Complemented hereditary radicals

Robert L. Snider

The complemented elements of the lattice of hereditary radicals are characterized. A hypernilpotent complemented hereditary radical is the upper radical determined by a finite number of finite matrix rings. As a corollary, Stewart's characterization of radical semisimple classes is obtained. The methods are universal algebraic in nature.

In [14], we showed that the natural order on the class of all radicals for associative rings gives rise to a complete lattice in which the hereditary radicals form a complete sublattice, where for hereditary radicals α and β , the meet $(\alpha \wedge \beta)(R) = \alpha(R) \cap \beta(R)$ for any ring R. The semisimple class of the join $\alpha \vee \beta$ is the intersection of the semisimple class of α and the semisimple class of β . We also showed that the lattice of hereditary radicals is Brouwerian and hence distributive. In [14], we raised the question of characterizing the complemented elements of this lattice. In this paper, we completely characterize the complemented hereditary radicals by a detailed study of the polynomial identities of certain algebras. As an application, we quickly obtain a recent result of Stewart [15] characterizing radical semisimple classes.

Our approach is somewhat universal algebraic in nature. We suggest the reader unfamiliar with this approach see Grätzer [8]. For elementary definitions and notions concerning radicals, see [7] or [11].

We shall always use lower case Greek letters to denote radicals. If R is a ring, then the $n \times n$ matrix ring over R will be denoted by R_n . |A| will denote the cardinality of the set A.

Received 16 November 1970.

For a hereditary radical α , let α^* denote its pseudocomplement where the pseudocomplement is the largest radical λ such that $\alpha \wedge \lambda = 0$. α^* must exist since our lattice is Brouwerian. If α has a complement, its complement must necessarily be α^* . Suppose now that α is complemented. Since $(\alpha \vee \alpha^*)(Z_0) = Z_0$ and $(\alpha \wedge \alpha^*)(Z_0) = 0$ where Z_0 is the integers with zero multiplication, we have either $\alpha(Z_0) = Z$ and $\alpha^*(Z_0) = 0$ or $\alpha(Z_0) = 0$ and $\alpha^*(Z_0) = Z_0$. In the remainder of the paper, we shall always assume $\alpha(Z_0) = Z_0$. This means that α is hypernilpotent. We shall characterize the hypernilpotent complemented radicals. A non-hypernilpotent complemented hereditary radical is then just the complement of a hypernilpotent one.

Let α be a hereditary radical. In [4], Andrunakievič constructed the largest radical α' among all those radicals β with $\alpha(R) \cap \beta(R) = 0$ for every ring R. Clearly if α' is hereditary, $\alpha' = \alpha^*$. If α is hypernilpotent, he showed that α' and α'' were hereditary. Therefore, if α is also complemented, we have $\alpha' = \alpha^*$ and $\alpha'' = \alpha^{**} = \alpha$. It then follows from [4] that

 $\alpha^*(R) = \cap \{I : R/I \text{ is subdirectly irreducible with } \alpha\text{-radical heart} \}$, and

 $\alpha(R) = \alpha^{**}(R) = \bigcap \{I : R/I \text{ is subdirectly irreducible with} \\ \alpha\text{-semisimple heart} \}.$

THEOREM 1. If S is an α -semisimple simple ring where α is a complemented hypernilpotent radical, then S is finite.

Proof. Let *C* be the centroid of *S*. *C* is a field since *S* is simple and *S* can be regarded as an algebra over *C*. In [14], we showed that *C* is finite. We show *S* satisfies a polynomial identity over *C*. Suppose not. Let *F* be the free algebra over *C* with $\max\{\aleph_0, |S|\}$ generators. Let $f \neq 0$ be in *F*; then there exists a homomorphism $h: F \neq S$ such that $h(f) \neq 0$ since *S* does not satisfy a polynomial identity. If x_1, \ldots, x_n are the generators of *F* in the expression of *f*, we define $h': F \neq S$ by $h'(x_i) = h(x_i)$, $i = 1, \ldots, n$ and defining h' on the other generators making h' onto. This can be done

