Complemented hereditary radicals

Robert L. Snider

Abstract

The complemented elements of the lattice of hereditary radicals are characterized. A hypernilpotent complemented hereditary radical is the upper radical determined by a finite number of finite matrix rings. As a corollary, Stewart's characterization of radical semisimple classes is obtained. The methods are universal algebraic in nature.

In [14], we showed that the natural order on the class of all radicals for associative rings gives rise to a complete lattice in which the hereditary radicals form a complete sublattice, where for hereditary radicals α and β, the meet $(\alpha \wedge \beta)(R)=\alpha(R) \cap \beta(R)$ for any ring R. The semisimple class of the join $\alpha \vee \beta$ is the intersection of the semisimple class of α and the semisimple class of β. We also showed that the lattice of hereditary radicals is Brouwerian and hence distributive. In [14], we raised the question of characterizing the complemented elements of this lattice. In this paper, we completely characterize the complemented hereditary radicals by a detailed study of the polynomial identities of certain algebras. As an application, we quickly obtain a recent result of Stewart [15] characterizing radical semisimple classes.

Our approach is somewhat universal algebraic in nature. We suggest the reader unfamiliar with this approach see Grätzer [8]. For elementary definitions and notions concerning radicals, see [7] or [11].

We shall always use lower case Greek letters to denote radicals. If R is a ring, then the $n \times n$ matrix ring over R will be denoted by $R_{n} \cdot|A|$ will denote the cardinality of the set A.

Received 16 November 1970.

For a hereditary radical α, let α^{*} denote its pseudocomplement where the pseudocomplement is the largest radical λ such that $\alpha \wedge \lambda=0$. α^{*} must exist since our lattice is Brouwerian. If α has a complement, its complement must necessarily be α^{*}. Suppose now that α is complemented. Since $\left(\alpha \vee \alpha^{*}\right)\left(z_{0}\right)=z_{0}$ and $\left(\alpha \wedge \alpha^{*}\right)\left(z_{0}\right)=0$ where Z_{0} is the integers with zero multiplication, we have either $\alpha\left(Z_{0}\right)=z$ and $\alpha^{*}\left(z_{0}\right)=0$ or $\alpha\left(z_{0}\right)=0$ and $\alpha^{*}\left(z_{0}\right)=z_{0}$. In the remainder of the paper, we shall always assume $\alpha\left(Z_{0}\right)=Z_{o}$. This means that α is hypernilpotent. We shall characterize the hypernilpotent complemented radicals. A non-hypernilpotent complemented hereditary radical is then just the complement of a hypernilpotent one.

Let α be a hereditary radical. In [4], Andrunakievič constructed the largest radical α^{\prime} among all those radicals β with $\alpha(R) \cap \beta(R)=0$ for every ring R. Clearly if α^{\prime} is hereditary, $\alpha^{\prime}=\alpha^{*}$. If α is hypernilpotent, he showed that α^{\prime} and $\alpha^{\prime \prime}$ were hereditary. Therefore, if α is also complemented, we have $\alpha^{\prime}=\alpha^{*}$ and $\alpha^{\prime \prime}=\alpha^{* *}=\alpha$. It then follows from [4] that

$$
\alpha^{*}(R)=\cap\{I: R / I \text { is subdirectly irreducible with } \alpha \text {-radical heart }\},
$$

and

$$
\begin{aligned}
\alpha(R)=\alpha{ }^{* *}(R)= & \cap\{I: R / I \text { is subdirectly irreducible with } \\
& \alpha \text {-semisimple heart }\} .
\end{aligned}
$$

THEOREM 1. If S is an α-semisimple simple ring where α is a complemented hypernitpotent radical, then S is finite.

