , l ′2 , l ′3 , 0, . . . , 0) such that
the ûrst non-zero entries are linearly independent. _en since Φ is semistable if and
only if B−1Φ is semistable and since LΦ = (LB) ⋅(B−1Φ) = 0,wemay assumewithout
loss of generality that L = (l1 , l2 , l3 , 0, . . . , 0) and the ûrst non-zero entries of L are
linearly independent.

If l1 /= 0, l2 = l3 = 0, then LΦ = 0 implies that the ûrst row of Φ is zero, which
contradicts the stability of Φ.

If l1 /= 0, l2 /= 0, l3 = 0, then the syzygymodule of (l1 , l2)T is generated by (l2 ,−l1).
So the columns of the ûrst two rows of Φ are scalar multiples of ( l2

−l1 ) and hence,
a�er performing elementary transformations on the columns ofΦ,Φ is equivalent to
amatrix with a zero block of size 2 × (n − 1), which contradicts the stability of Φ.

If l i /= 0, i = 1, 2, 3, then the syzygymodule of (l1 , l2 , l3)T is generated by three lin-
early independent generators (0, l3 ,−l2), (−l3 , 0, l1), and (l2 ,−l1 , 0), which implies
thatΦ is equivalent to amatrixwith a zero block of size 3×(n−3), and this contradicts
the stability of Φ.

_erefore, Vs ×U1
FÐ→ Vs ×U2 is a vector subbundle, and hence the cokernel of F

is a vector bundle of rank 6 ⋅ n − 3 ⋅ (n − 1) = 3n + 3 = 3d, denoted by E.
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_e group action ofGLn−1(k)×GLn(k) onVs×U1 andVs×U2 induces a group ac-
tion ofGLn−1(k)×GLn(k) on E, andhence an action ofG = (GLn−1(k)×GLn(k))/k∗
on PE. Finally, since the stabilizer of Φ ∈ Vs under the action of G is trivial, it acts
trivially on the ûbres of PE, and thus PE descends to a projective P3n+2-bundle

B νÐ→ N = N(3; n − 1, n) = Vs/G .

Let W be the aõne variety ofmorphisms

(2.2) OP2(−3)⊕ (n − 1)OP2(−2)
AÐ→ nOP2(−1).

Notice that W can be identiûed with V ×U2 by the isomorphism

V ×U2 →W, (Φ,Q)↦ (QΦ) .

_e group G′ = (Aut(OP2(−3)⊕ (n − 1)OP2(−2))×Aut(nOP2(−1))/k∗ acts onW ≅
V×U2. As shown in [9, Proposition 7.7], B is a geometric quotient ofVs ×U2 ∖ Im F
with respect to G′.

2.3 Moduli Space Mdm−1(P2)

Let d ⩾ 4, d = n + 1, be an integer. Let M = Mdm−1(P2) be the Simpson moduli space
of (semi-)stable sheaves on P2 with Hilbert polynomial dm − 1. In [9] it was shown
that M contains an open dense subvariety M0 of isomorphism classes of sheaves F
with h0(F) = 0.

2.3.1 Sheaves in M0

By [9, Claim 4.2] the sheaves in M without global sections are exactly the cokernels
of the injectivemorphisms (2.2) with A = ( Q

Φ ), detA /= 0, Φ ∈ Vs . _is allows one to
describe M0 as an open subvariety in B.

Let W0 be the open subvariety of injective morphisms in W parameterizing the
points from M0. Since the determinant of a matrix from the image of F is zero, one
sees that W0 ⊆ Vs ×U2 ∖ Im F, which allows one to conclude that M0 =W0/G′ is an
open subvariety of B.

Let B0 = B∣N0 be the restriction of B to the open subscheme N0 ⊆ N . From the
exact sequence (2.1) it follows that a matrix A = ( Q

Φ ) ∈ W, Φ ∈ V0, has zero de-
terminant if and only if A lies in the image of F. _erefore, the ûbres of B over N0
are contained in M0 and thus B0 ⊆ M0. As shown in [11], the codimension of the
complement of B0 in M is at least 2.