since F has at least as many generators as S has elements. Hence $\bigcap\{\ker h : h : F \neq S \text{ is onto}\} = 0$, that is F is a subdirect sum of copies of S. Therefore $\alpha(F) = 0$. Let H be an infinite field containing C and G a simple ring which satisfies no polynomial identities but contains H in its center (for example, a division ring over H infinite dimensional over its center). Let F' be the free ring with $\max\{\aleph_0, |S|, |G|\}$ elements. Repeating the above argument, we obtain $\alpha(F') = 0$. Also F' is a subdirect sum of copies of G. $\alpha(G) = G$ since G has infinite centroid [14]. Therefore $\alpha^*(G) = 0$ and hence $\alpha^*(F') = 0$. We then have $(\alpha \vee \alpha^*)(F') = 0$, contradicting the fact that $\alpha \vee \alpha^* = 1$. (1 is the radical for which all rings are radical.) Since S satisfies a polynomial identity, S is primitive by a theorem of Herstein in [13]. By a theorem of Kaplansky [9], S is finite dimensional over its center which must be C. Therefore S is finite since C is finite.

LEHMA 2. GF $(p^q)_n$ satisfies the identity $x^{n+r} - x^n = 0$ where r is the exponent of GL (n, p^q) .

Proof. Let $GF(p^q)_n$ act on an n dimensional $GF(p^q)$ vector space V. If A is in $GF(p^q)_n$, then we have a descending chain of subspaces, $AV \supseteq A^2 V \supseteq \ldots \supseteq A^n V \supseteq \ldots$ which must terminate at $A^n V$ since V has dimension n. A then induces an automorphism ϕ on $A^n V$ which can be extended to an automorphism $\overline{\phi}$ of V. Hence $\overline{\phi}^n = 1$. For any v in V, we have $A^n(v) = \phi^r A^n(v) = \overline{\phi}^r A^n(v) = A^{n+r}(v)$. Therefore $A^n = A^{n+r}$.

LEMMA 3. Let V be the variety of GF(p) algebras generated by $GF(p^q)_n$. If S is in V and A is a subalgebra of S isomorphic to $GF(p)_n$, then A annihilates every nilpotent ideal of S.

Proof. The proof is by induction on the index of nilpotence. Let N be an ideal of S and suppose $N^2 = 0$. Let e denote the identity of A. It is sufficient to show that eN = Ne = 0. First suppose $eNe \neq 0$. Since the action of GF(p)e is the same on both sides of eNe,

we can regard *eNe* as a left $A \otimes_{GF(p)} A^{\circ}$ module where A° denotes the opposite algebra of A. Multiplication is by $(a \otimes b)(ene) = aeneb$. $A \otimes_{GF(p)} A^{\circ} \cong GF(p)_{n^2}$. All modules over $GF(p)_{n^2}$ are the sum of simple modules; hence *eNe* contains a simple submodule. All simple modules over $GF(p)_{n^2}$ are isomorphic; hence we may identify one such simple submodule with all

$$\begin{bmatrix} x_1 \\ \cdot \\ \cdot \\ x_n \end{bmatrix} \otimes_{\mathrm{GF}(p)} \begin{bmatrix} y_1 \\ \cdot \\ \cdot \\ \cdot \\ y_n \end{bmatrix} .$$

Identify A with $\operatorname{GF}(p)_n$. Let $\stackrel{I}{s}$ denote the $s \times s$ identity matrix. Let

which is in S. Recalling $N^2 = 0$, we compute

$$y^{2} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 1 & 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} ,$$
$$y^{n-1} = \begin{bmatrix} 0 & 0 \\ 0 \\ 1 & 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} ,$$

$$y^{n} = 0 + \begin{bmatrix} 0 \\ \cdot \\ \cdot \\ 0 \\ 1 \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 0 \\ \cdot \\ \cdot \\ 0 \\ 0 \end{bmatrix}$$

and $y^{n+1} = 0$.

