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Abstract
The paper follows an operadic approach to provide a bialgebraic description of substitution for Lie–Butcher series.
We first show how the well-known bialgebraic description for substitution in Butcher’s B-series can be obtained
from the pre-Lie operad. We then apply the same construction to the post-Lie operad to arrive at a bialgebra Q. By
considering a module over the post-Lie operad, we get a cointeraction between Q and the Hopf algebra H𝑁 that
describes composition for Lie–Butcher series. We use this coaction to describe substitution for Lie–Butcher series.

1. Introduction

Many numerical integration methods for differential equations defined on Euclidean spaces have been
understood and studied through the formalism of B-series introduced by John Butcher [6, 7, 8, 10,
24]. Integration methods that can be formulated by B-series (so-called B-series methods) have been
studied with an emphasis on algebraic structures defined on nonplanar rooted trees [30]. Informally
speaking, a B-series is a Taylor series with terms indexed by nonplanar rooted trees, together with an
algebra morphism that maps the trees to a vector field and its derivatives. This formalism has been very
successful in classifying properties of numerical integrators, and has led to results such as the order
conditions for Runge–Kutta methods and classifications of structure-preserving methods [13].

In his studies of Runge–Kutta methods on Lie groups [32, 33], Munthe-Kaas defined the notion of
Lie–Butcher series (LB-series). They play a role on homogeneous spaces, similar to that of Butcher’s
B-series on Euclidean spaces. The study of LB-series methods emphasises algebraic structures defined
on planar rooted trees [18, 26, 34, 35]. A common theme for these algebraic structures is that they
specialise to the corresponding structures for B-series methods, when planarity for the trees is removed.
A nonplanar tree is a tree seen as a graph; a planar tree is a tree endowed with an embedding into the
plane. The free pre-Lie algebra is one of the essential structures on nonplanar rooted trees. The planar
generalisation of pre-Lie is the free post-Lie algebra, which is defined over formal Lie brackets of planar
rooted trees.

It is of particular interest for the present paper to consider the notions of composition and substitution
of LB-series. Connes and Kreimer [17] described the Hopf algebra that governs composition of B-
series, by using the notion of admissible edge cuts in nonplanar rooted trees. The main idea of B-series
composition is that the flow of a differential equation can be described by a B-series, and one aims to
study the composition of flows as a composition of B-series. Munthe-Kaas and Wright [35] generalised
this to the notion of admissible left edge cuts in planar rooted forests, with the goal of describing
the Hopf algebra that governs composition of LB-series. Calaque, Ebrahimi-Fard and Manchon [9]
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described the so-called extraction-contraction bialgebra H that governs substitution of B-series, by
using edge contractions in nonplanar rooted trees. They furthermore described a cointeraction of their
bialgebra with the Hopf algebra of Connes and Kreimer. The idea behind B-series substitution is that a
B-series, while being a sum over a vector field and its derivatives, can itself also describe a vector field.
In this case, it makes sense to consider a B-series that has another B-series as its vector field, which
we call substitution. A recursive formula for substitution in LB-series has been given by Lundervold
and Munthe-Kaas [26]. The algebraic picture of a bialgebra cointeracting with the Hopf algebra of
Munthe-Kaas and Wright is, however, not present. Substitution was also considered in [20], where
algebro-geometric methods were used to show that there is a bialgebraic description. That construction
was, however, not made explicit.

The paper at hand applies operadic methods to obtain a bialgebra of cosubstitution for LB-series.
We use a construction by Foissy [21], dualising operadic composition into a coproduct. We then show
that applying this construction to the pre-Lie operad results in the bialgebra H that was used to describe
substitution in B-series [9]. The pre-Lie operad is defined by replacing vertices in a nonplanar rooted
tree by rooted trees, which is also how we think about concrete B-series substitution. This perspective
motivates us to look at the post-Lie operad, which can be described by replacing vertices in planar
rooted trees by Lie polynomials of planar rooted trees. Applying Foissy’s construction to the post-Lie
operad gives us a bialgebra Q defined over 𝑆(𝐿𝑖𝑒(PT )), the symmetric algebra of Lie polynomials
in planar rooted trees. Using the embedding into the space spanned by ordered forests OF of planar
rooted trees, 𝐿𝑖𝑒(PT ) ⊂ 𝑈 (𝐿𝑖𝑒(PT )) = OF, we endow OF with a module structure over the post-Lie
operad, given by replacing vertices by Lie polynomials. As a matter of fact, replacing vertices by Lie
polynomials is how we think about concrete 𝐿𝐵-series substitution. By dualising in the same way as in
Foissy’s construction, the module structure dualises to a coaction. The latter describes a cointeraction
between the bialgebra Q and the Hopf algebra H𝑁 of Munthe-Kaas and Wright [26]. We then show
how substitution in 𝐿𝐵-series can be described and computed using this coaction.

The paper aims to further our understanding of the algebraic structures underlying the notion of LB-
series, so that we can gain better insight into numerical methods for differential equations on manifolds.
We would like to emphasise that the main results presented in this work are rather algebraic in nature.
Therefore, we first define the relevant notions and notations required to understand those results.

Saying this, we outline the structure of the paper: In section 2, we summarise the definitions and
results that the present paper builds upon. We also briefly indicate the links to numerical analysis. In
section 3, we construct an operad over nonplanar rooted trees. We then prove that our construction
provides an alternative description of the pre-Lie operad defined by Chapoton and Livernet in [14]. The
section is concluded by proving a duality between the pre-Lie operad and the extraction-contraction
coproduct ΔH that is used to describe B-series substitution. In section 4, we construct an operad of Lie
brackets over planar rooted trees in a way that is analogous to the operadic construction from section
3. In section 5, we extend the operadic composition from section 4 to let Lie brackets of planar rooted
trees act on forests. We then dualise this to a coaction. In section 6, we prove that the coaction can be
used to describe substitution in LB-series. In section 7, we provide a combinatorial picture.

2. Preliminaries

We recall some definitions and fundamental results. All algebraic structures are assumed to be defined
over some fixed field K of characteristic 0.

2.1. Trees and forests

A nonplanar rooted tree is a directed graph with a distinguished vertex, called the root, such that every
vertex except the root has exactly one incoming edge. The root has no incoming edges. Vertices without
outgoing edges are called leaves. A planar rooted tree is a rooted tree endowed with an embedding into
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the plane. We will draw trees with the root at the top and edges oriented away from the root. Consider
for example the two trees

and .

They are isomorphic as graphs and hence equal as nonplanar rooted trees. However, as the embeddings
into the plane are different, they are not equal as planar rooted trees. An unordered sequence of nonplanar
rooted trees is called a forest. An ordered sequence of planar rooted trees is called an ordered forest.
We denote the vector space spanned by all nonplanar rooted trees by T, the vector space spanned by all
planar rooted trees by PT, the vector space spanned by all forests by F and the vector space spanned by
all ordered forests by OF. The empty forest is denoted ∅.

We introduce the grafting operator�: T ⊗ T → T by defining 𝜏1 � 𝜏2 to be the sum over all ways
of adding an edge from some vertex in 𝜏2 to the root of 𝜏1. For example:

� = + .

Endowing the space T with the grafting operator� produces a (left) pre-Lie algebra [5, 11, 14, 25, 28,
36], meaning that the so-called (left) pre-Lie identity

𝜏1 � (𝜏2 � 𝜏3) − (𝜏1 � 𝜏2) � 𝜏3 − 𝜏2 � (𝜏1 � 𝜏3) + (𝜏2 � 𝜏1) � 𝜏3 =0,

is satisfied for all 𝜏1, 𝜏2, 𝜏3 ∈ T, which is equivalent to the nonplanarity of the trees. (T,�) is, in fact, the
free pre-Lie algebra on one generator. The pre-Lie identity implies that for all 𝜏1, 𝜏2 ∈ T, the commutator
�𝜏1, 𝜏2� := 𝜏1 � 𝜏2 − 𝜏2 � 𝜏1 satisfies the Jacobi identity.

We furthermore define on planar rooted trees the left grafting operator ⊲ : PT ⊗ PT → PT by letting
𝜏1 ⊲ 𝜏2 denote the sum over all ways of adding an edge from any vertex in 𝜏2 to the root of 𝜏1 such that
the added edge is leftmost on this vertex with respect to the planar embedding. Note that the left grafting
operator is magmatic. Extending it to the free Lie algebra 𝐿𝑖𝑒(PT ) generated by PT via the rules

𝜏1 ⊲[𝜏2, 𝜏3] := [𝜏1 ⊲ 𝜏2, 𝜏3] + [𝜏2, 𝜏1 ⊲ 𝜏3],

[𝜏1, 𝜏2] ⊲ 𝜏3 := 𝜏1 ⊲(𝜏2 ⊲ 𝜏3) − (𝜏1 ⊲ 𝜏2) ⊲ 𝜏3 − 𝜏2 ⊲(𝜏1 ⊲ 𝜏3) + (𝜏2 ⊲ 𝜏1) ⊲ 𝜏3,

∀𝜏1, 𝜏2, 𝜏3 ∈ 𝐿𝑖𝑒(PT )

produces the free post-Lie algebra [18, 19, 26, 34, 39]. For all 𝜏1, 𝜏2 ∈ PT, the commutator �𝜏1, 𝜏2� :=
𝜏1 ⊲ 𝜏2 − 𝜏2 ⊲ 𝜏1 + [𝜏1, 𝜏2] satisfies the Jacobi identity. Note that in general a post-Lie algebra with a
vanishing Lie bracket reduces to a pre-Lie algebra.

Defining the commutator [𝜏1, 𝜏2] = 𝜏1𝜏2 − 𝜏2𝜏1, one can identify the universal enveloping algebra of
the free post-Lie algebra with OF as vector space. The associative product becomes concatenation of
ordered forests. We extend left grafting to OF by

𝜏1 ⊲ 𝜏2𝜔2 := (𝜏1 ⊲ 𝜏2)𝜔2 + 𝜏2 (𝜏1 ⊲ 𝜔2),

𝜏1𝜔1 ⊲ 𝜔2 := 𝜏1 ⊲(𝜔1 ⊲ 𝜔2) − (𝜏1 ⊲ 𝜔1) ⊲ 𝜔2, ∀𝜏1, 𝜏2 ∈ PT, ∀𝜔1, 𝜔2 ∈ OF.

The vector space OF together with left grafting and concatenation is the free D-algebra generated by
the single-vertex tree [35] (see Definition 1 in the next subsection).
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We define the function 𝐵+ : OF → PT given by 𝐵+(𝜔) = 𝜔 ⊲ •, where • is the single-vertex tree.
For example:

𝐵+

( )
= .

The inverse of 𝐵+, denoted 𝐵− : PT → OF, is given by removing the root together with its outgoing
edges from the input tree. The operator 
 : OF ×OF → OF given by

𝜔1 
𝜔2 = 𝐵− (𝜔1 ⊲ 𝐵
+(𝜔2)

)
(1)

is called the planar Grossman–Larson product. For example:


 = + + + .

Let 𝜔1, 𝜔2 be ordered forests; then we can write them as a sequence of trees:

𝜔1 = 𝜏1
1 · · · 𝜏𝑛1 ,

𝜔2 = 𝜏1
2 · · · 𝜏𝑚2 .

We define the shuffle product 𝜔1 ⧢ 𝜔2 as the sum of all the ways to concatenate the trees
𝜏1

1 , . . . , 𝜏
𝑛
1 , 𝜏

1
2 , . . . , 𝜏

𝑚
2 into a forest such that 𝜏 𝑗𝑖 is to the left of 𝜏ℓ𝑘 if 𝑖 = 𝑘 and 𝑗 ≤ ℓ. For example:

⧢ = + +

+ + + .

The empty forest is the unit for the shuffle product, 𝜔 ⧢ ∅ = 𝜔 = ∅ ⧢ 𝜔. The shuffle coproduct
Δ⧢ : OF → OF ⊗ OF is defined by Δ⧢ (𝜔) being the sum of all 𝜔1 ⊗ 𝜔2 such that 𝜔1 ⧢ 𝜔2 contains
the forest 𝜔. For example:

Δ⧢

( )
= ⊗ ∅ + ⊗ + ⊗ + ⊗

+ ⊗ + ⊗ + ⊗ + ∅ ⊗ .

2.2. D-algebras

We now recall the definition of a D-algebra [26, 34, 35].