2.3.2 Sheaves in B0

Sheaves in B0 are exactly the twisted ideal sheaves IZ⊆C(d − 3) of zero-dimensional
schemes Z of length l lying on a curve C of degree d such that Z is not contained in a
curve of degree d − 3. In other words the sheaves F in B0 are given by the short exact
sequences 0→ F → OC(d − 3)→ OZ → 0 with Z ⊆ C as described.
A ûbre over a point [Φ] from N0 can be seen as the space of plane curves of degree

d through the corresponding subscheme of l points. _e identiûcation is given by
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themap ν−1([Φ]) ∋ [A] ↦ ⟨detA⟩ ∈ P(SdV∗). Indeed, if two matrices over [Φ] are
equivalent, then their determinants are equal up to a non-zero constant multiple, and
hence the map above is well deûned. On the other hand, if two matrices A = ( Q

Φ )
and A′ = ( Q′

Φ ) have equal determinants, then Q −Q′ lies in the syzygymodule of the
maximal minors of Φ and hence (cf. (2.1)) is a linear combination of the rows of Φ,
which means that A and A′ are equivalent.

3 Singular Sheaves

Let M′ be the subvariety of singular sheaves in M and let M′
0 = M′ ∩ M0. Let us

consider the restriction of ν to M′
0 and describe some of its ûbres.

3.1 Generic Fibres

Let Nc be the open subset of N0 that corresponds to l diòerent points. Under the
isomorphism N0 ≅ H0, it corresponds to the open subvariety Hc ⊆ H0 of the conûg-
urations of l points on P2 that do not lie on a curve of degree d − 3.

Let [Φ] ∈ Nc and let Z = {pt1 , . . . , ptl} be the corresponding zero-dimensional
scheme. Let m1 , . . . ,m l be the monomials of degree d − 3 in variables x0 , x1 , x2 or-
dered, say, in lexicographical order:

m1 = xd−3
0 , m2 = xd−4

0 x1 , m3 = xd−4
0 x2 , . . . .

Since Z does not lie on a curve of degree d − 3, thematrix

⎛
⎜
⎝

m1(pt1) . . . m l(pt1)
⋮ ⋱ ⋮

m1(ptl) . . . m l(ptl)

⎞
⎟
⎠

has full rank. Assume without loss of generality that pt1 = ⟨1, 0, 0⟩. _en thematrix is

⎛
⎜⎜⎜
⎝

1 0 . . . 0
m1(pt2) m2(pt2) . . . m l(pt2)

⋮ ⋮ ⋱ ⋮
m1(ptl) m2(ptl) . . . m l(ptl)

⎞
⎟⎟⎟
⎠

and therefore thematrix

⎛
⎜
⎝

m1(pt2) m2(pt2) . . . m l(pt2)
⋮ ⋮ ⋱ ⋮

m1(ptl) m2(ptl) . . . m l(ptl)

⎞
⎟
⎠

has full rank and thus there exists a homogeneous polynomial q of degree d−3 vanish-
ing at the points pt2 , . . . , ptl ,with the coeõcient 1 in front of themonomialm1 = xd−3

0 .
_erefore, the forms x2

0x1q and x2
0x2q vanish at Z. Notice that x2

0x1q has the mono-
mial xd−1

0 x1 but does not have xd−1
0 x2, and x2

0x2q has xd−1
0 x2 but does not have xd−1

0 x1.
Let E be a sheaf over [Φ]. By Lemma A.1 it is singular at pt1 if and only if pt1 is

a singular point of the support C of E. _e latter holds if and only if in the homoge-
neous polynomial of degree d deûning C, the coeõcients of the monomials xd−1

0 x1
and xd−1

0 x2 vanish. _erefore, taking into account the considerations above, sheaves
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over [Φ] singular at pt1 constitute a projective subspace of codimension 2 in the û-
bre F ∶= ν−1([Φ]) ≅ P3d−1. Since our argument can be repeated for each point pti ,
i = 1, . . . , l , we conclude that the sheaves over [Φ] singular at pti constitute a projec-
tive subspace Fi of codimension 2 in the ûbre ν−1([Φ]) ≅ P3d−1.