By the previous lemma, we have

$$0 \neq \begin{bmatrix} 0 \\ \cdot \\ 0 \\ 1 \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 0 \\ \cdot \\ 0 \\ 1 \end{bmatrix} = y^n = y^{n+r} = 0 ,$$

a contradiction.

Therefore eNe = 0. Suppose now that $eN \neq 0$. eN is a unital A module and hence has a simple submodule which we may identify with all $\begin{bmatrix} x_1 \\ \cdot \\ \cdot \\ x_n \end{bmatrix}$ since all simple A modules are isomorphic. Let

As before using eNe = 0, we compute

$$z^{n} = \begin{bmatrix} 0 \\ \vdots \\ \vdots \\ 1 \end{bmatrix} ,$$

and $z^{n+1} = 0$. We now obtain

$$0 \neq \begin{bmatrix} 0 \\ \vdots \\ \vdots \end{bmatrix} = z^n = z^{n+r} = 0$$

as before. Therefore eN = 0. Similarly Ne = 0.

Suppose now that A annihilates all nilpotent ideals of index less than k. Suppose N has index k. Clearly $A \cap N = 0$. Passing to S/N^2 , we have A isomorphically embedded in S/N^2 . Therefore by the above, we have $(e+N^2)N/N^2 = 0$ or $eN \subseteq N^2$. N^2 has index of nilpotence less than k; therefore, our induction hypothesis applies. We obtain $eN = e^2N \subseteq eN^2 = 0$. Similarly Ne = 0.

LEMMA 4. Let F be a finite field of characteristic p. If V is the variety of GF(p) algebras generated by F_n , then the free algebra over V with \aleph_0 generators can be described as follows: let $A_k = \begin{bmatrix} x_{ij}^{(k)} \end{bmatrix}$ be the $n \times n$ matrix with entries commuting indeterminates with $\begin{bmatrix} x_{ij}^{(n)} \end{bmatrix} |F| = x_{ij}^{(k)}$ and $px_{ij}^{(k)} = 0$. The free algebra is the algebra generated by the A_k with ordinary matrix multiplication and addition.

REMARK. Amitsur [2] states this without proof for infinite fields of characteristic not necessarily p.

Proof. Let R be the algebra generated by the A_k 's. R is clearly free over V since every substitution by elements of F for the $x_{ij}^{(k)}$'s clearly induces a homomorphism of R into F_n . Therefore we need only show R is in V. To see this, consider the algebra T generated by the $x_{ij}^{(k)}$'s. T is clearly the free algebra of V(F). Hence $\mathrm{Id}(F) = \mathrm{Id}(T)$. From [12, Theorem 3], $\mathrm{Id}(F_n) = \mathrm{Id}(T_n)$. Clearly $R \subseteq T_n$. Therefore R is in V since T_n is.

For a class of rings M , we denote the upper radical of M by UM .

THEOREM 5. Let $F = GF(p^q)$. If $\alpha = U\{F_n\}$, then α is a complemented hereditary radical.

Proof. $\alpha \wedge \alpha^* = 0$. Suppose then that $\alpha \vee \alpha^* < 1$. Since the semisimple class of the join is the intersection of the semisimple classes [14], there exists a ring $R \neq 0$ such that $\alpha(R) = \alpha^*(R) = 0$. $\{F_n\}$ is

a special class since every class of simple rings with unity is special [4], hence $\alpha(R) = \bigcap\{I : R/I \cong F_n\}$; that is, R is a subdirect sum of copies of F_n . It follows that R is in the variety generated by F_n . Also since α is hypernilpotent, we have $\alpha^* = \alpha'$ where α' is the complementary radical of Andrunakievič [4]. Therefore

 $\alpha^*(R) = \Omega\{I : R/I \text{ is subdirectly irreducible with } \alpha\text{-radical heart}\}$.