Definition 1. Let (𝐴, ·) be a unital associative algebra with unit 1. If A is furthermore equipped with a
nonassociative product ⊲, denote by D(𝐴) = {𝑥 ∈ 𝐴 : 𝑥 ⊲(𝑎 · 𝑏) = (𝑥 ⊲ 𝑎) · 𝑏 + 𝑎 · (𝑥 ⊲ 𝑏), ∀𝑎, 𝑏 ∈ 𝐴}
the set of derivations in A. The triple (𝐴, ·, ⊲) is then called a D-algebra if the following identities hold:

1 ⊲ 𝑎 = 𝑎,

𝑎 ⊲ 𝑥 ∈ D(𝐴),

𝑥 ⊲(𝑎 ⊲ 𝑏) = (𝑥 · 𝑎) ⊲ 𝑏 + (𝑥 ⊲ 𝑎) ⊲ 𝑏,

for 𝑎, 𝑏 ∈ 𝐴 and 𝑥 ∈ D(𝐴).
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A map 𝜙 : 𝐴 → 𝐴′ between two D-algebras A and 𝐴′ is called a D-algebra morphism if

𝜙(𝑎 · 𝑏) = 𝜙(𝑎) · 𝜙(𝑏),

𝜙(𝑎 ⊲ 𝑏) = 𝜙(𝑎) ⊲ 𝜙(𝑏),

𝜙(D(𝐴)) ⊆ D(𝐴′)

for 𝑎, 𝑏 ∈ 𝐴. Note that in addition to the morphism property with respect to both products, we require
that derivations be mapped to derivations.

In [35] it was shown that (OF, ·, ⊲) is the free D-algebra and its derivations are exactly the Lie
polynomials. These are the elements generated from planar trees PT ⊂ OF by the commutator bracket
[𝜏1, 𝜏2] = 𝜏1𝜏2 − 𝜏2𝜏1. The Lie polynomials are also exactly the elements that are primitive with respect
to the shuffle coproduct, meaning those elements 𝜔 ∈ OF satisfying Δ⧢ (𝜔) = ∅ ⊗ 𝜔 + 𝜔 ⊗ ∅.

Remark 1. The notion of a D-algebra has a geometric origin. Indeed, let M be a manifold. It is well-
known that one can endow the space X𝑀 of vector fields over M with a post-Lie structure. The extension
of this post-Lie structure to a D-algebra describes the differential operators. This is an important example,
and details can be found, for example, in [26, 34, 35].

2.3. Operads and bialgebras

We recall the notion of an algebraic operad and its link to bialgebras. The reader is referred to [14, 21,
27] for details.

A (symmetric) operad P = ⊕∞
𝑛=1P(𝑛) consists of a sequence of vector spaces P(𝑛) together with an

action of the symmetry group Σ𝑛 : P(𝑛) → P(𝑛) and a map ◦ : ⊕𝑛≥1P⊗𝑛 ⊗ P(𝑛) → P satisfying the
following restrictions:

◦ ◦ : P(𝑖1) ⊗ · · · ⊗ P(𝑖𝑛) ⊗ P(𝑛) → P(𝑖1 + · · · + 𝑖𝑛).
◦ There exists an identity element 1 ∈ P(1) such that 𝑥 ◦ 1 = 𝑥 and 1 · · · 1 ◦ 𝑦 = 𝑦 for all 𝑥, 𝑦 ∈ P.
◦ The associativity relation(

𝑥1,1 · · · 𝑥1,𝑛1 ◦ 𝑥1
)
· · ·

(
𝑥𝑚,1 · · · 𝑥𝑚,𝑛𝑚 ◦ 𝑥𝑚

)
◦ 𝑥

= 𝑥1,1 · · · 𝑥1,𝑛1𝑥2,1 · · · 𝑥2,𝑛2𝑥3,1 · · · 𝑥𝑚,1 · · · 𝑥𝑚,𝑛𝑚 ◦ (𝑥1 · · · 𝑥𝑚 ◦ 𝑥)

is satisfied.
◦ The equivariance conditions

𝑥𝜎−1 (1) · · · 𝑥𝜎−1 (𝑛) ◦ 𝜎(𝑥) = 𝜎(𝑥1 · · · 𝑥𝑛 ◦ 𝑥), 𝜎 ∈ Σ𝑛,

𝜎1(𝑥1) · · ·𝜎𝑛 (𝑥𝑛) ◦ 𝑥 = (𝜎1, . . . , 𝜎𝑛) (𝑥1 · · · 𝑥𝑛 ◦ 𝑥), 𝜎𝑖 ∈ Σ |𝑥𝑖 |

are satisfied. On the right side of the first equality, we interpret 𝜎 as acting on
{1, 2, . . . , |𝑥1 | + · · · + |𝑥𝑛 |} by permuting the blocks
{1, . . . , |𝑥1 |},

{
|𝑥1 | + · · · +

		𝑥 𝑗 		 + 1, . . . , |𝑥1 | + · · · +
		𝑥 𝑗+1

		}, 𝑗 = 1, . . . , 𝑛. In the second equality, we
interpret (𝜎1, . . . , 𝜎𝑛) as 𝜎𝑖 acting on the ith block.

A (right) module [22] M = ⊕∞
𝑛=1M(𝑛) over an operad P consists of a sequence of vector spaces

M(𝑛) together with an action of the symmery group Σ𝑛 : M(𝑛) → M(𝑛) and a map ◦ : M(𝑖1) ⊗
· · · ⊗ M(𝑖𝑛) ⊗ P(𝑛) → P(𝑖1 + · · · + 𝑖𝑛) that satisfies associativity and equivariance.

A bialgebra (𝑉, ·,Δ , 𝜂, 𝜖) is a vector space V together with an associative multiplication · : 𝑉⊗𝑉 → 𝑉
(𝑥 · (𝑦 · 𝑧) = (𝑥 · 𝑦) · 𝑧), a coassociative coproduct Δ : 𝑉 → 𝑉 ⊗ 𝑉 ((𝐼𝑑 ⊗ Δ)Δ = (Δ ⊗ 𝐼𝑑)Δ), a unit
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map 𝜂 : K→ 𝑉 (𝜂(1) · 𝑥 = 𝑥) and the counit 𝜖 : 𝑉 → K ((𝐼𝑑 ⊗ 𝜖)Δ = 𝐼𝑑 = (𝜖 ⊗ 𝐼𝑑)Δ), satisfying the
following relations:

Δ (𝑥 · 𝑦) = Δ (𝑥) · Δ (𝑦),

𝜖 (𝑥)𝜖 (𝑦) = 𝜖 (𝑥 · 𝑦),

Δ (𝜂(𝑥)) = (𝜂 ⊗ 𝜂) (𝑥),

𝐼𝑑K = 𝜖 ◦ 𝜂.

A graded bialgebra is called connected if 𝜂 is an isomorphism between K and the set of degree 0
elements. A Hopf algebra is defined as a bialgebra equipped with an antihomomorphism 𝑆 : 𝑉 → 𝑉
called the antipode, satisfying

· ◦ (𝑆 ⊗ 𝐼𝑑)Δ = 𝜂 ◦ 𝜖 = · ◦ (𝐼𝑑 ⊗ 𝑆)Δ .

A connected and graded bialgebra is a Hopf algebra.
Foissy [21] describes how to construct bialgebras from operads. The following construction is

especially relevant. Let P be an operad and consider the map ◦; the preimage of each vector space P(𝑛)
under this map is

◦−1(P(𝑛)) =
𝑛⊕
𝑗=1

⊕
𝑘1+···+𝑘 𝑗=𝑛

P(𝑘1) ⊗ · · · ⊗ P
(
𝑘 𝑗
)
⊗ P( 𝑗).

Furthermore, we identify the dual space P∗ with P by using the canonical dual pairing and consider the
map Δ : P → 𝑇 (P) ⊗ P, where 𝑇 (P) is the tensor algebra over P, defined by

〈𝑥1 · · · 𝑥𝑛 ◦ 𝑥, 𝑥 ′〉 = 〈𝑥1 · · · 𝑥𝑛 ⊗ 𝑥,Δ (𝑥 ′)〉.

Then

Δ (P(𝑛)) ⊆
𝑛⊕
𝑗=1

⊕
𝑘1+···+𝑘 𝑗=𝑛

P(𝑘1) · · ·P
(
𝑘 𝑗
)
⊗ P( 𝑗).

Foissy showed that (𝑇 (P), 𝑚conc,Δ) is a graded bialgebra, where 𝑚conc is the concatenation product on
𝑇 (P) and Δ is multiplicatively extended to 𝑇 (P) with respect to this product.

We conclude by recalling the important notion of bialgebras in cointeraction [9, 21, 29]:

Definition 2. We say that two bialgebras (𝐴, ·𝐴,Δ𝐴, 𝜖𝐴, 𝜂𝐴), (𝐵, ·𝐵,Δ𝐵, 𝜖𝐵, 𝜂𝐵) are in cointeraction if
B is coacting on A via a map 𝜌 : 𝐴 → 𝐵 ⊗ 𝐴 that satisfies

𝜌(1𝐴) = 1𝐵 ⊗ 1𝐴,
𝜌(𝑥 ·𝐴 𝑦) = 𝜌(𝑥) (·𝐵 ⊗ ·𝐴)𝜌(𝑦),

(𝐼𝑑 ⊗ 𝜖𝐴)𝜌 = 1𝐵𝜖𝐴,

(𝐼𝑑 ⊗ Δ𝐴)𝜌 = 𝑚1,3
𝐵 (𝜌 ⊗ 𝜌)Δ𝐴,

where

𝑚1,3
𝐵 (𝑎 ⊗ 𝑏 ⊗ 𝑐 ⊗ 𝑑) = 𝑎 ·𝐵 𝑐 ⊗ 𝑏 ⊗ 𝑑.
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2.4. B-series

Let (𝐴, ·) denote an arbitrary pre-Lie algebra and introduce a fictitious unit 1 such that 1 · 𝑎 = 𝑎 · 1 = 𝑎
for any 𝑎 ∈ 𝐴. As (T,�) is the free pre-Lie algebra, there exists for any element 𝑎 ∈ 𝐴 a unique pre-Lie
morphism 𝐹𝑎 : T → 𝐴 defined by 𝐹𝑎 (•) = 𝑎. A B-series is then defined as a function

𝐵(ℎ, 𝑎, 𝛼) =𝛼(∅)1 +
∑
𝜏∈T

ℎ𝑣 (𝜏)
𝛼(𝜏)

𝜎(𝜏)
𝐹𝑎 (𝜏),

where ℎ ∈ K is a constant, 𝑣(𝜏) denotes the function that counts the number of vertices of the input tree
𝜏 ∈ T, 𝛼 : T ⊕ K∅ → K is a linear function and 𝜎(𝜏) is the number of symmetries of the tree 𝜏.

Remark 2 ([15, 16]). Let 𝑓 : R𝑛 → R
𝑛 be a vector field; then f and its derivatives form a pre-Lie

algebra under composition. The typical B-series in numerical integration is going to map into this pre-
Lie algebra via the pre-Lie algebra morphism given by 𝐹 𝑓 (•) = 𝑓 . The map 𝐹 𝑓 is called the elementary
differential.

If the B-series 𝐵(ℎ, 𝑓 , 𝛼) is given by a linear map 𝛼 with 𝛼(∅) = 1, then 𝐵(ℎ, 𝑓 , 𝛼) is close to the
identity map and describes a flow

𝐵(ℎ, 𝑓 , 𝛼) (𝑦) = 𝑦 + ℎ𝛼(•) 𝑓 (𝑦) + ℎ2𝛼
( )

𝑓 ′( 𝑓 (𝑦)) +
ℎ3

2
𝛼
( )

𝑓 ′′( 𝑓 (𝑦), 𝑓 (𝑦))

+ ℎ3𝛼

( )
𝑓 ′( 𝑓 ′( 𝑓 (𝑦))) + · · · .

These flows can be composed, the result of which can surprisingly be described by a B-series. We call
this composition of B-series.

If the B-series 𝐵(ℎ, 𝑓 , 𝛽) is given by a linear map 𝛽 with 𝛽(∅) = 0, then 𝐵(ℎ, 𝑓 , 𝛽) is close to f and
describes a vector field. Since this B-series is a vector field, it then makes sense to consider something
of the form 𝐵(ℎ, 𝐵(ℎ, 𝑓 , 𝛽), 𝛼). This is what we call substitution of B-series, and it turns out that this
can be expressed again as a B-series in the vector field f.