Proof. Let C be the centroid of $S . C$ is a field since S is simple and S can be regarded as an algebra over C. In [14], we showed that C is finite. We show S satisfies a polynomial identity over C. Suppose not. Let F be the free algebra over C with $\max \left\{N_{0},|S|\right\}$ generators. Let $f \neq 0$ be in F; then there exists a homomorphism $h: F \rightarrow S$ such that $h(f) \neq 0$ since S does not satisfy a polynomial identity. If x_{1}, \ldots, x_{n} are the generators of F in the expression of f, we define $h^{\prime}: F \rightarrow S$ by $h^{\prime}\left(x_{i}\right)=h\left(x_{i}\right), i=1, \ldots, n$ and defining h^{\prime} on the other generators making h^{\prime} onto. This can be done
since F has at least as many generators as S has elements. Hence n\{kerh : $h: F \rightarrow S$ is onto $\}=0$, that is F is a subdirect sum of copies of S. Therefore $\alpha(F)=0$. Let H be an infinite field containing C and G a simple ring which satisfies no polynomial identities but contains H in its center (for example, a division ring over H infinite dimensional over its center). Let F^{\prime} be the free ring with $\max \left\{s_{0},|S|,|G|\right\}$ elements. Repeating the above argument, we obtain $\alpha\left(F^{\prime}\right)=0$. Also F^{\prime} is a subdirect sum of copies of G. $\alpha(G)=G$ since G has infinite centroid [14]. Therefore $\alpha^{*}(G)=0$ and hence $\alpha^{*}\left(F^{\prime}\right)=0$. We then have $\left(\alpha \vee \alpha^{*}\right)\left(F^{\prime}\right)=0$, contradicting the fact that $\alpha \vee \alpha^{*}=1$. (1 is the radical for which all rings are radical.) Since S satisfies a polynomial identity, S is primitive by a theorem of Herstein in [13]. By a theorem of Kaplansky [9], S is finite dimensional over its center which must be C. Therefore S is finite since C is finite.

LEMMA 2. GF $\left(p^{q}\right)_{n}$ satisfies the identity $x^{n+r}-x^{n}=0$ where r is the exponent of $\operatorname{GL}\left(n, p^{q}\right)$.

Proof. Let $G F\left(p^{q}\right)_{n}$ act on an n dimensional $G F\left(p^{q}\right)$ vector space V. If A is in $G F\left(p^{q}\right)_{n}$, then we have a descending chain of subspaces, $A V \supseteq A^{2} V \supseteq \ldots \supseteq A^{n} V \supseteq \ldots$ which must terminate at $A^{n} V$ since V has dimension n. A then induces an automorphism ϕ on $A^{n} V$ which can be extended to an automorphism $\bar{\phi}$ of V. Hence $\bar{\phi}^{r}=1$. For any v in V, we have $A^{n}(v)=\phi^{r} A^{n}(v)=\bar{\phi}^{r} A^{n}(v)=A^{n+r}(v)$. Therefore $A^{n}=A^{n+r}$.

LEMMA 3. Let V be the variety of $\mathrm{GF}(p)$ algebras generated by $G F\left(p^{q}\right)_{n}$. If S is in V and A is a subalgebra of S isomorphic to $\operatorname{GF}(p)_{n}$, then A annihilates every nilpotent ideal of S.

Proof. The proof is by induction on the index of nilpotence. Let N be an ideal of S and suppose $N^{2}=0$. Let e denote the identity of A. It is sufficient to show that $e N=N e=0$. First suppose elle $\neq 0$. Since the action of $G F(p) e$ is the same on both sides of eNe,
we can regard $e N e$ as a left $A \otimes_{G F(p)} A^{0}$ module where A° denotes the opposite algebra of A. Multiplication is by $(a \otimes b)(e n e)=$ aeneb . $A \otimes_{\mathrm{GF}(p)} A^{\circ} \cong \mathrm{GF}(p)_{n^{2}}$. All modules over $\mathrm{GF}(p)_{n^{2}}$ are the sum of simple modules; hence elle contains a simple submodule. All simple modules over $G F(p)_{n^{2}}$ are isomorphic; hence we may identify one such simple submodule with all

$$
\left[\begin{array}{l}
x_{1} \\
\cdot \\
\cdot \\
\cdot \\
x_{n}
\end{array}\right] \otimes_{G F(p)}\left[\begin{array}{l}
y_{1} \\
\cdot \\
\cdot \\
y_{n}
\end{array}\right] .
$$