Now let us clarify how the linear subspaces in the ûbre corresponding to diòerent
points pti intersect with each other. First of all notice that Z must contain a triple of
non-collinear points because otherwise Z must lie on a line. _erefore, in addition
to the assumption pt1 = ⟨1, 0, 0⟩, we can assume without loss of generality that pt2 =
⟨0, 1, 0⟩, pt3 = ⟨0, 0, 1⟩. _en the conditions for being singular at these three diòerent
points read as the absence of the following monomials in the equation of C:

xd−1
0 x1 , xd−1

0 x2 for the point pt1;

xd−1
1 x0 , xd−1

1 x2 for the point pt2;

xd−1
2 x0 , xd−1

2 x1 for the point pt3 .

(3.1)

_ese conditions are clearly independent of each other. Moreover, these conditions
are independent from the conditions imposed on the curves of degree d by the re-
quirement Z ⊆ C. _is is the case since the forms x2

0x1q and x2
0x2q constructed above

clearly do not have monomials xd−1
1 x0, xd−1

1 x2 and xd−1
2 x0, xd−1

2 x1. _is produces a
way to construct the curves through Z with only one of themonomials from (3.1).

We conclude that for every pair of diòerent indices codimF Fi ∩ F j = 4. Moreover,
for every triple of diòerent indices i , j, ν corresponding to three non-collinear points
pti , pt j , ptν from Z, we have codimF Fi ∩ F j ∩ Fν = 6. Finally we obtain the following.

Lemma 3.1 _e ûbres of M′
0 over Nc are unions of l diòerent linear subspaces of

ν−1([Φ]) ≅ P3d−1 of codimension 2 such that each pair intersects in codimension 4 and
each triple corresponding to three non-collinear points intersects in codimension 6. In
particular the ûbres are singular.

Remark 3.2 One can show that codimF Fi ∩ F j ∩ Fν = 6 for every triple of diòerent
indices i , j, ν corresponding to three diòerent points pti , pt j , ptν from Z.

Remark 3.3 In general it is not true that Fi intersect transversally. For example, for
d = 6 and Z = {pt1 , . . . , pt10} with

pt1 = ⟨1, 0, 0⟩, pt2 = ⟨0, 1, 0⟩, pt3 = ⟨0, 0, 1⟩, pt4 = ⟨0, 1, 1⟩,
pt5 = ⟨0, 1,−1⟩, pt6 = ⟨1,−2, 0⟩, pt7 = ⟨1, 2,−1⟩, pt8 = ⟨1, 1,−2⟩,
pt9 = ⟨1,−1, 1⟩, pt10 = ⟨1, 1,−1⟩,

we have codimF F1 ∩ F2 ∩ F3 ∩ F4 = 8, but codimF F1 ∩ F2 ∩ F3 ∩ F4 ∩ F5 = 9.

3.2 Fibres Over N1

Let N1 be the open subset of N0 ∖Nc that corresponds to l − 2 diòerent simple points
and one double point. Let [Φ] ∈ N1 and let Z = {pt1} ∪ {pt2 , . . . , ptl−1} be the cor-
responding zero-dimensional scheme, where pt1 is a double point. Without loss of
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generality, applying if necessary a coordinate change, wemay assume that pt1 is given
by the ideal (x2

1 , x2).

3.2.1 Sheaves Singular at the Double Point

Since Z does not lie on a curve of degree d − 3, thematrix

⎛
⎜⎜⎜⎜⎜
⎝

1 0 0 . . . 0
0 1 0 . . . 0

m1(pt2) m2(pt2) m3(pt2) . . . m l(pt2)
⋮ ⋮ ⋮ ⋱ ⋮

m1(ptl−1) m2(ptl−1) m3(ptl−1) . . . m l(ptl−1)

⎞
⎟⎟⎟⎟⎟
⎠

has full rank. _erefore, there exist homogeneous polynomials q and q′ of degree d−3
vanishing at the points pt2 , . . . , ptl−1 such that q does not havemonomial xd−4

0 x1 but
has term xd−3

0 , and q′ does not havemonomial xd−3
0 but has term xd−4

0 x1. _is implies
that the forms x2

0x2q and x2
0x1q′ vanish at Z.