The results on composition and substitution of B-series come from finding appropriate bialgebra
structures on the space of forests F: the Hopf algebra H𝐶𝐾 = (F, ·,Δ𝐶𝐾 ) by Connes and Kreimer [17],
as well as the extraction-contraction bialgebra H = (F, ·,ΔH) by Calaque, Ebrahimi-Fard and Manchon
[9]. These are equal as algebras, both having the commutative concatenation product. The coproduct
Δ𝐶𝐾 is defined by admissible edge cuts. Let 𝜏 ∈ T be a nonplanar rooted tree and let c be a (possibly
empty) subset of edges in 𝜏. We say that c is an admissible edge cut if it contains at most one edge from
each path in 𝜏 that starts in the root and ends in a leaf. Removing the edges in c from 𝜏 produces several
connected components; the connected component containing the root of 𝜏 will be denoted by R𝑐 (𝜏).
The concatenation of the remaining connected components will be denoted by P𝑐 (𝜏). The coproduct is
then given by

Δ𝐶𝐾 (𝜏) =
∑

𝑐 admissible cut
P𝑐 (𝜏) ⊗ R𝑐 (𝜏) + 𝜏 ⊗ ∅

on nonplanar rooted trees and extended to forests by

Δ𝐶𝐾 (𝜏1 · · · 𝜏𝑛) = Δ𝐶𝐾 (𝜏1) · · ·Δ𝐶𝐾 (𝜏𝑛).
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We illustrate this coproduct with a few examples:

Δ𝐶𝐾

( )
= ∅ ⊗ + • ⊗ • + ⊗ ∅,

Δ𝐶𝐾

( )
= ∅ ⊗ + 2 • ⊗ + • • ⊗ • + ⊗ ∅,

Δ𝐶𝐾

( )
= ∅ ⊗ + • ⊗ • + 2 • ⊗ + 3 • • ⊗ •

+ • • • ⊗ • • + ⊗ + 2 • ⊗ + • • ⊗ •

+ ⊗ + • ⊗ • + ⊗ ∅.

The coproduct ΔH is defined by contractions of subtrees. Let 𝜏 ∈ T be a nonplanar rooted tree and
let (𝜏1, . . . , 𝜏𝑛) be a spanning subforest of 𝜏 – that is, each 𝜏𝑖 is a subtree of 𝜏 and each vertex of 𝜏 is
contained in exactly one 𝜏𝑖 . We denote by 𝜏/𝜏1 · · · 𝜏𝑛 the tree obtained by contracting each subtree to a
single vertex. The coproduct ΔH is then given by

ΔH (𝜏) =
∑

(𝜏1 ,...,𝜏𝑛)
spanning subforest

𝜏1 · · · 𝜏𝑛 ⊗ 𝜏/𝜏1 · · · 𝜏𝑛 (2)

and extended to forests multiplicatively,

ΔH (𝜏1 · · · 𝜏𝑛) = ΔH(𝜏1) · · ·ΔH (𝜏𝑛).

We illustrate the coproduct with a few examples:

ΔH

( )
= ⊗ • + 2 • ⊗ + • • • ⊗ ,

ΔH
( )

= ⊗ • + 2 • ⊗ + • • • ⊗ ,

ΔH

( )
= ⊗ • + • ⊗ + • ⊗ + 2 • • ⊗

+ ⊗ + • • ⊗ + • • • • ⊗ .

The two bialgebras H𝐶𝐾 and H are in cointeraction [9]. We are now ready to recall two important
theorems on B-series.

Theorem 1. Let 𝛼, 𝛽 be characters of H𝐶𝐾 . Let 𝑚𝐶𝐾 denote the commutative concatenation product
of H𝐶𝐾 ; then the composition of B-series satisfies

𝐵(ℎ, 𝑎, 𝛽) ◦ 𝐵(ℎ, 𝑎, 𝛼) = 𝐵(ℎ, 𝑎, 𝛽 ★𝐶𝐾 𝛼),

where ★𝐶𝐾 is the convolution product defined in terms of the coproduct of H𝐶𝐾 , meaning

𝛽 ★𝐶𝐾 𝛼 = 𝑚𝐶𝐾 (𝛽 ⊗ 𝛼)Δ𝐶𝐾 .

Theorem 2. Let 𝛼, 𝛽 : T⊕K∅ → K be linear maps satisfying 𝛼(∅) = 0. Extend 𝛼 to H multiplicatively.
Then the substitution of B-series satisfies

𝐵

(
ℎ,

1
ℎ
𝐵(ℎ, 𝑎, 𝛼), 𝛽

)
= 𝐵(ℎ, 𝑎, 𝛼 ★H 𝛽),

where ★H is the convolution product defined in terms of the coproduct of H.
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Remark 3. The characters of H𝐶𝐾 form a group under ★𝐶𝐾 . The linear maps 𝛼 with 𝛼(∅) = 0 act on
this group by ★H, meaning that the maps 𝛼★H : F∗ → F∗ form a subgroup of the endomorphism group
over characters of H𝐶𝐾 , where F∗ is the linear dual space of F. These maps are automorphisms when
𝛼(•) ≠ 0. The cointeraction between H𝐶𝐾 and H is vital for this action. This way of seeing a subgroup
of the automorphism group over characters of H𝐶𝐾 was used by Bruned, Hairer and Zambotti [3, 4] to
develop a theory of renormalisation of stochastic partial differential equations.

2.5. LB-series

Let D denote an arbitrary D-algebra and let 𝑎 ∈ D(D) be a derivation of D. By the freeness property of
(OF, ·, ⊲) as a D-algebra, there is a unique D-algebra morphism defined by 𝐹𝑎 (•) = 𝑎. An LB-series is
then defined as a formal sum

𝐿𝐵(𝑎, 𝛼) =
∑
𝜔∈OF

𝛼(𝜔)𝐹𝑎 (𝜔),

where 𝛼 : OF → K is a linear map. We say that 𝐿𝐵(𝑎, 𝛼), or just 𝛼, is logarithmic if

𝛼(∅) = 0,
𝛼(𝜔1 ⧢ 𝜔2) = 0

for all nonempty 𝜔1, 𝜔2 ∈ OF. We say that 𝐿𝐵(𝑎, 𝛽), or just 𝛽, is exponential if

𝛽(∅) = 1,
𝛽(𝜔1 ⧢ 𝜔2) = 𝛽(𝜔1)𝛽(𝜔2)

for all 𝜔1, 𝜔2 ∈ OF.
Similar to how composition of B-series is understood with the help of the Hopf algebra by Connes

and Kreimer, we capture composition of LB-series with the help of the Hopf algebra H𝑁 introduced
by Munthe-Kaas and Wright [35]. The Hopf algebra H𝑁 is defined over OF, its multiplication is the
shuffle product ⧢ and its coproduct Δ𝑁 is defined by planar left admissible edge cuts.

Let 𝜏 ∈ PT be a planar rooted tree and let c be a (possibly empty) subset of edges in 𝜏. We say that
c is an admissible planar left cut if it contains at most one edge from each path in 𝜏 from the root to a
leaf. Furthermore, if e is an edge in c, then every edge that is outgoing from the same vertex as e and
that is to the left of e in the planar embedding is also in c. Removing the edges in c from 𝜏 produces
several connected components; the one containing the root of 𝜏 will be denoted by R𝑐 (𝜏). Connected
components that are cut off from the same vertex will be concatenated to an ordered forest respecting the
order, and then the resulting ordered forests will be shuffled, which is denoted by P𝑐 (𝜏). The coproduct
Δ𝑁 is defined by

Δ𝑁 (𝜏) =
∑

𝑐 planar left
admissible cut

P𝑐 (𝜏) ⊗ R𝑐 (𝜏) + 𝜏 ⊗ ∅ (3)

on planar rooted trees. It is extended to forests by

Δ𝑁 (𝜔) = (𝐼𝑑 ⊗ 𝐵−)Δ𝑁
(
𝐵+(𝜔)

)
.
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Note that this is dual to the planar Grossman–Larson product (1), meaning that it also satisfies

Δ𝑁 (𝜔) =
∑

𝜔 is a summand
in 𝜔1
𝜔2

𝜔1 ⊗ 𝜔2 (4)

for 𝜔, 𝜔1, 𝜔2 ordered forests.

Remark 4. Note that the sum on the right-hand side of equation (4) could have been written running over
OF, using the natural pairing 〈𝜔1, 𝜔2〉 = 𝛿𝜔1 ,𝜔2 in the summand. In fact, the duality to the Grossman–
Larson product could have been taken as the definition of the coproduct, up to the identification that
shuffle products appearing on the left-hand side must be evaluated (giving a linear combination of
forests).

We illustrate the coproduct (4) with a few examples:

Δ𝑁

( )
= ∅ ⊗ + • ⊗ + • ⊗ + •⧢ • ⊗

+ ⊗ + • • ⊗ • + ⊗ ∅,

Δ𝑁

( )
= ∅ ⊗ + • ⊗ + • ⊗ • • • + •⧢ • ⊗ ••

+ ⊗ + ⊗ + ⊗ ∅,

Δ𝑁

( )
= ∅ ⊗ + • ⊗ + • ⊗ + •⧢ • ⊗

+ • • ⊗ + • •⧢ • ⊗ • • + ⊗ + ⧢ • ⊗ •

+ ⊗ ∅.

Before we move on to state the composition theorem for LB-series, we want to remark on D-algebras
generated by vector fields over a manifold.

Remark 5. Typically in applications of LB-series in geometric integration over a manifold, the D-algebra
morphism 𝐹𝑎 will map from ordered forests (OF, ·, ⊲) into a D-algebra generated by vector fields over
a manifold. In this case, logarithmic LB-series describe vector fields, which are the derivations in the
target D-algebra. Exponential LB-series describe flows on the manifold. In this case, composition is
understood as composition of flows, and this is what we mean concretely by composition of LB-series.

Theorem 3 ([35]). Let 𝛼, 𝛽 be characters of H𝑁 ; then the composition of LB-series satisfies

𝐿𝐵(𝑎, 𝛽) ◦ 𝐿𝐵(𝑎, 𝛼) = 𝐿𝐵(𝑎, 𝛽 ★𝑁 𝛼),

where ★𝑁 is the convolution product defined in terms of the coproduct (4) of H𝑁 . This describes a
group structure on the set of exponential LB-series.

By substituting an LB-series into another LB-series, we mean something of the form
𝐿𝐵(𝐿𝐵(𝑎, 𝛼), 𝛽)–that is, replacing the derivation a in the target D-algebra by another LB-series ex-
pressed in a. This only makes sense if the LB-series 𝐿𝐵(𝑎, 𝛼) is again a derivation, which happens
exactly when it is logarithmic. The aim of the sequel is now to find a Lie–Butcher version of Theorem 2
which describes substitution in B-series.

2.6. B-series and LB-series in numerical analysis

The notion of B-series originated from Butcher’s seminal work on numerical methods [6], and was
originally used to find the order conditions of Runge–Kutta methods. Given a Runge–Kutta method
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expressed by a Butcher tableau, there is an explicit way to compute the corresponding B-series for the
method [8, 23]. One can, for example, find that the coefficient 𝛼

( )
for the Runge–Kutta method

given by the Butcher tableau parameters 𝑎𝑖 𝑗 , 𝑏𝑘 is 𝛼
( )

=
∑
𝑖, 𝑗 ,𝑘 𝑏𝑖𝑎𝑖 𝑗𝑎𝑖𝑘 . From this construction,

one finds the order conditions of Runge–Kutta methods by comparing the coefficients in the B-series
expression of the method with the coefficients in the B-series expression for the exact solution.

In more recent developments, following from the bialgebraic description of B-series substitution,
structure-preservation properties of numerical methods have been studied using B-series and backwards
error analysis. This has resulted in classifications of Hamiltonian methods and energy-preserving meth-
ods, based on the B-series description of those methods [13].

As already indicated, LB-series methods are the natural generalisation of B-series methods in the
context of numerical integration on manifolds. LB-series were originally constructed to describe Runge–
Kutta–Munthe-Kaas methods for differential equations on Lie groups. Runge–Kutta methods on R𝑑 rely
on the linear structure of the space permitting the addition of vector fields. On Lie groups, on the other
hand, this linear structure is not available. Instead, one has to consider the Lie algebra of the Lie group,
which is a linear space. This is the reason why LB-series methods may include Lie brackets. Order
conditions for LB-series methods have been studied in [2, 12, 33, 37, 38]. Implementations of LB-series
methods in Haskel were considered in [31].