By Lemma 2, F_n and hence R satisfies the identity $x^{n+r} - x^n = 0$ where r is the exponent of GL(n, F). Therefore R is a P.I. algebra and also an algebraic algebra and hence R is locally finite [10]. There exists an epimorphism $h: R \to F_n$. Let $\{x_i\}$ be a complete set of liftings of F_n . The subalgebra $\langle x_i \rangle$ generated by $\{x_i\}$ is finite since R is locally finite. $h|\langle x_i \rangle$ is onto. Let $J(\langle x_i \rangle)$ denote the Jacobson radical of $\langle x_i \rangle$. $R/J(\langle x_i \rangle)$ is a separable algebra; hence by a generalization of the Principal Theorem of Wedderburn [1], $\langle x_i \rangle$ and hence R contains a subalgebra A isomorphic to F_n .

R is a subdirect sum of subdirectly irreducible rings $\{S_j\}$ with α -radical hearts. The image of A must be nonzero in some $S_i \cdot A$ is simple; hence the image is an isomorphic copy. We suppose now that $A \subseteq S_i$. Let H be the heart of S_i . Suppose $H^2 = H \cdot H$ is then a simple ring. H satisfies a polynomial identity since R does. By a theorem of Herstein in [13], H is primitive and hence by a theorem of Kaplansky [9], H is isomorphic to D_m where D is a division ring

finite dimensional over its center $C \cdot C$ must satisfy $x^{n+r} - x^n = 0$. Therefore C is finite and $C = D \cdot C_m$ has a unit. It follows that C_m is a direct summand of $S \cdot S_i$ is subdirectly irreducible, hence $C_m = S_i \cdot \text{Recall } A \subseteq C_m \cdot \text{Since } A$ satisfies no identities of degree less than 2n [3], we have $n \leq m$ since C_m satisfies the standard identity of degree 2m [3]. Also C_m satisfies all identities of F_n

https://doi.org/10.1017/S0004972700046669 Published online by Cambridge University Press

since R does. Therefore $m \leq n$. Since $A \subseteq C_n$, $V(A) \subseteq V(C_n)$ and clearly by construction $V(C_n) \subseteq V(A) = V(F_n)$. Let $\langle A_n \rangle$ be the free algebra with \aleph_0 generators of $V(F_n)$ described in the previous lemma and $\langle B_k \rangle$. the corresponding free algebra for $V(C_n)$. The mapping $A_k \neq B_k$ induces an isomorphism. It is clear then that C = F. This is impossible since $C_n = S_i$ was assumed to have α -radical heart, but $\alpha(F_m) = 0$. Therefore $H^2 = 0$.

Let e denote the identity of A. Let X be the collection of all idempotents x of $eS_{e}e$ such that ax = xa for all a in A. X is not empty since e is in X. Let $I = \{Ax : x \text{ is in } X\}$. The Jacobson radical $J(S_i)$ of S_i is nilpotent since S_i is an algebraic algebra of bounded index [4]. e annihilates $J(S_i)$ by Lemma 3. It follows that $eS_i e \cap J(S_i) = 0$. Clearly $I \subseteq eS_i e$. It is then sufficient to show that I is an ideal of S_{1} , since this will contradict the subdirect irreducibility of S_{i} . Let x be in X and y in S_{i} . Note that Ax = xA; hence it sufficies to show $Ay \subseteq I$. Consider the subalgebra (A, y) generated by A and $y \cdot (A, y)$ is finite dimensional since S_{i} is an algebraic algebra which satisfies a polynomial identity and hence is locally finite [10]. $\langle A, y \rangle / J (\langle A, y \rangle)$ is separable where $J(\langle A, y \rangle)$ is the Jacobson radical of $\langle A, y \rangle$. By the Principal Theorem of Wedderburn, (A, y) contains a subalgebra B which is isomorphic to $\langle A, y \rangle / J(\langle A, y \rangle)$ and $\langle A, y \rangle = B + J(\langle A, y \rangle)$. The previous sum is a vector space direct sum. By Lemma 3, A annihilates the nilpotent ideal $J(\langle A, y \rangle)$ since $A \supseteq GF(p)_n$. e = z + j with z in B and j in $J(\langle A, y \rangle)$. The projection of A into B is a ring homomorphism since $J(\langle A, y \rangle)$ is an ideal. Therefore Im(A) is isomorphic to A and hence zj = jz = 0 whenever a = z + k for some a in A. We then have $e = e^2 = e(z+j) = ez = (z+j)z = z^2 = z$ for e = z + j. Hence $A \subseteq B$. By the Wedderburn-Artin Theorem $B = C_1 \oplus C_2 \oplus \ldots \oplus C_n$ where C_i are matrix rings over division rings.

