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ABSTRACT

The aggregate claims process is modelled by a process with independent,
stationary and nonnegative increments. Such a process is either compound
Poisson or else a process with an infinite number of claims in each time
interval, for example a gamma process. It is shown how classical risk theory,
and in particular ruin theory, can be adapted to this model. A detailed analysis
is given for the gamma process, for which tabulated values of the probability of
ruin are provided.
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1. INTRODUCTION

In classical collective risk theory, the aggregate claims process is assumed to be
compound Poisson (PANJER and WILLMOT, 1984). Here we shall examine a
more general model for the aggregate claims process: processes with indepen-
dent, stationary and nonnegative increments. Such a process is either com-
pound Poisson or else a process with an infinite number of claims in any time
interval. The most prominent process with this intriguing property is the
gamma process.

Since the process under consideration is either a compound Poisson process
or a limit of compound Poisson processes, its properties can be derived from
the basic properties of the compound Poisson process. The general results are
derived in Section 2 (for the aggregate claims process) and Section 6 (for the
probability of ruin). The gamma process is examined in detail in Sections 3, 4
and 5 (for the aggregate claims process) and Sections 7 and 8 (for the
probability of ruin).
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2. PROCESSES WITH INDEPENDENT,

STATIONARY AND NONNEGATIVE INCREMENTS

Let Q(x) be a nonnegative and nonincreasing function of x, x > 0, with the
properties:

Q(x) -»0 as x -»• oo

and

f
Jo

(2.1) Q(x)dx < oo.
Jo

Condition (2.1) can also be written as

f x[-dQ(x)]< oo,
Jo

which, if q(x) = —Q'(x) exists, becomes

xq(x) dx < oo .I
Jo

Such a function Q(x) defines an aggregate claims process {S(t)},>0 in the
following way. For each x > 0, let N(t; x) denote the number of claims with
an amount greater than x that occur before time t; let S(t; x) be the sum of
these claims. We assume that {N(t; x)}(>0 is a Poisson process with parameter
Q(x) and that {S(x; 0)<>o is a compound Poisson process with Poisson
parameter Q(x) and individual claim amount distribution

0 y< x

(2.2) P(y,x) = Q(x)-Q(y)

Q(x)
y > x.

The process {S(t)} is defined as the limit of the compound Poisson processes
{S(t;x)} as x tends to 0.

We write

2 ( 0 ) = lim Q(x).

We need to distinguish two cases: Q(0) < oo, and Q(0) = oo. In the first case,
{S(t)} is a compound Poisson process with Poisson parameter Q(0) and
individual claim amount distribution

(2.3)

https://doi.org/10.2143/AST.21.2.2005362 Published online by Cambridge University Press

https://doi.org/10.2143/AST.21.2.2005362


RISK THEORY WITH THE GAMMA PROCESS 179

This is the classical model for collective risk theory. Conversely, every
compound Poisson process, given by Poisson parameter k and individual claim
amount distribution P(y), is of this type if we set

(2.4) Q(y) = W-P(y)], y>0.

In the second case, {5(0} is the limit of compound Poisson processes, but is
not a compound Poisson process itself, because the expected number of claims
per unit time, Q(0), is infinite. Indeed, with probability one, the number of
claims in any time interval is infinite. Nevertheless, 5 ( 0 is finite, as the
majority of the claims are very small in some sense. In both cases, Q(y) is the
expected number of claims per unit time with an amount exceeding y.

Since {5(0} is the limit of {S(t; x)\ as x tends to 0, we can use well-known
results for the compound Poisson process to obtain results for the process
{5(0}- For example, it follows from

E[S(t;x)] = tQ(x) f [\-P(y;x)]dy
Jo

= txQ(x) + t Q(y)dy
J X

that

/•OO />co

(2.5) £[5(0] = t \ Q(y)dy = t \ y[-dQ(y)].
Jo Jo

To get the Laplace transform, we start with

= exp j" e-^dP(y;x)-l J

Letting x -» 0, we obtain

(2.6) E[e-zS{t)] = explt I [e~zy-\][-dQ{y)]

The process {5(0}, defined by the function Q(x), has independent, stationary
and nonnegative increments, and E[S(t)] < oo. The converse is true in the
following sense. Every process {^(0} with these properties is of the form

X{t) = S{t) + bt,

where {5(0} is a process of the type presented above and b is a nonnegative
constant. This is a consequence of the connection between processes with
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independent and stationary increments and infinitely divisible distributions,
and the characterization of infinitely divisible distributions with nonnegative
support (FELLER, 1971, p. 450, Theorem 2; p. 571, formula (4.7)).