In this subsection, we shall discuss how LB-series can be used to approximate solutions to initial-
value problems on manifolds by means of the notion of flow.

Let M be a manifold and letX𝑀 denote the vector fields on M. The flow of a vector field 𝑓 : 𝑀 → 𝑇𝑀
is the diffeomorphism Φ𝑡 , 𝑓 : 𝑀 → 𝑀 such that the following hold:

1. Φ𝑠, 𝑓 ◦Φ𝑡 , 𝑓 = Φ𝑠+𝑡 , 𝑓 .
2. Φ0, 𝑓 = 𝐼𝑑.
3. 𝜕

𝜕𝑡

		
𝑡=0Φ𝑡 , 𝑓 (𝑝) = 𝑓 (𝑝), ∀𝑝 ∈ 𝑀 .

The fundamental assumption for LB-series methods is that there exists a Lie subalgebra 𝔤 ⊂ X𝑀 that
spans the tangent space 𝑇𝑝𝑀 at every point 𝑝 ∈ 𝑀 , and such that the flow Φ𝑡 ,𝑔 can be computed exactly
for every 𝑔 ∈ 𝔤. The goal of numerical integration is to solve the differential equation

𝑦′(𝑡) = 𝑓 (𝑦(𝑡)), 𝑦(0) = 𝑦0, (5)

by approximating the flow Φ𝑡 , 𝑓 (𝑦0) in terms of flows Φ𝑡 ,𝑔 (𝑦0) for 𝑔 ∈ 𝔤.
We are now going to construct a larger space of flows that can be computed exactly. Let 𝑉 ∈ 𝔤 be a

vector field. The Lie derivative of Ψ ∈ 𝐶∞(𝑀, 𝔤) along V is defined by

𝑉 [Ψ] (𝑝) =
𝑑

𝑑𝑡

				
𝑡=0

Ψ
(
Φ𝑡 ,𝑉 (𝑝)

)
.

The vector fields in 𝔤 are first-order differential operators acting on the space 𝐶∞(𝑀, 𝔤). We obtain
higher-order differential operators by defining the concatenation product 𝑉𝑊 of two vector fields
𝑉,𝑊 ∈ 𝔤 as

𝑉𝑊 [Ψ] = 𝑉 [𝑊 [Ψ]] .

The space of differential operators in all orders, including the identity operator, is called the universal
enveloping algebra 𝑈 (𝔤). We extend the structure of the Lie derivative and the concatenation to the
space 𝐶∞(𝑀,𝑈 (𝔤)) by

𝑔[ℎ] (𝑝) = (𝑔(𝑝) [ℎ]) (𝑝),

(𝑔ℎ) (𝑝) = 𝑔(𝑝)ℎ(𝑝)
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for 𝑔, ℎ ∈ 𝐶∞(𝑀,𝑈 (𝔤)). This endows 𝐶∞(𝑀, 𝔤) with the structure of a D-algebra. Hence there exists a
D-algebra morphism 𝐹𝑔 : OF → 𝐶∞(𝑀,𝑈 (𝔤)) and the elements in 𝐶∞(𝑀,𝑈 (𝔤)) can be represented
by LB-series. Now we use exponential LB-series to represent flows. Let 𝐿𝐵( 𝑓 , 𝛼) represent the flow
Φ𝑡 , 𝑓 if

Ψ
(
Φ𝑡 , 𝑓 (𝑦0)

)
= 𝐿𝐵( 𝑓 , 𝛼) (𝑦0) [Ψ] (6)

for all Ψ ∈ 𝐶∞(𝑀,𝑈 (𝔤)). Composition of LB-series in the sense of Theorem 3 corresponds to
composition of flows. Numerical integration algorithms whose flows can be represented by LB-series
are called LB-series methods.

Remark 6. Equation (6) should be thought of as being true for one specific t – for example, 𝑡 = ℎ
being the step size of the method. Different step sizes are obtained by a rescaling of f. If one sees f as a
function of t by this rescaling, then equation (6) is true as functions of t.

Remark 7. If Ψ1, . . . ,Ψ𝑑 ∈ 𝐶∞(𝑀,R) ⊂ 𝐶∞(𝑀,𝑈 (𝔤)) are the coordinate maps of some R𝑑-atlas for
M, then equation (6) applied to the Ψ𝑖 permits computation of the flow of an 𝐿𝐵-series method in terms
of local coordinates.

Expressing numerical integrators in terms of LB-series allows us to study the properties of the method.
One example of this is backwards error analysis [23]. Indeed, let 𝐿𝐵( 𝑓 , 𝛼) represent a numerical method
for equation (5). Since 𝐿𝐵( 𝑓 , 𝛼) represents a flow, there exists a modified vector field 𝑓 such that the
equation

𝑦′(𝑡) = 𝑓 (𝑦(𝑡)), 𝑦(0) = 𝑦0,

is solved exactly by 𝐿𝐵( 𝑓 , 𝛼). The modified vector field 𝑓 can be written as a logarithmic LB-series
𝑓 = 𝐿𝐵( 𝑓 , 𝛽). Let 𝛼exact denote the character for the exact solution, which is given by

𝛼exact = ∅ + • +
1
2!

(• 
 •) +
1
3!

(• 
 (• 
 •)) + · · ·

= ∅ + • +
1
2

(
• • +

)
+

1
6

(
• • • + • +2 • + +

)
+ · · · .

Here we used the planar Grossman–Larson product defined in equation (1). Then we have the equality
[26]

𝐿𝐵(𝐿𝐵( 𝑓 , 𝛽), 𝛼exact) = 𝐿𝐵( 𝑓 , 𝛼). (7)

Finding the modified vector field 𝑓 = 𝐿𝐵( 𝑓 , 𝛽) is equivalent to finding 𝛽, given 𝛼 and 𝛼exact. This is
exactly described by the substitution problem.

Backwards error analysis is of interest for studying structure-preserving properties of a method. The
method 𝐿𝐵( 𝑓 , 𝛼) will preserve a structural property of f if and only if the modified vector field 𝑓 has
the same structural property.

Example 4. The exponential Euler method applied to equation (5) is given by

𝑦𝑛+1 = Φℎ,𝑐𝑛 (𝑦𝑛),

where 𝑐𝑛 is the constant vector field that is everywhere equal to 𝑓 (𝑦𝑛). The 𝐿𝐵-series for this method
is given by [26]

𝛼euler = ∅ + • +
1
2!

• • +
1
3!

• • • + · · · .
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To find the modified vector field 𝑓 for the exponential Euler method, we need to find the 𝛽 such that
equation (7) is satisfied. We shall in the sequel see that the substitution in equation (7) can be rewritten as

𝐿𝐵(𝐿𝐵( 𝑓 , 𝛽), 𝛼exact) = 𝐿𝐵( 𝑓 , (𝛽 ⊗ 𝛼exact)𝜌),

using a particular coaction 𝜌. We will now compute coefficients 𝛽(𝜔) for a few different 𝜔 by using the
coaction. The computation

𝜌(•) = • ⊗ •

tells us that 𝛼euler (•) = 𝛽(•)𝛼exact(•), so that 𝛽(•) = 1. The computation

𝜌
( [
•,

] )
= 𝜌

(
•

)
− 𝜌

(
•
)

=
[
•,

]
⊗ • + • � • � • ⊗ • + • � ⊗ ••

−
[

, •
]
⊗ • − • � • � • ⊗ • − � • ⊗ ••

= 2
[
•,

]
⊗ • + • � • � • ⊗

[
•,

]
(8)

tells us that

𝛼euler

( [
•,

] )
= (𝛽 ⊗ 𝛼exact)𝜌

( [
•,

] )
= 2𝛽

( [
•,

] )
𝛼exact(•) + 𝛽(•)3𝛼exact

( [
•,

] )
.

(9)

Note that the combinatorial description of the coaction computation in equation (8) is the central part
of this work, and will be unfolded in full generality further. Since we know that

𝛼euler

( [
•,

] )
= 0,

𝛽(•) = 1,
𝛼exact(•) = 1,

𝛼exact

( [
•,

] )
=

1
6
,

we get from equation (9) that

𝛽
( [
•,

] )
=
−1
12

.

This is in line with the computation of the modified vector field for the exponential Euler method given
in [26, p. 184].

3. A substitution operad of nonplanar rooted trees

In this section we construct an operad of nonplanar rooted trees that is dual to the coproduct ΔH. We
then see in Proposition 6 that this construction amounts to a different way of describing the pre-Lie
operad defined by Chapoton and Livernet in [14].

Let T̂𝑛 denote the vector space spanned by all nonplanar rooted trees with exactly n vertices, together
with a bijection between the set {1, . . . , 𝑛} and the vertices of a tree in T̂𝑛. We consider this bijection
as a labelling of the vertices. In the sequel, we will use the hat notation as an indication for labelled
vertices in other spaces also. Let the symmetric group Σ𝑛 act on T̂𝑛 by permuting the labels of the
vertices. Write [𝑥] for the orbit of 𝑥 ∈ T̂𝑛 under Σ𝑛. We consider this as an unlabelled tree. Define the
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equivalence relation 𝑥 ∼ 𝑦 ⇐⇒ [𝑥] = [𝑦] on T̂𝑛. Let T̂ =
∑∞
𝑛=1 T̂𝑛; then T̂/∼ can be identified with T.

This identification is the bosonic Fock functor [1].
We will now define an operad over T̂. Consider 𝑥 ∈ T̂𝑛 and 𝑥1, . . . , 𝑥𝑛 ∈ T̂. Each of the trees in

𝑥, 𝑥1, . . . , 𝑥𝑛 has a factorisation in terms of the single-vertex tree and the grafting product in the free
pre-Lie algebra. Define

𝑥1 · · · 𝑥𝑛 ◦ 𝑥

to be the result of replacing each occurrence of the single-vertex tree corresponding to vertex number
i in the factorisation of x by (the factorisation of) 𝑥𝑖 , for all 𝑖 = 1, . . . , 𝑛. The labels of the vertices in
each 𝑥𝑖 are shifted by the sum of the number of vertices in all 𝑥 𝑗 with 𝑗 < 𝑖. This is well illustrated by
an example:

Example 5. Let

𝑥 = 1

32
= 2 � ( 3 � 1) − ( 2 � 3) � 1 ,

𝑥1 = 1

2
, 𝑥2 =

3

21

4

, 𝑥3 =

2

1

4

3

.

Then

𝑥1𝑥2𝑥3 ◦ 𝑥 = 𝑥2 � (𝑥3 � 𝑥1) − (𝑥2 � 𝑥3) � 𝑥1

=

1

28

7

10

9

5

34

6

+

1

2

5

34

6

8

7

10

9

+

1

2

8

7

10

9

5

34

6
+

1

2

8

7

10

9

5

34

6

.

The following proposition states that the combinatorial description of the operad is that of the pre-Lie
operad:

Proposition 6. The expression

𝑥1 · · · 𝑥𝑛 ◦ 𝑥

evaluates to the sum of all possible trees obtained by replacing vertex i in x by the tree 𝑥𝑖 , for all
𝑖 = 1, . . . , 𝑛. The incoming edge to vertex i becomes incoming to the root of 𝑥𝑖 . The edges outgoing from
vertex i become outgoing from any vertex of 𝑥𝑖 .

Proof. Recall the definition of the free pre-Lie product: 𝑥𝑖 � 𝑥 𝑗 is the sum of all trees obtained by
adding an edge from any vertex in 𝑥 𝑗 to the root of 𝑥𝑖 . Furthermore, note that there is an edge from vertex
j to vertex i in x if and only if vertex i is pre-Lie grafted onto a subtree of x that contains vertex j. Hence
when vertex i is replaced by 𝑥𝑖 and vertex j is replaced by 𝑥 𝑗 , we get 𝑥𝑖 pre-Lie grafted onto 𝑥 𝑗 . �

We continue from Example 5 to illustrate the combinatorial picture:

Example 7. The expression

1

2

3

21

4

2

1

4

3

◦
1

32
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can be visualised by putting each input tree inside its respective vertex:

1

2

5

43

6

8

7

10

9

The four terms we see in Example 5 come from the four different ways of grafting the edges from
1

32
onto some vertex of 1

2
.

The visualisation in Example 7 illustrates a duality to the coproduct ΔH, which we make precise in
the following proposition:

Proposition 8. Let 𝑥 ∈ T̂ be a rooted tree; then

ΔH ([𝑥]) =
∑

[𝑥 ] is a summand
in [𝑥1 · · ·𝑥𝑛◦𝑥

′ ]

1
𝑛!