The projection of A on each factor is either 0 or an embedding. As before, if $F_n = A \subseteq C_i$, we have $A = C_i$. By renumbering if necessary, we have $B = C_1 \oplus C_2 \oplus \ldots \oplus C_t \oplus C_{t+1} \oplus \ldots \oplus C_r$ where $F_n \cong C_i$ and ec = ce, $i \leq t$, and $eC_j = 0$, j > t. Then $ec_ie = c$ and $c_ia = ac_i$ for each a in A where c_i is the identity of C_i , $i \leq t$. Hence c_i is in X and $Ac_i = C_i$. Now y = b + j. ay = ab + aj = ab is in $(C_1 \oplus C_2 \oplus \ldots \oplus C_t)b \subseteq C_1 \oplus C_2 \oplus \ldots \oplus C_t \subseteq I$. Therefore I is an ideal.

THEOREM 6. Let α be a hypernilpotent radical. α is complemented if and only if α is the upper radical determined by a finite number of matrix rings over finite fields.

Proof. First suppose $\alpha = \mathcal{U}\left\{F_{n_i}^{(i)}\right\}_{i=1}^{r}$. Let $\alpha_i = \mathcal{U}\left\{F_{n_i}^{(i)}\right\}$. α_i is complemented by the previous theorem. $\alpha = \alpha_1 \wedge \alpha_2 \wedge \ldots \wedge \alpha_r$ [14]. Clearly $\beta = \alpha_1^* \vee \alpha_2^* \vee \ldots \vee \alpha_r^*$ is the complement of α .

Conversely suppose α has a complement. $\alpha = \alpha''$ since α is hypernilpotent. It follows that α is the upper radical determined by the subdirectly irreducible rings with α^* -radical hearts. Let S be such a ring with heart H. Since α is hypernilpotent, S is a semiprime ring and hence $H^2 = H$. Therefore H is a simple ring. Therefore by Theorem 1, H is finite and hence is a matrix ring over a finite field. H has an identity and hence H is a direct summand of S. Therefore H = S. We now have that α is the upper radical determined by matrix rings over finite fields. We must show that their number is finite.

Suppose first of all that for some prime p, the number of α -semisimple simple rings is finite. Let $\left\{F_{n_i}^{(i)}\right\}$ be these rings. We first show n is bounded. Suppose not. It follows that no identity over GF(p) can be satisfied by all the $F_{n_i}^{(i)}$ since all identities satisfied by $F_{n_i}^{(i)}$ have degree at least $2n_i$ [3]. Consider the free GF(p)

algebra G with c (cardinality of the continuum) generators. As in the proof of Theorem 1, we see that G is a subdirect sum of the $F_{n_i}^{(i)}$. Therefore $\alpha(G) = 0$. If on the other hand S is a simple algebra satisfying no polynomial identities over GF(p) and $|S| \leq c$ (for example, all linear transformations of finite rank on a vector space of countably infinite dimension over GF(p)), then $\alpha(S) = S$. α is complemented; hence $\alpha^*(S) = 0$. As before we see that G is a subdirect sum of copies of S. Therefore $\alpha(G) = \alpha^*(G) = (\alpha \vee \alpha^*)(G) = 0$, a contradiction since $\alpha \vee \alpha^* = 1$. Therefore n_i is bounded. Hence for some n, there is an infinite number of fields $F^{(j)}$ of characteristic p with $n_j = n$. We distinguish two cases.