Let E be a sheaf over [Φ]. Let C be its support. By Lemma A.2 one concludes that
E is singular at pt1 if and only if in the homogeneous polynomial of degree d deûning
C, the coeõcients of the monomials xd−2

0 x2
1 and xd−1

0 x2 vanish. _erefore, taking
into account the considerations above, sheaves over [Φ] singular at pt1 constitute a
projective subspace of codimension 2 in the ûbre ν−1([Φ]) ≅ P3d−1.

3.2.2 Sheaves Singular at Simple Points

Assume in addition that pt2 = ⟨0, 0, 1⟩. We can still do this without loss of generality
because Z cannot lie on a line. _en thematrix above is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 . . . 0
0 1 0 . . . 0
0 0 0 . . . 1

m1(pt3) m2(pt3) m3(pt3) . . . m l(pt3)
⋮ ⋮ ⋮ ⋱ ⋮

m1(ptl−1) m2(ptl−1) m3(ptl−1) . . . m l(ptl−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

_en, as in 3.1, we obtain a homogeneous polynomial q′′ vanishing at Z ∖ {pt2} with
coeõcient 1 in front of the monomial m l = xd−3

2 . _en the polynomials x1x2
2q′′ and

x0x2
2q′′ vanish at Z. _e former has x1xd−1

2 but doesnot have x0xd−1
2 , and the latter has

x0xd−1
2 but does not have x1xd−1

2 . _is means that the sheaves over [Φ] singular at pt2
constitute a projective subspace of codimension 2 in the ûbre ν−1([Φ]) ≅ P3d−1. _is
also shows that the sheaves over [Φ] singular at pt j such that pt1 and pt j do not lie on
a line constitute a projective subspace of codimension 2 in the ûbre ν−1([Φ]) ≅ P3d−1.
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Suppose there exists a point pt j such that pt1 and pt j lie on a line. Without loss
of generality we can assume that in this case pt j = ⟨0, 1, 0⟩. _en we can construct
a homogeneous polynomial q′′′ of degree d − 3 through Z ∖ {pt j} with coeõcient 1
in front of the monomial xd−3

1 . _en the polynomials x0x2
1 q′′′ and x2

1 x2q′′′ vanish
at Z. _e former has x0xd−1

1 but does not have xd−1
1 x2, and the latter has xd−1

1 x2 but
does not have x0xd−1

1 . _is means that the sheaves over [Φ] singular at pt j such that
pt1 and pt j lie on a line constitute a projective subspace of codimension 2 in the ûbre
ν−1([Φ]) ≅ P3d−1. _is concludes the proof of the following lemma.

Lemma 3.4 _e ûbres of M′
0 over N1 are unions of l − 1 diòerent linear subspaces of

ν−1([Φ]) ≅ P3d−1 of codimension 2. In particular the ûbres are singular.

3.3 Main Result

Now we are able to prove_eorem 1.1.

Singularities

Notice that a generic ûbre of a surjective morphism of smooth varieties must be
smooth. _erefore, since a generic ûbre of M′

0 over N is singular as demonstrated
in 3.1, we conclude that M′

0 is singular. _erefore, M′ is a singular subvariety in M.

Dimension

Since, as shown in [11], the codimension of the complement of B0 in M is at least 2,
in order to demonstrate that codimM M′ = 2, it is enough to show that codimB0 B0 ∩
M′ = 2. Denote Bc = B∣Nc , B1 = B∣N1 . Since the complement of Nc ⊔ N1 in N0 has
codimension 2, it is enough to show codimBc⊔B1 M′∩(Bc ⊔B1) = 2. _e latter follows
immediately since the codimension of ûbres of M′

0 over Nc ⊔ N1 is 2. _is concludes
the proof.

Smooth Locus of M′

Proposition 3.5 _e smooth locus of M′ over Nc coincides with the locus of sheaves
corresponding to Z ⊆ C such that only one of the points in Z is a singular point of C.