[𝑥1] · · · [𝑥𝑛] ⊗ [𝑥 ′]

for 𝑥1, . . . , 𝑥𝑛, 𝑥
′ labeled trees.

Proof. If [𝑥] is a summand in [𝑥1 · · · 𝑥𝑛 ◦ 𝑥 ′], then [𝑥1] · · · [𝑥𝑛] is a spanning subforest of [𝑥]. Further-
more, [𝑥]/[𝑥1] · · · [𝑥𝑛] = [𝑥 ′].

Conversely, let [𝑥1] · · · [𝑥𝑛] be an arbitrary spanning subforest of [𝑥]. Then for any labelling of the
vertex of [𝑥]/[𝑥1] · · · [𝑥𝑛], there is an ordering of 𝑥1 · · · 𝑥𝑛 such that the rooted tree that was contracted
into vertex i is in position i, for 𝑖 = 1, . . . , 𝑛. Then for any choice of labelling on each 𝑥𝑖 , we have
that [𝑥1 · · · 𝑥𝑛 ◦ [𝑥]/[𝑥1] · · · [𝑥𝑛]] is the sum of all possible trees obtained by replacing each vertex in
[𝑥]/[𝑥1] · · · [𝑥𝑛] by the rooted tree it was contracted from. In particular, [𝑥] must be a summand in this
sum.

Finally, we note that each of the 𝑛! different labellings of [𝑥 ′] gives us the same spanning subforest. �

Remark 8. One could consider the expression 𝑥1 · · · 𝑥𝑛 ◦ 𝑥 ′ also for unlabelled trees, to mean the sum
over all possible ways to pair vertices in 𝑥 ′ with different 𝑥𝑖 . In this setting, the coproduct ΔH is given
as the dual to ◦.

Remark 9. The coproduct construction in Proposition 8 is a symmetrisation of the bialgebra construction
by Foissy that we discussed in section 2.3. The observation that the bialgebra H can be obtained this
way was mentioned without proof by Foissy in [21].

4. A substitution operad of planar rooted trees

Motivated by the observation that the coproduct ΔH describing substitution in B-series can be seen as
dual to a substitution operad of nonplanar trees, we shall in this section construct a substitution operad
of Lie polynomials of planar rooted trees. Recall that substitution in LB-series is described by a map
that sends the single-vertex tree to a Lie polynomial and then generates to be a D-algebra morphism.
Furthermore, recall that the Lie polynomials are in bijection with the underlying free post-Lie algebra,
which can be represented by formal Lie brackets on planar rooted trees.

Let �𝐿𝑖𝑒(PT )𝑛 denote the vector space spanned by all Lie brackets over planar trees, such that there
are in total exactly n vertices in the brackets, together with a bijection between the set {1, . . . , 𝑛} and the
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vertices. This bijection provides a labelling of the vertices. Let the symmetric group Σ𝑛 act on �𝐿𝑖𝑒(PT )𝑛
by permuting the labels of the vertices. Write [𝜔] for the orbit of 𝜔 under Σ𝑛; we consider this as an
unlabelled element. Define the equivalence relation 𝜔1 ∼ 𝜔2 ⇐⇒ [𝜔1] = [𝜔2] on �𝐿𝑖𝑒(PT )𝑛 and let�𝐿𝑖𝑒(PT ) =

∑∞
𝑛=1

�𝐿𝑖𝑒(PT )𝑛; then �𝐿𝑖𝑒(PT )/∼ can be identified with 𝐿𝑖𝑒(PT ).
We will now define an operad over �𝐿𝑖𝑒(PT ). Consider 𝜔 ∈ �𝐿𝑖𝑒(PT )𝑛 and 𝜔1, . . . , 𝜔𝑛 ∈ �𝐿𝑖𝑒(PT ).

Each element of 𝜔, 𝜔1, . . . , 𝜔𝑛 can be expressed as a monomial in terms of the Lie bracket, the post-Lie
grafting and the single-vertex tree. Define

𝜔1 · · ·𝜔𝑛 ◦ 𝜔

to be the result of replacing each occurrence of the single-vertex tree corresponding to vertex number
i in the expression for 𝜔 by the expression for 𝜔𝑖 , for all 𝑖 = 1, . . . , 𝑛. Although the expressions for the
𝜔𝑖 are not unique, this construction is still well defined, as we are working with free post-Lie algebras.
The construction is well illustrated by an example:

Example 9. Let

𝜔 =
[

1 ,
[

2

3
,

4

65

] ]
= [ 1 , [ 3 ⊲ 2 , 5 ⊲( 6 ⊲ 4) − ( 5 ⊲ 6) ⊲ 4]];

then

𝜔1 · · ·𝜔6 ◦ 𝜔 = [𝜔1, [𝜔3 ⊲ 𝜔2, 𝜔5 ⊲(𝜔6 ⊲ 𝜔4) − (𝜔5 ⊲ 𝜔6) ⊲ 𝜔4]] .

Proposition 10.
( �𝐿𝑖𝑒(PT ), ◦

)
is an operad.

Proof. It is clear that the single-vertex tree is an identity element. It remains to show associativity and
equivariance.

We have that (
𝜔1,1 · · ·𝜔1,𝑛1 ◦ 𝜔1

)
· · ·

(
𝜔𝑛,1 · · ·𝜔𝑛,𝑛𝑙 ◦ 𝜔𝑛

)
◦ 𝜔

is the expression obtained by replacing vertex i in 𝜔 by 𝜔𝑖,1 · · ·𝜔𝑖,𝑛𝑖 ◦𝜔𝑖 , for 𝑖 = 1, . . . , 𝑙. Furthermore,
we have that

𝜔1,1 · · ·𝜔1,𝑛1𝜔2,1 · · ·𝜔2,𝑛2𝜔3,1 . . . 𝜔𝑛,𝑛𝑙 ◦ (𝜔1 · · ·𝜔𝑛 ◦ 𝜔)

is the expression obtained by first replacing vertex i in𝜔 by𝜔𝑖 and then replacing𝜔𝑖 by𝜔𝑖,1 . . . 𝜔𝑖,𝑛𝑖 ◦𝜔𝑖 ,
for 𝑖 = 1, . . . , 𝑙. Hence we have associativity.

Equivariance follows from the observation that the resulting unlabelled elements depend only on a
coupling between vertices and input elements. �

We get the following combinatorial description of the operad:

Proposition 11. The expression

𝜔1 · · ·𝜔𝑛 ◦ 𝜔

evaluates to the sum of all Lie brackets of planar trees obtained by replacing vertex i in 𝜔 by 𝜔𝑖 . Edges
outgoing from vertex i becomes leftmost outgoing from any vertex of 𝜔𝑖 , such that their left-to-right
order is preserved when they are outgoing from the same vertex. Edges incoming to vertex j become
incoming to the root of 𝜔 𝑗 if 𝜔 𝑗 is a tree. If 𝜔 𝑗 is a Lie bracket, we interpret the incoming edge as one
edge per root and graft all trees in 𝜔 𝑗 onto the same vertex in all possible left-to-right orders prescribed
by the interpretation [𝜔𝑎, 𝜔𝑏] = 𝜔𝑎𝜔𝑏 − 𝜔𝑏𝜔𝑎.
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Proof. This is completely analogous to the statement and proof of Proposition 6. Note that there is now
also a factor of planarity and that all grafting is done leftmost; note also that the identity

[𝜔1, 𝜔2] ⊲ 𝜔3 = 𝜔1 ⊲(𝜔2 ⊲ 𝜔3) − (𝜔1 ⊲ 𝜔2) ⊲ 𝜔3 − 𝜔2 ⊲(𝜔1 ⊲ 𝜔3) + (𝜔2 ⊲ 𝜔1) ⊲ 𝜔3

is used to deal with replacing a nonroot vertex by a Lie bracket. �

Corollary 11.1. The operad
( �𝐿𝑖𝑒(𝑃𝑇), ◦) is the post-Lie operad.

Proof. In Proposition 11, we recovered the combinatorial description of the post-Lie operad from
[39]. �

Motivated by Proposition 8, we are now going to define a coproduct as the dual of this substitution
operad.

Definition 3. Let 𝑆(𝐿𝑖𝑒(PT )) denote the symmetric algebra over the vector space 𝐿𝑖𝑒(PT ), meaning
that it is the vector space of all unordered sequences of Lie polynomials of ordered forests together
with a commutative concatenation product. We denote the commutative concatenation of 𝜔1 and 𝜔2 by
𝜔1 � 𝜔2. We furthermore denote the identity element of this product by 1.

Let𝜔 ∈ �𝐿𝑖𝑒(PT ) be a Lie polynomial. We define the coproductΔQ : 𝑆(𝐿𝑖𝑒(PT )) → 𝑆(𝐿𝑖𝑒(PT ))⊗
𝑆(𝐿𝑖𝑒(PT )) by

ΔQ ([𝜔]) =
∑

[𝜔 ] is a summand in
[𝜔1 · · ·𝜔𝑛◦𝜔

′ ]

1
𝑛!

[𝜔1] � · · · � [𝜔𝑛] ⊗ [𝜔′]

for 𝜔1, . . . , 𝜔𝑛, 𝜔
′ labelled Lie monomials. The coproduct is then extended to 𝑆(𝐿𝑖𝑒(PT )) multiplica-

tively.

We conclude the section with technical details.

Proposition 12. Let the linear map 𝜖 : 𝑆(𝐿𝑖𝑒(PT )) → K be defined by

𝜖 (𝜔) =

{
1 if 𝜔 = 1 or 𝜔 = •,

0 otherwise

for 𝜔 a Lie monomial, and extended to 𝑆(𝐿𝑖𝑒(PT )) by

𝜖 (𝜔1 � 𝜔2) = 𝜖 (𝜔1)𝜖 (𝜔2).

Then (𝑆(𝐿𝑖𝑒(PT )),ΔQ, 𝜖) is a coalgebra.

Proof. The coassociativity of ΔQ follows immediately from the associativity of
( �𝐿𝑖𝑒(PT ), ◦

)
. It

remains to show that 𝜖 is a counit, meaning that it satisfies

(𝐼𝑑 ⊗ 𝜖)ΔQ = 𝐼𝑑 = (𝜖 ⊗ 𝐼𝑑)ΔQ.

We have that (𝐼𝑑⊗𝜖)ΔQ(𝜔1 � · · ·�𝜔𝑛) is nonzero only on the unique term where every 𝜔𝑖 , 𝑖 = 1, . . . , 𝑛, is
contracted into a single vertex. Hence this has to be the identity. Similarly, we have that (𝜖 ⊗ 𝐼𝑑)ΔQ(𝜔)
is nonzero only on the unique term where every contracted subforest of 𝜔 consists of a single vertex.
Hence this expression evaluates to 𝜔. �

Proposition 13. Define the function |·| : 𝐿𝑖𝑒(PT ) → N by |𝜔| = #{vertices in 𝜔} − 1. Then

| [𝜔1 · · ·𝜔𝑛 ◦ 𝜔] | = | [𝜔1] | + · · · + | [𝜔𝑛] | + | [𝜔] |.
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Proof. Since every vertex in [𝜔1 · · ·𝜔𝑛 ◦ 𝜔] comes from a vertex in an 𝜔𝑖 , we have

| [𝜔1 · · ·𝜔𝑛 ◦ 𝜔] | + 1 = (| [𝜔1] | + 1) + · · · + (| [𝜔𝑛] | + 1)
= (| [𝜔1] | + · · · + | [𝜔𝑛] | + | [𝜔] |) + 𝑛.

Hence

| [𝜔1 · · ·𝜔𝑛 ◦ 𝜔] | = | [𝜔1] | + · · · + | [𝜔𝑛] | + (𝑛 − 1)
= | [𝜔1] | + · · · + | [𝜔𝑛] | + | [𝜔] |.

�

Corollary 13.1. The function |·| defined in Proposition 13 induces a grading on the bialgebra Q =
(𝑆(𝐿𝑖𝑒(PT )), �,ΔQ, 1, 𝜖).