3. THE GAMMA PROCESS

Assume that the function Q(x) is differentiate and that —Q'(x) is

(3.1) q(x)=ae-bx, x>0,
x

where a and b are positive constants. Let {5(0} be the associated aggregate
claims process. In a time interval of length t, the expected number of claims
with an amount exceeding x is

p e

tQ(x) = at dy.
i

Since 2(0) = oo, there is an infinite number of claims in each time interval. By
(2.5) the expected aggregate claims in a time interval of length / are

f00 f°
yq{y)dy = at

Jo Jo

(3.2) E[S(t)] = t I yq(y)dy = at e~hy dy = - .

To obtain the distribution of 5(0 , we compute its Laplace transform by
(2.6):

(3.3) E[e~zS(l)] = expit I [e~zy- 1] q(y) dy
U

H= exp \ at I dy
u y

b at

: + b

To verify the last step, consider the function

«oo e~(z + b)y_e-by

<p(z) = dy;
J

«oo e~(z
=

Jo
observe that ^(0) = 0 and <p' (z) = —(z + b)~l. Formula (3.3) shows that the
distribution of S(t) is gamma, with shape parameter ex., - at and scale
parameter /?, = b. Hence the process {5(0} is called a gamma process.

A gamma process with a = b = 1 is called a standardized gamma process.
For an arbitrary gamma process with parameters a and b, we may set t * = at
and 5*(/*) = bS(t). It follows from (3.3) that

https://doi.org/10.2143/AST.21.2.2005362 Published online by Cambridge University Press

https://doi.org/10.2143/AST.21.2.2005362


RISK THEORY WITH THE GAMMA PROCESS 181

(3.4) E[e-
z + 1

t*

Thus the transformed process IS *(?*)} is a standardized gamma process.
The gamma process, given by (3.1), can be imbedded in a larger family of

processes given by

(3.5) = ax"~le~bxq(x) = ax"~le x>0,
with - 1 < a < oo. We note that

(3.6) f
Jo

dy =

is indeed finite.
For a > 0,

(3.7)
Jo

is finite. Hence {iS(/)} is a compound Poisson process, with Poisson parameter
k given by (3.7) and claim amount density

(3.8) J'L
x

x>0,

~zS0)] = e""p(z] = e

which is a gamma density.
For - 1 < a < 0, Q (0) = oo. When a = 0, we have the gamma process. To

determine the probability density function f(x, t) of S(t) for — 1 < a < 0, we
apply formula (2.6),

(3.9) E[e

with

(3.10) <p(z) =

From (p{d) = 0 and

(3.11)

we obtain

(3.12) q>{z) =

'CO - - f
Jo

r(tx+l) 1

b«
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(Note that (3.12) is also valid for a > 0; in this case it can derived by first
expressing (3.10) as the difference of two convergent integrals.) For simplicity,
assume a = — l/.T(a) and b = 1. Write ft = — a. Then (3.9) becomes

(3.13) E[e-zS(l)] =

Recall the stable distribution of order ft that is concentrated on the positive axis
(FELLER, 1971, Sections XIII.6 and XIII.7). Let gp(x) denote its probability
density function. Its Laplace transform is

f
Jo

zxgp(x)dx = e z .

Hence the Laplace transform of the function

is exp( — tz^). Finally, it follows from (3.13) that the probability density
function of S{t) is

(3.14) f{x, t) = e'-'t-Wgpit-Wx), x > 0.