Proof Notice that Hc ≅ Nc can be seen as an open subscheme in S lP2. Taking the
composition of a local section (in analytic or étale topology) of the quotient∏l

1 P2 →
S lP2 with the projection∏l

1 P2 → P2 to the j-th factor, we get, locally around a given
Z0 ∈ Hc , l diòerent local choices Nc ≅ Hc ⊇ U

p jÐ→P2, j = 1, . . . , l of one point in
Z ∈ U ⊆ Hc . Shrinking U if necessary, we can assume that B → Nc is trivial over U .
_en by 3.1 the subvariety S j ⊆ B∣U of those sheaves given by Z ⊆ C that are singular
at point p j(Z) ∈ P2 is isomorphic to a product of U with a linear subspace of P3d−1
of codimension 2, i.e., with P3d−3. _erefore, S j is smooth. Notice that M′ ∩ B∣U is
isomorphic to the union of S j , j = 1, . . . , l . _erefore, ⋃ j S j ∖⋃ j/=i S j ∩ S i is smooth,
which proves the required statement.
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4 Modifying the Boundary by Line Bundles

4.1 Normal Spaces at M′ ∩Bc

Let [F] ∈ Bc ∩M′ be the isomorphism class of a singular sheaf represented by a curve
C of degree d and a conûguration of l points Z ⊆ C, Z = {pt1 , . . . , ptl}. Assume
without loss of generality that Z ∩ SingC = {pt1 , . . . , ptr} ∶= Z′, 0 < r ⩽ l .

Using, for every j = 1, . . . , r, the local choice of a point p j and themorphism M →
PSdV∗, [G] ↦ SuppG, we obtain locally around [F] a morphism Bc ⊇ U[F]

ρ jÐ→Cd
from a neighbourhood of [F] to the universal planar curve Cd of degree d, i.e., to the
variety of pairs (C′ , pt′), where pt′ is a point of a curve C′ of degree d. For a ûxed
1 ⩽ j ⩽ r, ρ j sends an isomorphism class of a sheaf given by a pair consisting of a curve
C′ of degree d and a conûguration {pt′1 , . . . , pt′l} ⊆ C′ to the pair (C′ , pt′j).

_is induces a linear map of the tangent spaces T[F]Bc → T(C ,pt j) Cd . Let C′d
denote the universal singular locus of Cd . Since ρ j maps S j to C′d , we also obtain the
induced linear map on the normal spaces

N( j)
[F] ∶= T[F]Bc/T[F] S j

N[F](ρ j)ÐÐÐÐ→ T(C ,pt j) Cd/T(C ,pt j) C
′
d =∶ N(C ,pt j) .

Lemma 4.1 _e linear map N( j)
[F]

N[F](ρ j)ÐÐÐÐ→ N(C ,pt j) constructed above is an isomor-
phism of 2-dimensional vector spaces.

Proof Let F = ν−1(ν([F])) be the ûbre of [F]. As already noticed, F can be seen as
the space of curves of degree d through Z. For a ûxed j ∈ {1, . . . , r} let F′j be the ûbre
of S j over ν([F]), which can be seen as the subspace of F of those curves through Z
singular at pt j . Let Fpt j be the space of curves of degree d through pt j and let F′pt j be
its subspace of curves singular at pt j .

Our analysis in 3.1 implies that ρ j induces an isomorphism

TC F/TC F′j ≅ TC Fpt j/TC F
′
pt j
,

which concludes the proof, because both S j and C′d are locally trivial over N and P2,
respectively, and hence N( j)

[F] ≅ TC F/TC F′j , N(C ,pt j) ≅ TC Fpt j/TC F
′
pt j

.

4.2 R-bundles

Let U denote the universal family on M × P2. Consider a germ of amorphism γ of a
smooth curve T toBc mapping 0 ∈ T to γ(0) = [F]. LetF be the pullback ofU along
γ × idP2 .

If γ is not tangent to S j at [F], thenF represents [F] as a �at 1-parameter degener-
ation of sheaves [Ft] = γ(t) non-singular at point p j(ν ○ γ(t)), whereFt = F∣{t}×P2 .
If γ is not tangent to S j at [F] for all j = 1, . . . , r, then F is a degeneration of non-
singular sheaves to F = F0.