Identify A with $G F(p)_{n}$. Let I_{s} denote the $s \times s$ identity matrix. Let

$$
y=\left[\begin{array}{ll}
0 & 0 \\
& \\
I_{n-1} & 0
\end{array}\right]+\left[\begin{array}{l}
1 \\
1 \\
\cdot \\
\dot{1}
\end{array}\right] \otimes\left[\begin{array}{c}
1 \\
0 \\
\cdot \\
\cdot \\
0
\end{array}\right]
$$

which is in S. Recalling $N^{2}=0$, we compute

$$
\begin{aligned}
& y^{2}=\left[\begin{array}{ll}
0 & 0 \\
I_{n-2} & 0
\end{array}\right]+\left[\begin{array}{l}
0 \\
1 \\
\cdot \\
\cdot \\
\cdot \\
1
\end{array}\right] \otimes\left[\begin{array}{l}
1 \\
0 \\
\cdot \\
\cdot \\
\cdot \\
0
\end{array}\right], \\
& y^{n-1}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]+\left[\begin{array}{l}
0 \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
1 \\
1
\end{array}\right] \otimes\left[\begin{array}{l}
1 \\
0 \\
\cdot \\
\cdot \\
\cdot \\
0
\end{array}\right],
\end{aligned}
$$

$$
y^{n}=0+\left[\begin{array}{c}
0 \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
0 \\
1
\end{array}\right] \otimes\left[\begin{array}{l}
1 \\
0 \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
0
\end{array}\right]
$$

and $y^{n+1}=0$.
By the previous lemma, we have

$$
0 \neq\left[\begin{array}{l}
0 \\
\cdot \\
\cdot \\
0 \\
1
\end{array}\right] \otimes\left[\begin{array}{l}
1 \\
0 \\
\cdot \\
\cdot \\
\cdot \\
0
\end{array}\right]=y^{n}=y^{n+r}=0
$$

a contradiction.
Therefore $e N e=0$. Suppose now that $e N \neq 0 . \quad e N$ is a unital A module and hence has a simple submodule which we may identify with all $\left[\begin{array}{l}x_{1} \\ \cdot \\ \cdot \\ \cdot \\ x_{n}\end{array}\right]$
since all simple A modules are isomorphic. Let

$$
\boldsymbol{z}=\left[\begin{array}{ll}
0 & 0 \\
& \\
I_{n-1} & 0
\end{array}\right]+\left[\begin{array}{l}
1 \\
\cdot \\
\cdot \\
1
\end{array}\right]
$$

As before using eVe $=0$, we compute

$$
z^{n}=\left[\begin{array}{l}
0 \\
\cdot \\
\cdot \\
\cdot \\
1
\end{array}\right]
$$

and $z^{n+1}=0$. We now obtain

$$
0 \neq\left[\begin{array}{l}
0 \\
\cdot \\
\cdot \\
\cdot \\
l
\end{array}\right]=z^{n}=z^{n+r}=0
$$

as before. Therefore $e N=0$. Similarly $N e=0$.
Suppose now that A annihilates all nilpotent ideals of index less than k. Suppose N has index k. Clearly $A \cap N=0$. Passing to S / N^{2}, we have A isomorphically embedded in S / N^{2}. Therefore by the above, we have $\left(e+N^{2}\right) N / N^{2}=0$ or $e N \subseteq N^{2} . N^{2}$ has index of nilpotence less than k; therefore, our induction hypothesis applies. We obtain $e N=e^{2} N \subseteq e N^{2}=0$. Similarly $N e=0$.

LEMMA 4. Let F be a finite field of characteristic p. If U is the variety of $G F(p)$ algebras generated by F_{n}, then the free algebra over V with \aleph_{0} generators can be described as follows: let $A_{k}=\left[\begin{array}{c}(k) \\ i j\end{array}\right]$ be the $n \times n$ matrix with entries commuting indeterminates with $\left(x_{i j}^{(n)}\right)|F|=x_{i j}^{(k)}$ and $p x_{i j}^{(k)}=0$. The free algebra is the algebra generated by the A_{k} with ordinary matrix multiplication and addition.

REMARK. Amitsur [2] states this without proof for infinite fields of characteristic not necessarily p.

Proof. Let R be the algebra generated by the A_{k} 's. R is clearly free over V since every substitution by elements of F for the $x_{i j}^{(k)}$'s clearly induces a homomorphism of R into F_{n}. Therefore we need only show R is in V. To see this, consider the algebra T generated by the $x_{i j}^{(k)}$'s. T is clearly the free algebra of $V(F)$. Hence $\operatorname{Id}(F)=\operatorname{Id}(T)$. From [12, Theorem 3], $\operatorname{Id}\left(F_{n}\right)=\operatorname{Id}\left(T_{n}\right)$. Clearly $R \subseteq T_{n}$. Therefore R is in V since T_{n} is.