For /? = 1/2, a closed form expression for the stable density is available,

(3.15) gi/2(x) = ^ — - exp - —

and (3.14) becomes

x > 0,

(3.16) f(x,t) = exp [ - *' 1 , x > 0,
^ 3 / 2 L 4 J

which is the probability density of the inverse Gaussian distribution. A review
on the inverse Gaussian distribution can be found in FOLKS and CHHI-
KARA (1978); WILLMOT (1987) has applied the inverse Gaussian distribution in
modelling the claim number distribution, and GENDRON and CREPEAU (1989)
and WILLMOT (1990) have modelled the individual claim amount distribution
with the inverse Gaussian distribution.

4. PARAMETER ESTIMATION FOR THE GAMMA PROCESS

Let {5(f)} be a gamma process with (at time t = 0) unknown parameters a and
b. We claim that, if we can observe the process for a time interval of
(arbitrarily short) length h, h > 0, the value of a can be obtained as a limit:
For 0 < x < 1, we define the random variable

N{h\x)
(4.1) A(x)= - }

h In (x)
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RISK THEORY WITH THE GAMMA PROCESS 183

then

(4.2) lim A(x) = a.

(We remark that a similar situation exists for the diffusion process with a priori
unknown but constant infinitesmal drift /J. and variance a2: If the sample path
for an arbitrarily small time interval is known, a2 can be calculated.)

To prove (4.2), we write (4.1) as

ioo n~by
— dy

\:

dy , f00 e~hy

— ah I dy
y j x y

a.

Applying L'Hopital's rule, we see that the first ratio tends to 1 as x tends to 0.
The second ratio is N(h; x)/[hQ(x)]; by the strong law of large numbers it
converges to 1 (with probability one) as x tends to 0.

In the following we assume that the value of a is known, but that b is
unknown. If the aggregate claims process has been observed to time t, S(t) is a
sufficient statistic, i.e., any additional information about the sample path is
irrelevant for the estimation of b (DE GROOT, 1975, p. 304, #5). To illustrate
this, let us treat the unknown b as a random variable 0 with prior probability
density function u(6), 9 > 0. Then the posterior density of 0 at time t, given
the value of S(t), is

u(B;t)=
Qa, -0S(t) (

f
Jo

rat e-"S(t)u{r)dr

Let us now assume that u(6) is gamma, say,

with p > 0 and a > 1. Then the posterior density is also gamma, with
parameters

a, = OL + at

and

At time t = 0, the expected aggregate claims per unit time are

u{9)

Oj J
rrr si

o c a — 1
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Hence, with S(t) known, the conditional expectation of the aggregate claims
per unit time is

(4.3) = a
P+S(t)
ix + at- 1

a-\ t

where Z, = at/(at + a— 1). Formula (4.3) corresponds to the well-known result
for exact credibility in the gamma/gamma model.

5. SIMULATION OF THE GAMMA PROCESS

We can simulate a compound Poisson process by simulating the times and
amounts of the claims. This straightforward approach is not applicable to the
gamma process, since there are infinitely many claims in each time interval. We
now present a method for simulating the gamma process.

Let {5(0} be the gamma process with parameters a and b. To simulate a
sample path, we use the following result. For time z > 0, the conditional
distribution of the ratio S(z/2)/S(z), given S(r), is symmetric beta with

S(t) Gamma process
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parameter ax/2 (DE GROOT, 1975, p. 244, #5). Thus, if we want to simulate a
sample path for S(t), 0 < t < T, we can proceed as follows. First we simulate
a value for S{T), whose distribution is gamma with shape parameter aT and
scale parameter b. Then we obtain S(T/2) by simulating a value for
S(T/2)/S(T), which has a symmetric beta distribution with parameter aT/2.
Next, we obtain S(T/4) and S(3 T/4) by simulating the values of S(T/4)/S(T/2)
and [5(3 7V4)-S(r/2)] / [S(T)-S(T/2)], respectively, each of which has a
symmetric beta distribution with parameter aT/4. Similarly, we can generate
the values of S(T/S), S(3 778), S(5 T/S), S(7 T/8), and so on.