Let T̃ × P2
σÐ→ T × P2 be the blow-up Bl{0}×Z′(T × P2) and let D1 = D1(Z′) be

its exceptional divisor, which is a disjoint union of projective planes D1(p j) ≅ P2,
j = 1, . . . , r.
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_e ûbre of the �at morphism T̃ × P2
σÐ→ T ×P2

pr1Ð→ T over 0 is a reduced surface
D(Z′) = D(p1 , . . . , pr) obtained by blowing-upP2 at {pt1 , . . . , ptr} and attaching the
surfaces D1(pt j) ≅ P2, j = 1, . . . , r, to D0(Z′) = D0(pt1 , . . . , ptr) = BlZ′ P2 along the
exceptional lines L1 , . . . , Lr .

LetE be the sheaf on T̃ × P2 obtained as the quotient of the pullback σ∗(F) by the
subsheafTorID1

(σ∗(F)) generated by the sections annihilated by the ideal sheaf ID1

of the exceptional divisor D1.

Lemma 4.2 Assume that for all j = 1, . . . , r, γ is not tangent to S j at [F]. _en the
sheaf E is a �at family of 1-dimensional sheaves. Its ûbres Et , t /= 0, are non-singular
sheaves on P2, the ûbre E = E0 is a 1-dimensional non-singular sheaf on D(Z′).

Proof We shall show that our deûnition ofE locally coincideswith the construction
from [6].
Fix some local coordinates x i , y i at pti . _en in some neighbourhoodU i of pti the

sheaf F is just an ideal sheaf of pti on C and hence can be given as the cokernel of a
morphism

2OU i

AÐ→2OU i , A = ( x i y i
a i b i ) ,

for some polynomials a i , b i in x i , y i . As pti ∈ SingC for i = 1, . . . , r, a i and b i do not
have constant terms.

Let Ud denote the universal family on Cd × P2. _en for a ûxed j ∈ {1, . . . , r},
locally around the point [F] × pt j ∈ Bc × P2, U is isomorphic to the pullback of Ud
along ρ j × idP2 . _en F is isomorphic locally around 0 × pt j to the pullback of Ud
along γ j × idP2 , where γ j = ρ j ○ γ.

_e latter means that the family F is given around 0 × pt j as a cokernel of the
morphism

2OT×U j

( x j y j
v j w j )+t⋅B(t)
ÐÐÐÐÐÐÐÐ→ 2OT×U j , B(t) = ( b11(t) b12(t)

b21(t) b22(t) ) ,

where b11(t), b12(t) take values in k and b21(t), b22(t) are polynomials of degree not
bigger than d.

_e blow-up T̃ × P2 over 0×pt j ∈ T×P2 is locally just the blow-upBl0×pt j T×U j =∶
T̃ ×U j . It can be seen as a subvariety in T × U j × P2 given by the (2 × 2)-minors of
thematrix ( t x j y j

u0 u1 u2
), where u0 , u1 , u2 are some homogeneous coordinates of the last

factor P2. _e canonical section s of OT̃×P2
(D1) is locally given by t/u0, x j/u1, and

y j/u2.
As in [6] one “divides” the pullback σ∗(A+ tB(t)) by s and obtains a family E′ of

one-dimensional sheaves given by a locally free resolution

0→ 2OT̃×U j
(D1)

ϕ(A,B)ÐÐÐÐ→ 2OT̃×U j
→ E

′ → 0.

We claim that this construction coincides with taking the quotient by the subsheaf
annihilated by ID1 . _is follows from a diagram chase on the following commutative
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diagram with exact rows and columns.

0
0

K

0 2OT̃×U j
2OT̃×U j σ∗F 0

0 2OT̃×U j
(D1) 2OT̃×U j E

′ 0

K

0
0

//
σ∗(A+tB(t))

// // //

//
ϕ(A,B)

// // //

��

( s 0
0 s )
��

��

��

��

��

��

��

More precisely, one shows that K is exactly the subsheaf of σ∗F annihilated by s.
Now the �atness of E and the local freeness of E on its support follow from [6,

Lemma 5.1 and its preceding discussion] .