Case I. All but finitely many finite fields of characteristic p are in $\left\{ F^{\left(j\right)}\ :\ n_{j}\ =\ n\right\}$.

Case II. Infinitely many finite fields of characteristic p are not $F^{\left(j \right)}$'s .

Case I. Let C be the direct limit of the $F^{(j)}$'s where the $F^{(j)}$'s form a direct system with the inclusion maps. C exists since all but finitely many finite fields of characteristic p are represented. C is a field and C_n is the direct limit of the $F_n^{(j)}$. Clearly $F_n^{(j)} \subseteq C_n$, hence $\mathrm{Id}(C_n) \subseteq \cap \mathrm{Id}\left[F_n^{(j)}\right]$. Also if $p(x_1, \ldots, x_n) = 0$ is an identity for each $F_n^{(j)}$ then since C_n is a direct limit of the $F_n^{(j)}$, we have $p(x_1, \ldots, x_n)$ is an identity for C_n . Hence $V(C_n) = V\left\{F_n^{(j)}\right\}$. Therefore the free GF(p) algebra H over this variety with \aleph_0 generators is a subdirect sum of the $F_n^{(j)}$'s as before. Therefore $\alpha(H) = 0$. Now $\alpha^*(C_n) = 0$ and H is a subdirect sum of copies of C_n , hence $\alpha^*(H) = 0 = \alpha(H) = (\alpha \vee \alpha^*)(H)$, a contradiction.

Case II. Consider the polynomial ring $(GF(p)[x])_n \cdot (GF(p)[x])_n$ is a subdirect sum of the $F_n^{(j)}$ and hence we have $\alpha(GF(p)[x])_n = 0$. Also since there are infinitely many F_n with $\alpha^*(F_n) = 0$, we have $\alpha^*(GF(p)[x])_n = 0$. Again we have $(\alpha \lor \alpha^*)(GF(p)[x])_n = 0$, a contradiction.

We now have that for each prime p , there are only finitely many lpha-semisimple simple rings of characteristic $\,p$. We now show that only finitely many p are represented. Suppose not. Let $K_n^{(i)}$ be the α -semisimple simple rings. We first show n_i is bounded above. Suppose not. We show that no polynomial identity over the integers is satisfied by all the $K_{n}^{(i)}$. Consider $g(x_1, \ldots, x_n) \cdot g(x_1, \ldots, x_n) = 0$ (mod p) for only finitely many primes p . Let s be the degree of $g(x_1, \ldots, x_n)$. We can find some prime p such that $g(x_1, \ldots, x_n) \neq 0$ (mod p) and there is a $K_{n_i}^{(i)}$ of characteristic p with $2n_i \ge s$. Since $K_{n,\cdot}^{(i)}$ satisfies no identity of degree less than $2n_i$, $g(x_1, \ldots, x_n)$ is not identity in K_{n_1} . As before the free algebra over the integers with sufficiently many generators is a subdirect sum of the $K_{n_i}^{(i)}$ and the subdirect sum of copies of some infinite simple ring which satisfies no identities over the integers. It follows that the free algebra is $\alpha \vee \alpha^*$ -semisimple. Again this is a contradiction and hence n_i is bounded. As before, we must have infinitely many n_i equal nfor some positive integer n . Again we have the polynomial ring $\big(Z[x]\big)_{\eta}$ (Z denotes the integers) is a subdirect sum of the $K_{n_i}^{(i)}$'s . Also for each p, we can pick $G_n^{(p)}$ with $\alpha \left(G_n^{(p)} \right) = G_n^{(p)}$ where G is a finite field of characteristic p. $(Z[x])_n$ is also a subdirect sum of the

$$G_n^{(j)}$$
. Therefore $\alpha(Z[x]_n) = \alpha^*(Z[x]_n) = 0$, a contradiction

We are now able to obtain a recent theorem of Stewart [15] characterizing radical semisimple classes. A radical semisimple class M is a radical class which is simultaneously a semisimple class for some other radical.