We have simulated the standardized gamma process for various T. A sample
path for T = 10 is shown in Figure 1.

6. RUIN THEORY

Let {S(t)} be the aggregate claims process introduced in Section 2. In this
section we present some ruin probability results for this process. In the next
section, we specialize to the case that {S(t)} is a gamma process.

Let the surplus of an insurance company at time t, t > 0, be

(6.1) U(t) = u + ct-S(t).

Here u is a nonnegative number denoting the initial surplus and c is the rate at
which the premiums are received. The relative security loading 0 is defined by
the equation

(6.2) c = (\+0)E[S(\)] = (1 + 0 ) 1 Q(x)dx.
'of

Jo
We assume that 0 > 0. Let y/(u) denote the probability of ultimate ruin, i.e.,
the probability that the surplus becomes negative at some future time.

In view of formula (2.4), results for this model can be obtained via those for
the compound Poisson model with the following recipe. We start with a
formula for the case of the compound Poisson process with Poisson parameter
X and individual claim amount distribution P(y). Then we substitute Q{y)
for X[\ — P(y)] (or q{y) for lp{y) if the derivatives exist) to obtain the corre-
sponding formula for the more general model.

For example, in the compound Poisson model the probability of ruin
satisfies the following defective renewal equation [e.g., BOWERS et al. (1986,
p. 373, #12.11)]:

[l-P(y)]dy, u>0.
J u

Substituting Q(y) for k[\-P(y)], we get

(6.3) cyf(u)= f y{u-y)Q{y)dy+ [ Q(y)dy, u>0.cyf(u)= f y{u
Jo
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For u = 0, this gives

1 f°
c Jo

(6.4) v(0) = - I Q{y)<fy = —
lo 1+0

Let us now consider the maximal loss random variable

(6.5) L = max {S(t)-ct}.
t>0

It is of interest since \-y/{u) is its distribution function. In the compound
Poisson model, it is well known (BOWERS et al., 1986, Section 12.6) that L has
a compound geometric distribution:

(6.6) L = L! + L2+ ... +LN.

Here N, Lx, L2, ... are independent random variables, the L,'s are identically
distributed with the probability density

l - P ( x )
(6.7) h{x) = — , x > 0,

[l-P(y)]dy
1 of

Jo
and N has a geometric distribution defined by

6
(6.8) Pr(N = n) =

1+6* 1+0
n = 0, 1,2, . . . .

If we multiply both numerator and denominator of (6.7) by X, we see that (6.6)
is valid for the general model, with

(6.9) h(x) = ^-— , x > 0.

Q(y)dyI
Jo

These formulas can be used to determine numerical lower and upper bounds
for the ruin probability; see Method 1 in DUFRESNE and GERBER (1989).

For the next result we assume that/?(;c) = P'(x) and q{x) = —Q'(x) exist.
Let T denote the time of ruin. Put X = U(T—), the surplus immediately before
ruin, and Y = \U(T)\, the deficit at the time of ruin. We assume that u = 0.
Given that ruin occurs, the joint probability density of X and Y in the
compound Poisson case is

(6.10) h(x,y) = E

[\-P{s)]ds
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(DUFRESNE and GERBER, 1988). Thus, in the general model, the joint density
of X and Y is

(6.11) h(x,y) = —^ ^—, x>0,y>0.

Q(s)dsr
Jo

We note that both (6.10) and (6.11) are symmetric in x and y. The probability
density of Z = X+ Y (the amount of the claim that cases ruin) is

Cz za(z)
(6.12) g(z) = h(x, z-x)dx = — , z> 0.

f Q(s)ds
o

The conditional probability density of X given Z = z (and w = 0) is

This is the somewhat surprising result that the conditional distribution of X
(given Z = z) is uniform between 0 and z.

We wish to remark that, if g(0) = oo, the notion of an individual claim
amount distribution of the process {5(0} per se does not make sense. However,
the conditional claim amount distribution, given certain information, may still
exist. For example, (2.2) is the distribution of an individual claim amount given
that it exceeds x. Likewise, g(z) is the probability density function of the
amount of the claim that causes ruin.