Remark 4.3 Notice that the ûbre of σ∗F over 0 ∈ T is not a 1-dimensional sheaf. Its
support contains D1. _e subsheafTorID1

(σ∗(F)) of σ∗(F) is themaximal subsheaf
supported completely in D1.

Remark 4.4 _e sheaf E0 depends only on the derivative of γ at 0, i.e., only on the
inducedmap T0 T → T[F]B0 of tangent spaces.

Deûnition 4.5 _e sheaf E0 on D(Z′), as above, is called an R-bundle associated
with the pair Z ⊆ C, Z′ = Z ∩ SingC.

_e following generalizes [6, Deûnition 5.5].

Deûnition 4.6 Two R-bundles E1 and E2 associated with Z ⊆ C on D(pt1 , . . . , ptr)
are called equivalent if there exists an automorphism ϕ of D(pt1 , . . . , ptr) that acts
identically on the surface D0(pt1 , . . . , ptr) such that ϕ∗(E1) ≅ E2.

_eorem 4.7 Assume that the components F1 , . . . , Fr intersect transversally at [F].
_en the equivalence classes of R-bundles associated with Z ⊆ C are in one-to-one cor-
respondence with the points of the product of projective lines∏r

j=1 PN( j)
[F].

Proof _e classes of R-bundles around D1(pt j) are parameterized by PN(C ,pt j) ≅
PN( j)

[F] by [6, Proposition 5.6] and Lemma 4.1. Since the components F1 , . . . , Fr inter-
sect transversally, themap T[F]Bc ∖⋃r

j=1 T[F] S j Ð→∏r
j=1 PN( j)

[F] is surjective, which
means that the class of an R-bundle around a given exceptional plane D1(pt j) is in-
dependent of the class of the R-bundle around other planes D1(pti), i /= j. _is con-
cludes the proof.
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Remark 4.8 _e assumption of_eorem 4.7 is always satisûed at least for r ⩽ 3 by
Remark 3.2. In particular, it is the case for d = 4. Remark 3.2 also implies that the
locus of [F] ∈ Bc that do not satisfy the assumption on transversality lies at least in
codimension 7.

Remark 4.9 All possible R-bundles can be produced simultaneously as ûbres of
a family of sheaves over (an open subset of) M̃ ∶= BlM′ M. Indeed, pull back the
universal family over M to a familyUM̃ over M̃. Let

̃̃M × P2 → M̃ × P2

be the blow-up along the subvariety in M̃ × P2 where UM̃ is singular, pull UM̃ back
and consider the quotient Ũ by the subsheaf annihilated by the ideal sheaf of the
exceptional divisor of this blow-up.

Let Bgen denote the open locus of those [F] ∈ B0 satisfying the conditions of
_eorem 4.7. _en B̃gen ∶= BlM′∩Bgen Bgen is smooth by [8, _eorem 1.2 and _e-
orem 1.3]. _e ûbre of the exceptional divisor over [F] ∈ Bgen coincides with the
product ∏r

j=1 PN( j)
[F]. _e restriction of Ũ to B̃gen is a �at family of 1-dimensional

non-singular sheaves: non-singular (dm − 1)-sheaves together with R-bundles asso-
ciated with Z ⊆ C, Z ∩ SingC /= ∅.

_is allows us to see the blow-up B̃gen as a process that substitutes the boundary
M′ ∩Bgen by a divisor consisting of non-singular 1-dimensional sheaves, which gen-
eralizes the construction from [6].

4.3 Further Work

Amore detailed discussion of the relation of the blow-up BlM′ M with modifying the
boundary of M by line bundles should follow in a separate paper.

A On the Ideals of Points on Planar Curves

Let R = OC ,p be a local k-algebra of a curve C at point p ∈ C. Let I ⊆ R be an ideal
of R. As a submodule of a free module, I is a torsion-free R-module. If R is regular,
i.e., if p is a smooth point of C, then I is free. _erefore, the non-regularity of R is a
necessary condition for the non-freeness of I.