For a class of rings M, we denote the upper radical of M by $U M$.
THEOREM 5. Let $F=\operatorname{GF}\left(p^{q}\right)$. If $\alpha=U\left\{F_{n}\right\}$, then α is α complemented hereditary radical.

Proof. $\alpha \wedge \alpha^{*}=0$. Suppose then that $\alpha \vee \alpha^{*}<1$. Since the semisimple class of the join is the intersection of the semisimple classes [14], there exists a ring $R \neq 0$ such that $\alpha(R)=\alpha^{*}(R)=0 .\left\{F_{n}\right\}$ is
a special class since every class of simple rings with unity is special [4], hence $\alpha(R)=\cap\left\{I: R / I \cong F_{n}\right\}$; that is, R is a subdirect sum of copies of F_{n}. It follows that R is in the variety generated by F_{n}. Also since α is hypernilpotent, we have $\alpha^{*}=\alpha^{\prime}$ where α^{\prime} is the complementary radical of Andrunakievič [4]. Therefore

$$
\alpha^{*}(R)=\cap\{I: R / I \text { is subdirectly irreducible with } \alpha \text {-radical heart }\}
$$

By Lemma 2, F_{n} and hence R satisfies the identity $x^{n+r}-x^{n}=0$ where r is the exponent of $G L(n, F)$. Therefore R is a P.I. algebra and also an algebraic algebra and hence R is locally finite [10]. There exists an epimorphism $h: R \rightarrow F_{n}$. Let $\left\{x_{i}\right\}$ be a complete set of liftings of F_{n}. The subalgebra $\left\langle x_{i}\right\rangle$ generated by $\left\{x_{i}\right\}$ is finite since R is locally finite. $h \mid\left\langle x_{i}\right\rangle$ is onto. Let $J\left(\left\langle x_{i}\right\rangle\right)$ denote the Jacobson radical of $\left\langle x_{i}\right\rangle, R / J\left(\left\langle x_{i}\right\rangle\right)$ is a separable algebra; hence by a generalization of the Principal Theorem of Wedderburn [1], $\left\langle x_{i}\right\rangle$ and hence R contains a subalgebra A isomorphic to F_{n}.
R is a subdirect sum of subdirectly irreducible rings $\left\{S_{j}\right\}$ with α-radical hearts. The image of A must be nonzero in some $S_{i} \cdot A$ is simple; hence the image is an isomorphic copy. We suppose now that $A \subseteq S_{i}$. Let H be the heart of S_{i}. Suppose $H^{2}=H . H$ is then a simple ring. H satisfies a polynomial identity since R does. By a theorem of Herstein in [13], H is primitive and hence by a theorem of Kaplansky [9], H is isomorphic to D_{m} where D is a division ring finite dimensional over its center C. C must satisfy $x^{n+r}-x^{n}=0$. Therefore C is finite and $C=D . C_{m}$ has a unit. It follows that C_{m} is a direct summand of $S . S_{i}$ is subdirectly irreducible, hence $C_{m}=S_{i}$. Recall $A \subseteq C_{m}$. Since A satisfies no identities of degree less than $2 n$ [3], we have $n \leq m$ since C_{m} satisfies the standard identity of degree ∂m [3]. Also C_{m} satisfies all identities of F_{n}
since R does. Therefore $m \leq n$. Since $A \subseteq C_{n}, V(A) \subseteq V\left(C_{n}\right)$ and clearly by construction $U\left(C_{n}\right) \subseteq U(A)=V\left(F_{n}\right)$. Let $\left\langle A_{n}\right\rangle$ be the free algebra with \aleph_{0} generators of $V\left(F_{n}\right)$ described in the previous lemma and $\left\langle B_{k}\right\rangle$. the corresponding free algebra for $V\left(C_{n}\right)$. The mapping $A_{k} \rightarrow B_{k}$ induces an isomorphism. It is clear then that $C=F$. This is impossible since $C_{n}=S_{i}$ was assumed to have α-radical heart, but $\alpha\left(F_{n}\right)=0$. Therefore $H^{2}=0$.