THEOREM 7 (Stewart). M is a radical semisimple class if and only if there exists an integer n such that

$$M = \{R : x^n = x \text{ for every } x \text{ in } R\}$$

Proof. It is easy to verify that if M is as above, then M is a radical semisimple class. Suppose then that we are given a radical semisimple class M. M is closed under homomorphic images and subdirect sum. Therefore M is a variety. Let β be the radical with M as its radical class and α the radical whose semisimple class is M. We show that $I^2 = I$ for every ring I of M. Suppose not. We then have I/I^2 is in M and I/I^2 is a zero ring. Every ideal of Z_0 , the integers with zero multiplication, can be mapped into I/I^2 with nonzero image. Since M is a semisimple class we have Z_0 is in M. This implies β is larger than the Baer lower radical. Armendariz has shown [6] that this implies that M is all rings, a contradiction. $I^2 = I$ implies β is subidempotent [4], hence the complementary radical β' is hereditary [4] and hence $\beta' = \beta^*$. Clearly $\beta' \ge \alpha$. It is then clear that $\beta^* \lor \beta = 1$ and β is complemented. We then have that β^* is the upper radical

determined by a finite number of finite matrix rings $\begin{cases} F(i) \\ n_i \end{cases}_{i=1}^n$. Each

 $F_{n_i}^{(i)}$ is in *M* since $\beta \left(F_{n_i}^{(i)} \right) = F_{n_i}^{(i)}$ and hence all subrings are in *M* since *M* is a variety. If any $n_i > 1$, then *M* must contain rings with zero multiplication, but $I^2 = I$ for every ring in *M*, a contradiction. Therefore $n_i = 1$. Let *n* be the least common multiple of the $|F^{(i)}|$'s . *n* clearly is the *n* demanded in the theorem.

https://doi.org/10.1017/S0004972700046669 Published online by Cambridge University Press

References

- [1] A. Adrian Albert, Structure of algebras (Colloquium Publ. 24, Amer. Math. Soc., New York, 1939).
- [2] S.A. Amitsur, "Associative rings with identities", Some aspects of ring theory, ed. I.N. Herstein, (Centro Internazionalo Matematico Estivo, Roma, 1966).
- [3] A.S. Amitsur and J. Levitzki, "Minimal identities for algebras", Proc. Amer. Math. Soc. 1 (1950), 449-463.
- [4] V.A. Andrunakievič, "Radicals of associative rings. I", (Russian), Mat. Sb. N.S. 44 (86) (1958), 179-212.
- [5] Richard F. Arens and Irving Kaplansky, "Topological representation of algebras", Trans. Amer. Math. Soc. 63 (1948), 457-481.
- [6] E.P. Armendariz, "Closure properties in radical theory", Pacific J. Math. 26 (1968), 1-7.
- [7] Nathan Divinsky, *Rings and radicals* (University of Toronto Press, Toronto, 1965).
- [8] George Grätzer, Universal algebra (Van Nostrand, Princeton, New Jersey; Toronto; London; Melbourne; 1968).
- [9] Irving Kaplansky, "Rings with a polynomial identity", Bull. Amer. Math. Soc. 54 (1948), 575-580.
- [10] Irving KapJansky, Topological representation of algebras. II", Trans. Amer. Math. Soc. 68 (1950), 62-75.
- [11] A.G. Kuroš, "Radicals of rings and algebras", (Russian), Mat. Sb. N.S. 33 (75) (1953), 13-26.
- [12] U. Leron and A. Vapne, "Polynomial identities of related rings", Israel J. Math. 8 (1970), 127-137.
- [13] M. Susan Montgomery, "The Lie structure of simple rings with involution of characteristic 2", (Ph.D. thesis, University of Chicago, Chicago, 1969).
- [14] Robert L. Snider, "Lattices of radicals", (to appear).

[15] Patrick N. Stewart, "Semi-simple radical classes", Pacific J. Math. 32 (1970), 249-254.

University of Miami, Coral Gables, Florida, USA.