A.1 Ideals of Simple Points on a Curve

Let m = mC ,p be the maximal ideal of R and let kp = R/m be the local ring of the
structure sheaf of the one point subscheme {p} ⊆ C. _e following is a slight refor-
mulation of the well-know fact about local 1-dimensional rings [1, Proposition 9.2].

Lemma A.1 _emaximal ideal m is a free R-module if and only if R is regular.

Proof Ifm is free, thenm is a principal ideal and therefore R is regular. If R is regular,
then m is principal and thus free, since R is a domain in this case.
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A.2 Ideals of Fat Curvilinear Points on a Planar Curve

Assume that C is a planar curve locally deûned as the zero locus of f ∈ k[x , y]. As-
sume p = 0, consider a fat curvilinear point Z at p given by the ideal

(x − h(y), yn) ⊆ k[x , y], h(y ∈ k[y]), h(0) = 0, deg h < n,

and assume that Z is a subscheme of C. Let I ⊆ R be its ideal.
Since we assumed Z ⊆ C, one can write

f = det(x − h(y) yn

u(y) v(x , y)) , u(y) ∈ k[y], v(x , y) ∈ k[x , y].

Lemma A.2 Keeping the notations as above, let R be a non-regular ring, i.e., let p be
a singular point of C. _en I is non-free if and only if u(0) = 0.

If I is free, then it is generated by x − h(y) and there is an isomorphism

R ≅ I, r ↦ r ⋅ (x − h(y)).

Proof First we will show that I is generated by one element if and only if u(0) /= 0.
Since R = k[x , y](x ,y)/( f ), it is enough to answer the question when the ideal

(x − h(y), yn , f ) ⊆ k[x , y](x ,y)
equals (ξ, f ) for some ξ ∈ k[x , y](x ,y).

“⇐”: If u(0) /= 0, then (x − h(y), yn , f ) = (x − h(y), f ).
“⇒”: Let (x − h(y), yn , f ) = (ξ, f ). Without loss of generality we can assume that

ξ ∈ (x − h(y), yn) and ξ = a ⋅ (x − h(y)) + b ⋅ yn

for some a, b ∈ k[x , y](x ,y). In order to show that u(0) /= 0, we suppose that the
contrary holds true, i.e., u(0) = 0.

Since one can embed k[x , y](x ,y) into the ring of formal power series k[[x , y]], we
are going to consider the elements of k[x , y](x ,y) as power series in x , y.

Since x − h(y) ∈ (ξ, f ), then x − h(y) = c ⋅ ξ + d ⋅ f = ca(x − h(y)) + cbyn + d f .
As the orders of cbyn and d f are at least 2,we conclude that a and c are units. We can
assume without loss of generality that ξ = x − h(y)+ η(x , y), ord η(h(y), y) ⩾ n. As
yn ∈ (ξ, f ), it must hold yn = Cξ + D f for some C and D. Since by our assumption
u(0) = 0, evaluating this equality at x = h(y), we conclude that

yn = C(h(y), y) ⋅ η(h(y), y) + D(h(y), y) ⋅ (−u(y) ⋅ yn).
_erefore, C must be a unit and ord ξ(h(y), y) = ord η(h(y), y) = n.

Substituting x by h(y) in the equality x − h(y) = c ⋅ ξ + d ⋅ f , we get
0 = c(h(y), y) ⋅ η(h(y), y) + d(h(y), y) ⋅ (−u(y) ⋅ yn).

Since c is a unit, it contains a non-zero constant term, and hence the product

c(h(y), y) ⋅ η(h(y), y)
has order n. On the other hand, since u(0) = 0 by our assumption, the order of
d(h(y), y) ⋅u(y)yn is at least n + 1. We obtain a contradiction, which shows that our
assumption was wrong.
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Notice that if I is free, then it must be one-generated. On the other hand, we see
that if I is one-generated, then it is generated by x − h(y). In this case u(0) /= 0
and therefore f is not divisible by x − h(y). _us x − h(y) is not a zero divisor in
R and there is an isomorphism R ≅ I, r ↦ r(x − h(y)). _e latter means that I is
one-generated if and only if it is free, which concludes the proof.
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