Proof. Let 𝜔 ∈ 𝐿𝑖𝑒(PT ) and consider the term 𝜔1 � · · · � 𝜔𝑛 ⊗ 𝜔′ in ΔQ (𝜔). By Proposition 13, we
have that |𝜔1 | + · · · + |𝜔𝑛 | + |𝜔′ | = |𝜔|. Extend |·| to 𝑆(𝐿𝑖𝑒(PT )) by |𝜔1 � · · · � 𝜔𝑛 | = |𝜔1 | + · · · + |𝜔𝑛 |,
then |𝜔| =

		𝜔 (1)
		 + 		𝜔 (2)

		 and 𝑆(𝐿𝑖𝑒(PT )) = ⊕∞
𝑛=1{𝜔 ∈ 𝑆(𝐿𝑖𝑒(PT )) : |𝜔| = 𝑛} defines a grading. �

5. Two cointeracting bialgebras

In this section we are going to describe a cointeraction between the Munthe-Kaas–Wright Hopf algebra
H𝑁 = (OF,⧢,Δ𝑁 , ∅, 𝛿(∅)) and the bialgebra Q defined in the previous section. This means that we
will define a coaction 𝜌 : H𝑁 → Q ⊗ H𝑁 that satisfies the conditions of Definition 2. Informally, we
want this coaction to be the opposite of substituting Lie polynomials into the vertices of forests.

Remark 10. There exists an isomorphism [20] (𝑆(𝐿𝑖𝑒(PT )), �) � (OF,⧢). This means that our
coproduct ΔQ : Q → Q ⊗ Q can already be seen as a coaction H𝑁 → Q ⊗ H𝑁 via identification by
this isomorphism. The isomorphism is, however, nontrivial. We will prefer to describe the coaction by
using a module over an operad.

Note that in the nonplanar case, we had an isomorphism between H𝐶𝐾 and H as algebras. This is
now generalised also to the planar case.

Recall that OF is the universal enveloping algebra of 𝐿𝑖𝑒(PT ); hence there is an inclusion
𝐿𝑖𝑒(PT ) ⊂ OF given by the commutator [𝜏1, 𝜏2] = 𝜏1𝜏2 − 𝜏2𝜏1. We will use this inclusion to define
what it means to substitute elements of 𝐿𝑖𝑒(PT ) into vertices of OF.

Let ÔF𝑛 denote the vector space spanned by all ordered forests with exactly n vertices, together with
a bijection between the set {1, . . . , 𝑛} and the vertices of the forest. This bijection provides a labelling
of the vertices. Let the symmetric group Σ𝑛 act on ÔF𝑛 by permuting the labels of the vertices. Write
[𝜔] for the orbit of 𝜔 under Σ𝑛; we consider this as an unlabelled forest. Define the equivalence relation
𝜔1 ∼ 𝜔2 ⇐⇒ [𝜔1] = [𝜔2] on ÔF𝑛. Let ÔF =

∑∞
𝑛=1 ÔF𝑛; then ÔF/∼ can be identified with OF.

This identification is the bosonic Fock functor [1].
We now define composition maps ◦ : ⊕𝑛≥1 �𝐿𝑖𝑒(PT )

⊗𝑛
⊗ ÔF𝑛 → ÔF. Set 𝜔1 · · ·𝜔𝑛 ∈ �𝐿𝑖𝑒(PT )

and 𝜔′ ∈ ÔF𝑛; then 𝜔′ can be expressed in terms of the single-vertex tree, associative concatenation
and the nonassociative D-algebra product ⊲. Furthermore, all of 𝜔1 · · ·𝜔𝑛 can be expressed in the same
way via the inclusion �𝐿𝑖𝑒(PT ) ⊂ ÔF. By the composition

𝜔1 · · ·𝜔𝑛 ◦ 𝜔′

we will mean the expression obtained by replacing each occurence of vertex number i in the expression
of 𝜔′ by the expression for 𝜔𝑖 , 𝑖 = 1, . . . , 𝑛.
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Proposition 14. The composition turns ÔF into a (right) module over �𝐿𝑖𝑒(PT ).

Proof. We first note that the composition is well defined, since expressing a forest 𝜔′ in terms of
associative concatenation, the nonassociative product ⊲ and the single-vertex tree is unique up to
rewritings by the identities

𝜏 ⊲(𝜔1𝜔2) = (𝜏 ⊲ 𝜔1)𝜔2 + 𝜔1(𝜏 ⊲ 𝜔2),

𝜏 ⊲(𝜔1 ⊲ 𝜔2) = (𝜏𝜔1) ⊲ 𝜔2 + (𝜏 ⊲ 𝜔1) ⊲ 𝜔2

for 𝜏 a derivation and 𝜔1, 𝜔2 arbitrary. If 𝜏 is a derivation, it is a Lie polynomial. Since Lie polynomials
get mapped to Lie polynomials, these identities can be applied after substitution. Hence ◦ commutes
with rewriting and must be well defined.

Proving associativity and equivariance can be done in the same way as in Proposition 10. �

Remark 11. Note that if we attempt to turn ÔF into an operad by replacing the single-vertex tree by
an arbitrary forest, we are no longer mapping Lie polynomials to Lie polynomials. This means that
computing 𝜔1 · · ·𝜔𝑛 ◦ 𝜔′ can give different results depending on how you choose to express 𝜔′.

We get the following combinatorial picture.

Proposition 15. The expression

𝜔1 · · ·𝜔𝑛 ◦ 𝜔

evaluates to the sum of all possible forests obtained by replacing vertex i in 𝜔 by the forest 𝜔𝑖 , for all
𝑖 = 1, . . . , 𝑛. The incoming edge to vertex i becomes one incoming edge to each of the roots of 𝜔𝑖 . The
edges outgoing from vertex i become leftmost outgoing from any vertex of 𝜔𝑖 . The left-to-right ordering
of edges outgoing from the same vertex i is preserved whenever the edges end up on the same vertex
in 𝜔𝑖 .

Proof. Recall the definition of the nonassociative product in the free D-algebra; 𝜔𝑎 ⊲ 𝜔𝑏 is the sum of
all ways to add one edge incoming to each root of 𝜔𝑎 that are outgoing in the leftmost position from
any vertex of 𝜔𝑏 and such that if two trees from 𝜔𝑎 are grafted on the same vertex of 𝜔𝑏 , their pairwise
order in the planar embedding is preserved. Furthermore, note that there is an edge from vertex j to
vertex i in 𝜔 if and only if vertex i is ⊲-grafted onto a subtree of 𝜔 that contains the vertex j. Hence
when vertex i is replaced by 𝜔𝑖 and vertex j is replaced by 𝜔 𝑗 , we get 𝜔𝑖 grafted onto 𝜔 𝑗 by the
product ⊲. �

We are now ready to define the coaction. Let the coaction 𝜌 : H𝑁 → Q ⊗ H𝑁 be defined by

𝜌(∅) = 1 ⊗ ∅,

𝜌([𝜔]) =
∑

[𝜔 ] is a summand
in [𝜔1 · · ·𝜔𝑛◦𝜔

′ ]

1
𝑛!

[𝜔1] � · · · � [𝜔𝑛] ⊗ [𝜔′]

for 𝜔1, . . . , 𝜔𝑛 labelled Lie monomials and 𝜔′ a labelled forest. We now want to give a few example
computations of this coaction:
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Example 16.

𝜌
( )

=
[

,
]
⊗ + � ⊗ + � � ⊗ ,

𝜌
( )

=
[ [

,
]
,

]
⊗ • +

[
,
[

,
] ]

⊗ • + • � � • ⊗ • • •

+
[

,
]
� • ⊗ • • + • �

[
, •
]
⊗ • • + • � • � • � • ⊗ ,

𝜌

( )
= ⊗ • + � • � • � • ⊗ 3 + � • � • � • ⊗

+ � • � • ⊗ 2 + � • � • ⊗ + � • ⊗

+ � • ⊗ +
[

, •
]
� • ⊗ +

[
, •
]
� • � • ⊗ .

Notation 1. We shall in the sequel write 𝜔1 · · ·𝜔𝑛 ◦ 𝜔′ also when the elements are unlabelled. In this
case, we mean it as a sum over all ways to pair vertices in 𝜔′ with input elements.

Proposition 17. The coaction 𝜌 defines a cointeraction between Q and H𝑁 .

Proof. We first prove the identity

(𝐼𝑑 ⊗ Δ𝑁 )𝜌(𝜔) = 𝑚1,3
� (𝜌 ⊗ 𝜌)Δ𝑁 (𝜔).

The identity is clear when 𝜔 = ∅. Suppose that 𝜔 is a nonempty forest; then we have

(𝐼𝑑 ⊗ Δ𝑁 )𝜌(𝜔) =
∑

𝜔 is a summand
in 𝜔1 · · ·𝜔𝑛◦(𝜔

′
𝜔′′)

𝜔1 � · · · � 𝜔𝑛 ⊗ 𝜔′ ⊗ 𝜔′′.

Furthermore,

𝑚1,3 (𝜌 ⊗ 𝜌)Δ𝑁 (𝜔)

= 𝑚1,3
� (𝜌 ⊗ 𝜌)

∑
𝜔 is a summand

in 𝜔′
𝜔′′

𝜔′ ⊗ 𝜔′′

=
∑

𝜔 is a summand
in 𝜔′
𝜔′′

∑
𝜔′ is a summand
in 𝜔′

1 · · ·𝜔
′
𝑘1
◦�̄�′

∑
𝜔′′ is a summand
in 𝜔′′

1 · · ·𝜔
′′
𝑘2
◦�̄�′′

𝜔′
1 � · · · � 𝜔

′
𝑘1
� 𝜔′′

1 � · · · � 𝜔
′′
𝑘2
⊗ �̄�′ ⊗ �̄�′′

=
∑

𝜔 is a summand
in

(
𝜔′

1 · · ·𝜔
′
𝑘1
◦�̄�′

)


(
𝜔′′

1 · · ·𝜔
′′
𝑘2
◦�̄�′′

) 𝜔
′
1 � · · · � 𝜔

′
𝑘1
� 𝜔′′

1 � · · · � 𝜔
′′
𝑘2
⊗ �̄�′ ⊗ �̄�′

=
∑

𝜔 is a summand
in 𝜔1 · · ·𝜔𝑛◦(𝜔

′
𝜔′′)

𝜔1 � · · · � 𝜔𝑛 ⊗ 𝜔′ ⊗ 𝜔′′,

which proves the identity.
Next we need to prove compatibility with the shuffle product – that is, the identity

𝜌(𝜔𝑎 ⧢ 𝜔𝑏) = 𝜌(𝜔𝑎)𝜌(𝜔𝑏).
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Recall that using the natural identification 〈𝜔1, 𝜔2〉 = 𝛿𝜔1 ,𝜔2 , we can write

𝜔𝑎 ⧢ 𝜔𝑏 =
∑

𝜔𝑎⊗𝜔𝑏 is a
summand in Δ⧢ (𝜔)

𝜔 =
∑
𝜔

〈Δ⧢ (𝜔), 𝜔𝑎 ⊗ 𝜔𝑏〉𝜔.

