S17-01

METABOTROPIC GLUTAMATE RECEPTOR-MEDIATED LTD INVOLVES TWO INTERACTING CA²⁺ SENSORS, NCS-1 AND PICK1

J. Jo¹, S. Heon¹, M.J. Kim², G.H. Son¹, Y. Park³, J.M. Henley⁴, J.L. Weiss³, M. Sheng², G.L. Collingridge⁴, K. Cho^{1,4}

¹Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Faculty of Medicine & Dentistry, University of Bristol, Bristol, UK, ²The Picower Institute for Learning and Memory, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, USA, ³Biomedical Science, University of Sheffield, Sheffield, ⁴MRC Centre for Synaptic Plasticity, Department of Anatomy, University of BristolBristol, Bristol, UK

There are two major forms of long-term depression (LTD) of synaptic transmission in the central nervous system, which require activation of either N-methyl-D-aspartate receptors (NMDARs) or metabotropic glutamate receptors (mGluRs). In synapses in the perirhinal cortex we have directly compared the Ca^{2+} signalling mechanisms involved in NMDAR-LTD and mGluR-LTD. Whilst both forms of LTD involve Ca^{2+} release from intracellular stores the Ca^{2+} sensors involved are different; NMDAR-LTD involves calmodulin, whilst mGluR-LTD involves the neuronal Ca^{2+} sensor (NCS) protein NCS-1. In addition, there is a specific requirement for IP3 and PKC as well as protein interacting with C-kinase (PICK-1) in mGluR-LTD. NCS-1 binds directly to PICK1, via its BAR domain, in a Ca^{2+} -dependent manner. Furthermore, the NCS-1-PICK1 association is stimulated by activation of mGluRs, but not NMDARs, and introduction of a PICK1 BAR domain fusion protein specifically blocks mGluR-LTD. Thus, NCS-1 is a component of a novel mechanism involved in mGluR-LTD.