We now turn to Lundberg's asymptotic formula. The adjustment coefficient
R is defined as the positive solution r = R of the equation

(6.13) f (ery-\)[-dQ(y)] = cr.
/ I C

Jo

(Note that some regularity conditions have to be imposed on Q(y) to
guarantee the existence of R.) It follows from (2.6) that, for all /,

(6.14) E[eR[S(!)-cl]] = 1.

Lundberg's famous asymptotic formula states that

(6.15) y/(u) ~ Ce~Ru for u -> oo.

In the compound Poisson case,
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6X ydP(y)

(6.16) C =
r
Jo

X | yeRydP(y)-c
oI

(SEAL, formula (4.64)), which is translated as

-0 f ydQ(y)

(6.17) C =

I yeRy dQ(y)-c
o

7. RUIN THEORY FOR THE GAMMA PROCESS

We now consider the special case that \S(t)} is a gamma process. As we
pointed out in Section 3, any gamma process can be transformed into a
standardized gamma process. Thus we assume that, for x > 0,

(7.1) q(x) = e—
x

or

(7.2) Q(x)= | dy.
y

In ABRAMOWITZ and STEGUN (1964, p. 227), the exponential integral (7.2) is
denoted as Ex (x).

Since

/1°O nOO

Q(x)dx =
Jo Jo

Q(x)dx= | xq(x)dx= e x dx = 1,

formula (6.2) becomes

(7.3) 1 + 6= c.

By (6.9) the common probability density function of the random variables {L,-}
is

(7.4) h(x) = Q(x) = E l ( x ) , x>0,

and their distribution function is

"f
Jo

(7.5) H{x)= h{y)dy = \-e~x + xE^x), x > 0.
'o
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From (6.11) and (6.12) we obtain

e~(x+y)

(7.6) h(x,y) =
x + y

and

(7.7) g(z) = e~\

respectively. Formula (7.7) is especially interesting, as it says that (if u = 0) the
amount of the claim that causes ruin is exponentially distributed.

Substituting (3.4) and (7.3) in (6.14) yields the equation

(7.8) — = er(i+e).
\-r

The adjustment coefficient R is the positive root of (7.8). It follows from (6.17)
and (7.3) that the asymptotic constant C in Lundberg's formula is

9 9(1 -R)
(7.9) C = V '

\-R

R-e(\-R)
(1+0)

Remark: As pointed out in Section 3, the gamma process is the limit of a
certain family of compound Poisson processes, each with a gamma claim
amount distribution. For these WILLMOT (1988) has given an elegant method
to evaluate the probability of ruin.

8. THE PROBABILITY OF RUIN FOR THE GAMMA PROCESS

As in the last section we assume that the aggregate claims process is the
standardized gamma process. Since (7.5) gives an explicit expression for H(x),
we can apply the method of lower and upper bounds to calculate the
probability of ruin (DUFRESNE and GERBER, 1989). We have calculated lower
and upper bounds for f{u) for different values of the initial surplus u
(0, 1, 2, . . . , 20) and the relative security loading 9 (0.1, 0.2, 0 .3 , . . . , 1.0), for
intervals of discretisation with length 0.01 and 0.001. For 9 = 0.5 these bounds
are displayed in Table 1. Thus the exact value of the probability of ruin is
known with sufficient accuracy (4 decimals). Table 2 shows these values.