Let e denote the identity of A. Let X be the collection of all idempotents x of $e S_{i}$ e such that $\alpha x=x a$ for all a in $A \cdot X$ is not empty since e is in X. Let $I=\sum\{A x: x$ is in $X\}$. The Jacobson radical $J\left(S_{i}\right)$ of S_{i} is nilpotent since S_{i} is an algebraic algebra of bounded index [4]. e annihilates $J\left(S_{i}\right)$ by Lemma 3. It follows that $e S_{i} e \cap J\left(S_{i}\right)=0$. Clearly $I \subseteq e S_{i} e$. It is then sufficient to show that I is an ideal of S_{i} since this will contradict the subdirect irreducibility of S_{i}. Let x be in X and y in S_{i}. Note that $A x=x A$; hence it sufficies to show $A y \subseteq I$. Consider the subalgebra $\langle A, y\rangle$ generated by A and $y \cdot\langle A, y\rangle$ is finite dimensional since S_{i} is an algebraic algebra which satisfies a polynomial identity and hence is locally finite [10]. $\langle A, y\rangle / J(\langle A, y\rangle)$ is separable where $J(\langle A, y\rangle)$ is the Jacobson radical of $\langle A, y\rangle$. By the Principal Theorem of Wedderburn, $\langle A, y\rangle$ contains a subalgebra B which is isomorphic to $\langle A, y\rangle / J(\langle A, y\rangle)$ and $\langle A, y\rangle=B+J(\langle A, y\rangle)$. The previous sum is a vector space direct sum. By Lemma 3, A annihilates the nilpotent ideal $J(\langle A, y\rangle)$ since $A \supseteq G F(p)_{n} \cdot e=z+j$ with z in B and j in $J(\langle A, y\rangle)$. The projection of A into B is a ring homomorphism since $J(\langle A, y\rangle)$ is an ideal. Therefore $\operatorname{Im}(A)$ is isomorphic to A and hence $z j=j z=0$ whenever $a=z+k$ for some a in A. We then have $e=e^{2}=e(z+j)=e z=(z+j) z=z^{2}=z$ for $e=z+j$. Hence $A \subseteq B$. By the Wedderburn-Artin Theorem $B=C_{1} \oplus C_{2} \oplus \ldots \oplus C_{r}$ where C_{i} are matrix rings over division rings.

The projection of A on each factor is either 0 or an embedding. As before, if $F_{n}=A \subseteq C_{i}$, we have $A=C_{i}$. By renumbering if necessary, we have $B=C_{1} \oplus C_{2} \oplus \ldots \oplus C_{t} \oplus C_{t+1} \oplus \ldots \oplus C_{r}$ where $F_{n} \cong C_{i}$ and $e c=c e, i \leq t$, and $e c_{j}=0, j>t$. Then $e c_{i} e=c$ and $c_{i} a=a c_{i}$ for each a in A where c_{i} is the identity of $C_{i}, i \leq t$. Hence c_{i} is in X and $A c_{i}=C_{i}$. Now $y=b+j . a y=a b+a j=a b$ is in $\left(C_{1} \oplus C_{2} \oplus \ldots \oplus C_{t}\right) b \subseteq C_{1} \oplus C_{2} \oplus \ldots \oplus C_{t} \subseteq I$. Therefore I is an ideal.

THEOREM 6. Let α be a hypernilpotent radical. α is complemented if and only if α is the upper radical determined by a finite number of matrix rings over finite fields.

Proof. First suppose $\alpha=u\left\{F_{n_{i}}^{(i)}\right\}_{i=1}^{r}$. Let $\alpha_{i}=u\left\{F_{n_{i}}^{(i)}\right\}$. $\quad \alpha_{i}$ is complemented by the previous theorem. $\quad \alpha=\alpha_{1} \wedge \alpha_{2} \wedge \ldots \wedge \alpha_{r}$ [14]. Clearly $\beta=\alpha_{1}^{*} \vee \alpha_{2}^{*} \vee \ldots \vee \alpha_{p}^{*}$ is the complement of α.