We then have

𝜌(𝜔𝑎 ⧢ 𝜔𝑏) = 𝜌
�����

∑
𝜔𝑎⊗𝜔𝑏 is a

summand in Δ⧢ (𝜔)

𝜔
�����

=
∑

𝜔𝑎⊗𝜔𝑏 is a
summand in Δ⧢ (𝜔)

∑
𝜔 is a summand
in 𝜔1 · · ·𝜔𝑚◦𝜔′

𝜔1 � · · · � 𝜔𝑚 ⊗ 𝜔′

=
∑

𝜔𝑎⊗𝜔𝑏 is a summand
in Δ⧢ (𝜔1 · · ·𝜔𝑚◦𝜔′)

𝜔1 � · · · � 𝜔𝑚 ⊗ 𝜔′

=
∑

𝜔𝑎⊗𝜔𝑏 is a summand
in Δ⧢ (𝜔1 · · ·𝜔𝑚◦𝜏1 · · ·𝜏𝑘 )

𝜔1 � · · · � 𝜔𝑚 ⊗ 𝜏1 · · · 𝜏𝑘

=
∑

𝜔𝑎⊗𝜔𝑏 is a summand in
Δ⧢ ((𝜔1,1 · · ·𝜔1,𝑛1◦𝜏1) ···(𝜔𝑘,1 · · ·𝜔𝑘,𝑛𝑘

◦𝜏𝑘))

𝜔1,1 � · · · � 𝜔𝑘,𝑛𝑘 ⊗ 𝜏1 · · · 𝜏𝑘

=
∑

𝜔𝑎⊗𝜔𝑏 is a summand in
Δ⧢ ((𝜔1,1 · · ·𝜔1,𝑛1◦𝜏1)) ···Δ⧢ ((𝜔𝑘,1 · · ·𝜔𝑘,𝑛𝑘

◦𝜏𝑘))

𝜔1,1 � · · · � 𝜔𝑘,𝑛𝑘 ⊗ 𝜏1 · · · 𝜏𝑘

=
∑

𝜔𝑎⊗𝜔𝑏 is a summand in
(𝜔1,1 · · ·𝜔1,𝑛1◦𝜏1⊗∅+∅⊗𝜔1,1 · · ·𝜔1,𝑛1◦𝜏1) ···(𝜔𝑘,1 · · ·𝜔𝑘,𝑛𝑘

◦𝜏𝑘 ⊗∅+∅⊗𝜔𝑘,1 · · ·𝜔𝑘,𝑛𝑘
◦𝜏𝑘)

𝜔1,1 � · · · � 𝜔𝑘,𝑛𝑘 ⊗ 𝜏1 · · · 𝜏𝑘

=
∑

𝜔𝑎⊗𝜔𝑏 is a summand in
(𝜔1,1 · · ·𝜔1,𝑛◦⊗𝜔2,1 · · ·𝜔2,𝑚◦)Δ⧢ (𝜔)

𝜔1,1 � · · · � 𝜔1,𝑛 � 𝜔2,𝑚 � · · · � 𝜔2,𝑚 ⊗ 𝜔

=
∑

𝜔𝑎 is a summand
in 𝜔1,1 · · ·𝜔1,𝑛◦𝜔

′
1

∑
𝜔𝑏 is a summand

in 𝜔2,1 · · ·𝑥2,𝑚◦𝜔′
2

𝜔1,1 � · · · � 𝜔1,𝑛 � 𝜔2,1 � · · · � 𝜔2,𝑚 ⊗ 𝜔′
1 ⧢ 𝜔′

2

=
�����

∑
𝜔𝑎 is a summand
in 𝜔1 · · ·𝜔𝑛◦𝜔

′

𝜔1 � · · · � 𝜔𝑛 ⊗ 𝜔′
�����
�����

∑
𝜔𝑏 is a summand
in 𝜔1 · · ·𝜔𝑚◦𝜔′

𝜔1 � · · · � 𝜔𝑚 ⊗ 𝜔′
�����

= 𝜌(𝜔𝑎)𝜌(𝜔𝑏),

where 𝜏s are trees and we use the fact that the forests on the left-hand side of 𝜌 are primitive to the
coshuffle coproduct.

The identity

𝜌(∅) = 1 ⊗ ∅

is true by definition.
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The identity

(𝐼𝑑 ⊗ 𝛿(∅))𝜌 = ∅𝜖

follows from the fact that both sides of the equation only evaluate to something nonzero on scalar
multiples of the empty forest.

In conclusion, the bialgebras are in cointeraction. �

Corollary 17.1. Let 𝑆(𝐿𝑖𝑒(PT ))∗ and OF∗ denote the linear dual spaces of 𝑆(𝐿𝑖𝑒(PT )) and OF,
respectively. Define a map ★ : 𝑆(𝐿𝑖𝑒(PT ))∗ ⊗ OF∗ → OF∗ by

(𝑥 ★ 𝑦) (𝜔) = (𝑥 ⊗ 𝑦)𝜌(𝜔).

Now let 𝛼 denote a character of Q and let 𝑎, 𝑏 ∈ OF∗ be arbitrary; then

𝛼 ★ (𝑎 ★𝑁 𝑏) = (𝛼 ★ 𝑎) ★𝑁 (𝛼 ★ 𝑏),

where ★𝑁 is the convolution product in H𝑁 .

Proof. We have

𝛼 ★ (𝑎 ★𝑁 𝑏) = (𝛼 ⊗ 𝑎 ⊗ 𝑏) (𝐼𝑑 ⊗ Δ𝑁 )𝜌

and

(𝛼 ★ 𝑎) ★𝑁 (𝛼 ★ 𝑏) = (𝛼 ⊗ 𝑎 ⊗ 𝛼 ⊗ 𝑏) (𝜌 ⊗ 𝜌)Δ𝑁 .

The statement now follows from Proposition 17 and the fact that 𝛼 is a character with respect to the
symmetric product on Q. �

The following proposition states that the bialgebra H used for B-series substitution can be recovered
from the bialgebra Q:

Proposition 18. Define a map 𝜋 : 𝑆(𝐿𝑖𝑒(PT )) → F by 𝜋(𝜏) being the unique nonplanar tree 𝜏′ such
that 𝜏 is a planar embedding of 𝜏′, whenever 𝜏 is a tree and extended by

𝜋(1) = ∅,

𝜋([𝜏1, 𝜏2]) = 0,
𝜋(𝜏1 � 𝜏2) = 𝜋(𝜏1)𝜋(𝜏2).

Then 𝜋 : Q → H is a surjective biagebra morphism. Hence Q/ker(𝜋) � H.

Proof. It is clear that 𝜋 is an algebra morphism by definition. It remains to show that 𝜋 is a coalgebra
morphism – that is, that

(𝜋 ⊗ 𝜋)ΔQ = ΔH𝜋.

It is furthermore clear that both sides in this equation vanish on Lie brackets. Suppose that 𝜏 is a tree; then

(𝜋 ⊗ 𝜋)ΔQ(𝜏) =
∑

𝜏 is a summand
in 𝜏1 · · ·𝜏𝑛◦𝜏

′

𝜋(𝜏1) · · · 𝜋(𝜏𝑛) ⊗ 𝜋(𝜏′)
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and

ΔH (𝜋(𝜏)) =
∑

𝜋 (𝜏) is a summand
in 𝜏1 · · ·𝜏𝑛◦𝜏

′

𝜏1 · · · 𝜏𝑛 ⊗ 𝜏′.

These have to be equal, since you get the expression of 𝜋(𝜏) in terms of the single-vertex tree and pre-Lie
grafting from the expression of 𝜏 in terms of the single-vertex tree and post-Lie grafting by replacing
the post-Lie grafting product with the pre-Lie grafting product in the expression. �

6. Substitution in LB-series

Now consider the free D-algebra OF. It is graded by the number of vertices in a forest. Denote the
completion of OF, with respect to this grading, by ÕF. Denote its dual by OF∗; then there is a bijection
𝛿 : ÕF → OF∗ given by the dual basis. An LB-series can then be expressed as

𝐿𝐵(𝑎, 𝛼) = 𝐹𝑎

(
𝛿−1(𝛼)

)
.

We shall use this description in the sequel.

Lemma 19. Set 𝛼 ∈ 𝐿𝑖𝑒(PT )∗. The map 𝐵𝛼 : OF → ÕF given by 𝐵𝛼 (𝜔) = 𝛿−1 (𝛼 ★ 𝛿(𝜔)) is a
D-algebra morphism.

Proof. Recall that Δ𝑁 is dual to the planar Grossman–Larson product (1). Hence

𝛿(𝜔1 
𝜔2) (𝜔) = (𝛿(𝜔1) ★𝑁 𝛿(𝜔2)) (𝜔).

Then we get

𝐵𝛼 (𝜔1 
𝜔2) = 𝛿−1(𝛼 ★ 𝛿(𝜔1 
𝜔2))

= 𝛿−1(𝛼 ★ (𝛿(𝜔1) ★𝑁 𝛿(𝜔2)))

= 𝛿−1((𝛼 ★ 𝛿(𝜔1)) ★𝑁 (𝛼 ★ 𝛿(𝜔2)))

= 𝛿−1(𝛼 ★ 𝛿(𝜔1)) 
 𝛿−1(𝛼 ★ 𝛿(𝜔2))

= 𝐵𝛼 (𝜔1) 
 𝐵𝛼 (𝜔2).

Using Sweedler’s notation 𝜌(𝜔) = 𝜔 (1) ⊗𝜔 (2) , we have that 𝐵𝛼 (𝜔1𝜔2) is the sum over all forests 𝜔 such
that 𝜔 (2) contains 𝜔1𝜔2, multiplied by the corresponding 𝛼

(
𝜔 (1)

)
. However, 𝜔 (1) can be split into a part

𝜔1
(1) consisting of forests that got contracted into vertices in 𝜔1 and a part 𝜔2

(1) . Then 𝜔 (1) = 𝜔1
(1) �𝜔

2
(2)

and 𝛼
(
𝜔 (1)

)
= 𝛼

(
𝜔1

(1)

)
𝛼
(
𝜔2

(1)

)
. Hence

𝐵𝛼 (𝜔1𝜔2) = 𝐵𝛼 (𝜔1)𝐵𝛼 (𝜔2).

This then implies

𝐵𝛼 (𝜔1 ⊲ 𝜔2) = 𝐵𝛼 (𝜔1) ⊲ 𝐵𝛼 (𝜔2).

Lastly, we need to show that 𝐵𝛼 maps derivations to derivations. This follows if we show that 𝐵𝛼 is a
coshuffle morphism – that is, we have to show that

(𝐵𝛼 ⊗ 𝐵𝛼)Δ⧢ = Δ⧢𝐵𝛼 .
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Let 𝜏 be a tree; then

𝐵𝛼 (𝜏) = 𝐵𝛼 (𝐵
−(𝜏) ⊲ •)

= 𝐵𝛼 (𝐵
−(𝜏)) ⊲ 𝐵𝛼 (•)

= 𝐵𝛼 (𝐵
−(𝜏)) ⊲ 𝛿−1 (𝛼).

Recall from [19] the identity

Δ⧢ (𝐴 ⊲ 𝐵) =
(
𝐴(1) ⊲ 𝐵 (1)

)
⊗
(
𝐴(2) ⊲ 𝐵 (2)

)
.

Furthermore, recall that 𝛿−1(𝛼) is a Lie polynomial. Hence

Δ⧢ (𝐵𝛼 (𝜏)) = 𝐵𝛼 (𝐵
−(𝜏))(1) ⊲ ∅ ⊗ 𝐵𝛼 (𝐵

−(𝜏)) ⊲ 𝛿−1 (𝛼)

+ 𝐵𝛼 (𝐵
−(𝜏))(1) ⊲ 𝛿

−1 (𝛼) ⊗ 𝐵𝛼 (𝐵
−(𝜏))(2) ⊲ ∅

= ∅ ⊗ 𝐵𝛼 (𝜏) + 𝐵𝛼 (𝜏) ⊗ ∅

= (𝐵𝛼 ⊗ 𝐵𝛼)Δ⧢(𝜏).

Now for an arbitrary forest, we get

Δ⧢ (𝐵𝛼 (𝜏1 · · · 𝜏𝑛)) = Δ⧢ (𝐵𝛼 (𝜏1) · · · 𝐵𝛼 (𝜏𝑚))

= Δ⧢ (𝐵𝛼 (𝜏1)) · · ·Δ⧢ (𝐵𝛼 (𝜏𝑛))

= (𝐵𝛼 ⊗ 𝐵𝛼)Δ⧢(𝜏1) · · ·Δ⧢ (𝜏𝑛)

= (𝐵𝛼 ⊗ 𝐵𝛼)Δ⧢(𝜏1 · · · 𝜏𝑛).

Hence 𝐵𝛼 is a coshuffle morphism and therefore maps derivations to derivations. In conclusion, 𝐵𝛼 is
a D-algebra morphism. �

Remark 12. Let 𝛼 ∈ OF∗ be a logarithmic linear map; then it can be described by Lie polynomials in
the dual basis – for example,

𝛼 = 𝛿
( )

− 𝛿
( )

is logarithmic. Then by the embedding 𝐿𝑖𝑒(PT ) ⊂ OF, we can view 𝛼 as a linear map �̂� ∈ 𝐿𝑖𝑒(PT )∗.
For the example 𝛼 in this remark, we would have

�̂� = 𝛿
( [

,
] )

.

Theorem 20. Let 𝛼, 𝛽 be linear maps on OF, with 𝛼 defining a logarithmic LB-series. Since 𝛼 is
logarithmic, we can view it as a linear map �̂� ∈ 𝐿𝑖𝑒(PT )∗. Extend �̂� to be a character on 𝑆(𝐿𝑖𝑒(PT ));
then

𝐿𝐵(𝐿𝐵(𝑎, 𝛼), 𝛽) = 𝐿𝐵(𝑎, �̂� ★ 𝛽).