Illustration: Assume that the annual aggregate claims have an expectation
H - 100,000 and a standard deviation a = 20,000. The initial reserve is 48,000
and the annual premium (net of expenses) is 120,000. What is the probability of
ultimate ruin?
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TABLE 1

LOWER AND UPPER BOUNDS FOR THE PROBABILITY OF RUIN

9 = 0.5

u

0
1
2
3
4
5

6
7
8
9
10

11
12
13
14
15

16
17
18
19
20

Lower

0.666667
0.321352
0.175016
0.096653
0.053619
0.029801

0.016577
0.009225
0.005135
0.002858
0.001591

0.000886
0.000493
0.000275
0.000153
0.OOOO85

0.000047
0.000026
0.000015
0.000008
0.000005

bounds

0.666667
0.322741
0.176268
0.097604
0.054288
0.030250

0.016870
0.009412
0.005252
0.002931
0.001636

0.000913
0.000510
0.000284
0.000159
0.000089

0.000049
0.000028
0.000015
0.000009
0.000005

Upper

0.666667
0.323055
0.176550
0.097819
0.054439
0.030352

0.016936
0.009454
0.005279
0.002948
0.001646

0.000919
0.000513
0.000287
0.000160
0.000089

0.000050
0.000028
0.000016
0.000009
0.000005

bounds

0.666667
0.324488
0.177839
0.098798
0.055129
0.030817

0.017240
0.009649
0.005401
0.003024
0.001693

0.000948
0.000531
0.000297
0.000166
0.000093

0.000052
0.000029
0.000016
0.000009
0.000005

0.001

0.01

length of the interval of discretisation

Solution: We assume that the premiums are received continuously and the
aggregate claims process can be modelled by a gamma process with parameters
a and b. Then a/b = n = 100,000 and a/b2 = a2 = (20,000)2. It follows that
b = n\a = 1/4,000. In order to use Table 2 (which is for the standardized
gamma process), we have to transform the initial reserve to
u = 48,000 x b = 12. The relative security loading 6 = 0.2 does not change.
Looking up Table 2, we obtain the probability of ruin ^(12) = 0.018.
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TABLE 2

THE PROBABILITY OF RUIN FOR THE STANDARDIZED GAMMA PROCESS

Relative security loading 6

u

0
1
2
3
4
5

6
7
8
9
10

11
12
13
14
15

16
17
18
19
20

0.1

0.9091
0.7395
0.6184
0.5182
0.4345
0.3643

0.3054
0.2561
0.2148
0.1801
0.1510

0.1266
0.1062
0.0890
0.0746
0.0626

0.0525
0.0440
0.0369
0.0309
0.0259

0.2

0.8333
0.5736
0.4165
0.3038
0.2219
0.1621

0.1185
0.0866
0.0632
0.0462
0.0338

0.0247
0.0180
0.0132
0.0096
0.0070

0.0051
0.0038
0.0027
0.0020
0.0015

0.3

0.7692
0.4613
0.2990
0.1952
0.1277
0.0836

0.0548
0.0359
0.0235
0.0154
0.0101

0.0066
0.0043
0.0028
0.0019
0.0012

0.0008
0.0005
0.0003
0.0002
0.0001

0.4

0.7143
0.3816
0.2253
0.1344
0.0805
0.0482

0.0289
0.0173
0.0104
0.0062
0.0037

0.0022
0.0013
0.0008
0.0005
0.0003

0.0002
0.0001
0.0001

0.5

0.6667
0.3229
0.1764
0.0977
0.0544
0.0303

0.0169
0.0094
0.0053
0.0029
0.0016

0.0009
0.0005
0.0003
0.0002
0.0001

0.6

0.6250
0.2782
0.1424
0.0741
0.0388
0.0204

0.0107
0.0056
0.0030
0.0016
0.0008

0.0004
0.0002
0.0001
0.0001

0.7

0.5882
0.2434
0.1178
0.0582
0.0289
0.0144

0.0072
0.0036
0.0018
0.0009
0.0005

0.0002
0.0001
0.0001

0.8

0.5556
0.2155
0.0994
0.0470
0.0224
0.0107

0.0051
0.0025
0.0012
0.0006
0.0003

0.0001
0.0001

0.9

0.5263
0.1929
0.0854
0.0388
0.0178
0.0082

0.0038
0.0018
0.0008
0.0004
0.0002

0.0001

1

0.5000
0.1743
0.0743
0.0327
0.0145
0.0065

0.0029
0.0013
0.0006
0.0003
0.0001

0.0001
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