Proof. Denote by 𝐴𝛼 : OF → OF∗ the unique D-algebra morphism given by 𝐴𝛼 (•) = 𝛿−1(𝛼). Extend
𝐴𝛼 to be defined on ÕF. Then

𝐹𝐿𝐵 (𝑎,𝛼) = 𝐹𝑎 ◦ 𝐴𝛼,

where ◦ means composition of functions, so that

𝐿𝐵(𝐿𝐵(𝑎, 𝛼), 𝛽) = 𝐹𝑎

(
𝐴𝛼

(
𝛿−1(𝛽)

))
.
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Furthermore,

𝐿𝐵(𝑎, �̂� ★ 𝛽) = 𝐹𝑎

(
𝛿−1(�̂� ★ 𝛽)

)
= 𝐹𝑎

(
𝐵 �̂�

(
𝛿−1(𝛽)

))
.

Now the theorem follows if 𝐵 �̂� = 𝐴𝛼. However, it is clear that 𝐵 �̂� (•) = 𝐴𝛼 (•). Then equality everywhere
follows, as both maps are D-algebra morphisms. �

It is now worthwhile to relate the previous result with the recursive substitution formula from [26].

Remark 13. It is proved in [26] that

𝐿𝐵(𝐿𝐵(𝑎, 𝛼), 𝛽) = 𝐿𝐵(𝑎, 𝐴𝛼 (𝛽)),

but no efficient method for evaluating 𝐴𝛼 is given. Instead, the dual operator 𝐴†
𝛼 is defined by

〈𝐴𝛼 (𝜔1), 𝜔2〉 =
〈
𝜔1, 𝐴

†
𝛼 (𝜔2)

〉
.

Then a recursive formula for evaluating 𝐴†
𝛼 is shown. Now the observation that 𝐵 �̂� = 𝐴𝛼 yields

𝐴†
𝛼 (𝜔) = �̂�

(
𝜔 (1)

)
𝜔 (2) .

In particular, this means that the recursive formula given for 𝐴†
𝛼 can be used to evaluate 𝜌.

Proposition 21. Set �̂� ∈ 𝐿𝑖𝑒(PT )∗; then the map �̂�★ : OF∗ → OF∗ is an endomorphism over the
group of exponential linear maps.

Proof. This follows from 𝐵 �̂� being a coshuffle morphism. �

7. A coaction of ordered forest contractions

In this section we shall describe the combinatorial picture of the coaction 𝜌.
Recall that the coaction 𝜌 is defined on ordered forests, as a sum over all the ways to obtain a forest 𝜔

by inserting Lie polynomials 𝜔1, . . . , 𝜔𝑛 into a forest 𝜔′. There is a bijection between vertices in 𝜔 and
vertices in 𝜔1, . . . , 𝜔𝑛. We say that a partition of the vertices of a forest 𝜔 into subforests 𝜔1, . . . , 𝜔𝑛

is an admissible partition if there exist a forest 𝜔′ and a way to insert Lie brackets into each 𝜔𝑖 such
that 𝜔 is a summand in 𝜔1 · · ·𝜔𝑛 ◦ 𝜔′. If 𝜔1 · · ·𝜔𝑛 is an admissible partition of 𝜔, we shall denote by
𝜔/𝜔1 · · ·𝜔𝑛 the sum of all 𝜔′ such that 𝜔 is a summand in 𝜔1 · · ·𝜔𝑛 ◦ 𝜔′. We illustrate this with an
example.

Example 22. The coaction 𝜌 maps the forest
1

3

4

2 to

𝜌

( )
= ⊗ • + • � • � • � • ⊗ + • � ⊗

+ • � ⊗ + • � • � ⊗ 3 +
[

,
]
� • ⊗ ,

corresponding to the following admissible partitions:( 1

3

4

2

)
, ( 1 , 2 , 3 , 4),

(
2 ,

1

3

4

)
,
(

4 ,
1

32

)
,
(

2 , 4 ,
1

3

)
,
(

1 , 2 ,
3

4

)
,
(

1 , 2
3

4

)
.

The right-hand side of the tensors is the corresponding 𝜔′.
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Note that the purpose of the labelling of the vertices is to distinguish the different vertices in a
partition. It does not relate to any operadic structure, as the coaction is defined over unlabelled forests.

Furthermore, note that the left-hand side of the tensors is in 𝑆(𝐿𝑖𝑒(PT )), while the subforests in the
admissible partitions are in OF.

We define a coaction Δ𝑊 : OF → 𝑆
(
OF+) ⊗ OF by

Δ𝑊 (∅) = 1 ⊗ ∅,

Δ𝑊 (𝜔) =
∑

𝜔1 · · ·𝜔𝑛 admissible partition
𝜔1 � · · · � 𝜔𝑛 ⊗ 𝜔/𝜔1 · · ·𝜔𝑛,

where
(
𝑆
(
OF+) , �) is the symmetric algebra of nonempty ordered forests. We can informally see this as

the coaction obtained from 𝜌 by ‘removing’ the Lie brackets, as shown by the following example:

Example 23.

Δ𝑊

( )
= ⊗ • + • � • � • � • ⊗ + • � ⊗

+ • � ⊗ + • � • � ⊗ 3 + � • ⊗ .

The reason we may want to consider Δ𝑊 instead of 𝜌 is that it eliminates the need to rewrite the
logarithmic linear map 𝛼 ∈ OF∗ into a map �̂� ∈ 𝐿𝑖𝑒(PT )∗, as shown in the following proposition:

Proposition 24. Let 𝛼 ∈ OF∗ be logarithmic and let �̂� ∈ 𝐿𝑖𝑒(PT )∗ be 𝛼 restricted to the Lie polyno-
mials. Let 𝛽 ∈ OF∗ be arbitrary. Define a map ★𝑊 : 𝑆

(
OF+)∗ ⊗ OF∗ → OF∗ by

(𝑥 ★𝑊 𝑦) = (𝑥 ⊗ 𝑦)Δ𝑊 .

Extend 𝛼, �̂� multiplicatively to 𝑆
(
OF+)∗ and 𝑆(𝐿𝑖𝑒(PT ))∗, respectively; then

𝛼 ★𝑊 𝛽 = �̂� ★ 𝛽.

Proof. The coactions 𝜌 andΔ𝑊 agree on every term where the left-hand side consists only of symmetric
products of trees. The maps 𝛼 and �̂� agree on trees. Use the Jacobi identity and the antisymmetry of
the Lie bracket to write all (nested) Lie brackets on the left-hand side of 𝜌(𝜔) in such a way that the
left-to-right order of the trees in the Lie bracket agrees with the left-to-right order of the trees seen as
subtrees in the planar embedding of 𝜔. If the left-hand side of the coaction 𝜌 contains a term with a Lie
bracket [𝜔1, 𝜔2], then the corresponding term in Δ𝑊 contains instead a term 𝜔1𝜔2 (iterate for nested
brackets). If �̂� evaluates to 𝑐 ∈ K on [𝜔1, 𝜔2], then 𝛼 evaluates to c on 𝜔1𝜔2 and to −𝑐 on 𝜔2𝜔1. Every
term in 𝜌 and Δ𝑊 agrees on the right side. �

Corollary 24.1. Let 𝛼 ∈ OF∗ be logarithmic. Extend 𝛼 multiplicatively to 𝑆
(
OF+)∗; then

𝐿𝐵(𝐿𝐵(𝑎, 𝛼), 𝛽) = 𝐿𝐵(𝑎, 𝛼 ★𝑊 𝛽).

Furthermore, the map 𝛼★𝑊 : OF∗ → OF∗ is an endomorphism over the group of exponential linear
maps.

We are now ready to formulate a combinatorial description of admissible partitions.

Proposition 25. Let 𝜔 be a forest and let 𝜔1 · · ·𝜔𝑛 be a partition of the vertices of 𝜔 into subforests.
This partition is admissible if and only if the following conditions are met:

1. Each root in the same 𝜔𝑖 are either roots of 𝜔 or grafted onto the same vertex of 𝜔. Furthermore,
the roots of 𝜔𝑖 are adjacent in the planar embedding of 𝜔.
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2. If e is an edge in an 𝜔𝑖 , then every edge 𝑒′ in 𝜔 that is outgoing from the same vertex as e and is to
the right of e in the planar embedding is also in 𝜔𝑖 .

Proof. First suppose that the partition is admissible. Then there exist some forest 𝜔′ and some way to
insert Lie brackets into each 𝜔𝑖 such that 𝜔 is a summand in 𝜔1 · · ·𝜔𝑛 ◦ 𝜔′. If a vertex i is grafted on
a vertex j in 𝜔′, then this amounts to a Lie polynomial 𝜔𝑖 being grafted onto a Lie polynomial 𝜔 𝑗 in
𝜔1 · · ·𝜔𝑛 ◦ 𝜔′. However, since 𝜔𝑖 is a Lie polynomial, the terms where different roots of 𝜔𝑖 go onto
different vertices of 𝜔 𝑗 will cancel. Hence condition 1 is satisfied. Furthermore, the edges going from
vertices in 𝜔 𝑗 to vertices in 𝜔𝑖 must be to the left of edges going between vertices in 𝜔 𝑗 , since all
grafting is done in the leftmost position. Hence condition 2 is satisfied.

Now suppose that 𝜔1 · · ·𝜔𝑛 is a partition that satisfies conditions 1 and 2. Let 𝜔′ denote the forest
on n vertices obtained by adding an edge from vertex i to vertex j if there is an edge from 𝜔𝑖 to 𝜔 𝑗 in 𝜔.
Condition 1 ensures that this is unambiguous. Now endow 𝜔′ with a planar embedding such that vertex
i is to the left of vertex j if 𝜔𝑖 is to the left of 𝜔 𝑗 in 𝜔. The choice of planar embedding is not unique.
Now turn each 𝜔𝑖 into a Lie polynomial by insertion of Lie brackets and consider 𝜔1 · · ·𝜔𝑛 ◦ 𝜔′. This
results in a sum over all ways to graft 𝜔𝑖 onto 𝜔 𝑗 if there was an edge from 𝜔𝑖 to 𝜔 𝑗 in 𝜔. Because of
condition 2, the original placements of the edges from 𝜔 will appear in this sum. �

Proposition 26. Let 𝜔 be a forest and let 𝜔1 · · ·𝜔𝑛 be an admissible partition. Let 𝜔′ denote the forest
on n vertices obtained by adding an edge from vertex i to vertex j if there is an edge from 𝜔𝑖 to 𝜔 𝑗 in 𝜔.
Then 𝜔/𝜔1 · · ·𝜔𝑛 is the sum over all ways to endow the forest 𝜔′ with a planar embedding such that
vertex i is to the left of vertex j if 𝜔𝑖 is to the left of 𝜔 𝑗 .

Proof. It was shown in the proof of Proposition 25 that each such embedding is a summand in
𝜔/𝜔1 · · ·𝜔𝑛. Now suppose there exists an 𝜔′′ such that 𝜔 is a summand in 𝜔1 · · ·𝜔𝑛 ◦ 𝜔′′ but 𝜔′′

is not such a planar embedding of 𝜔′. If 𝜔′′ is a planar embedding of 𝜔′ with vertex i to the right of
vertex j but 𝜔𝑖 is to the left of 𝜔 𝑗 , then it is clear that 𝜔1 · · ·𝜔𝑛 ◦𝜔′′ cannot produce the planar embed-
ding of 𝜔. If 𝜔′′ does not have an edge from vertex i to vertx j but 𝜔 has an edge from 𝜔𝑖 to 𝜔 𝑗 , then it
is also clear that 𝜔1 · · ·𝜔𝑛 ◦ 𝜔′′ cannot produce 𝜔. �

Proposition 27. ExtendΔ𝑊 to be defined on symmetric products of forests,Δ𝑊 : 𝑆
(
OF+) → 𝑆

(
OF+)⊗

𝑆
(
OF+) , by

Δ𝑊 (𝜔1 � 𝜔2) = Δ𝑊 (𝜔1) � Δ𝑊 (𝜔2).

Then
(
𝑆
(
OF+) ,Δ𝑊 , 𝜖

)
is a coalgebra.

Proof. The only nontrivial thing to show is

(𝐼𝑑 ⊗ Δ𝑊 )Δ𝑊 = (Δ𝑊 ⊗ 𝐼𝑑)Δ𝑊 .

This, however, follows from the fact that if 𝜔1, . . . , 𝜔𝑛 is an admissible partition of 𝜔 and 𝜔1
𝑖 , . . . , 𝜔

𝑛𝑖
𝑖 is

an admissible partition of 𝜔𝑖 , for 𝑖 = 1, . . . , 𝑛, then 𝜔1
1, . . . , 𝜔

𝑛1
1 , 𝜔2

2, . . . , 𝜔
𝑛𝑛
𝑛 is an admissible partition

of 𝜔. �
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