Conversely suppose α has a complement, $\alpha=\alpha^{\prime \prime}$ since α is hypernilpotent. It follows that α is the upper radical determined by the subdirectly irreducible rings with α^{*}-radical hearts. Let S be such a ring with heart H. Since α is hypernilpotent, S is a semiprime ring and hence $H^{2}=H$. Therefore H is a simple ring. Therefore by Theorem $1, H$ is finite and hence is a matrix ring over a finite field. H has an identity and hence H is a direct summand of S. Therefore $H=S$. We now have that α is the upper radical determined by matrix rings over finite fields. We must show that their number is finite.

Suppose first of all that for some prime p, the number of α-semisimple simple rings is finite. Let $\left\{F_{n_{i}}^{(i)}\right\}$ be these rings. We first show n is bounded. Suppose not. It follows that no identity over $G F(p)$ can be satisfied by all the $F_{n_{i}}^{(i)}$ since all identities satisfied by $F_{n_{i}}^{(i)}$ have degree at least $2 n_{i}$ [3]. Consider the free $G F(p)$
algebra G with c (cardinality of the continuum) generators. As in the proof of Theorem 1 , we see that G is a subdirect sum of the $F_{n_{i}}^{(i)}$. Therefore $\alpha(G)=0$. If on the other hand S is a simple algebra satisfying no polynomial identities over $G F(p)$ and $|S| \leq c$ (for example, all linear transformations of finite rank on a vector space of countably infinite dimension over $G F(p))$, then $\alpha(S)=S . \alpha$ is complemented; hence $\alpha^{*}(S)=0$. As before we see that G is a subdirect sum of copies of S. Therefore $\alpha(G)=\alpha^{*}(G)=\left(\alpha \vee \alpha^{*}\right)(G)=0$, a contradiction since $\alpha \vee \alpha^{*}=1$. Therefore n_{i} is bounded. Hence for some n, there is an infinite number of fields $F^{(j)}$ of characteristic p with $n_{j}=n$. We distinguish two cases.

Case I. All but finitely many finite fields of characteristic p are in $\left\{F^{(j)}: n_{j}=n\right\}$.

Case II. Infinitely many finite fields of characteristic p are not $F^{(j)}$'s.

Case I. Let C be the direct limit of the $F^{(j)}$'s where the $F^{(j)}$'s form a direct system with the inclusion maps. C exists since all but finitely many finite fields of characteristic p are represented. C is a field and C_{n} is the direct limit of the $F_{n}^{(j)}$. Clearly $F_{n}^{(j)} \subseteq C_{n}$, hence $\operatorname{Id}\left(C_{n}\right) \subseteq \operatorname{IId}\left(F_{n}^{(j)}\right)$. Also if $p\left(x_{1}, \ldots, x_{n}\right)=0$ is an identity for each $F_{n}^{(j)}$ then since C_{n} is a direct limit of the $F_{n}^{(j)}$, we have $p\left(x_{1}, \ldots, x_{n}\right)$ is an identity for C_{n}. Hence $U\left(C_{n}\right)=V\left\{F_{n}^{(j)}\right\}$. Therefore the free $G F(p)$ algebra H over this variety with ξ_{0} generators is a subdirect sum of the $F_{n}^{(j)} \mathbf{s}$ as before. Therefore $\alpha(H)=0$. Now $\alpha^{*}\left(C_{n}\right)=0$ and H is a subdirect sum of copies of C_{n}, hence $\alpha^{*}(H)=0=\alpha(H)=\left(\alpha \vee \alpha^{*}\right)(H)$, a contradiction.

Case II. Consider the polynomial ring $(\operatorname{GF}(p)[x])_{n} \cdot(\operatorname{GF}(p)[x])_{n}$ is a subdirect sum of the $F_{n}^{(j)}$ and hence we have $\alpha(\operatorname{GF}(p)[x])_{n}=0$. Also since there are infinitely many F_{n} with $\alpha^{*}\left(F_{n}\right)=0$, we have $\alpha^{*}(\operatorname{GF}(p)[x])_{n}=0$. Again we have $\left(\alpha \vee \alpha_{*} \alpha^{*}\right)(\operatorname{GF}(p)[x])_{n}=0$, a contradiction.

We now have that for each prime p, there are only finitely many a-semisimple simple rings of characteristic p. We now show that only finitely many p are represented. Suppose not. Let $K_{n_{i}}^{(i)}$ be the a-semisimple simple rings. We first show n_{i} is bounded above. Suppose not. We show that no polynomial identity over the integers is satisfied by all the $K_{n_{i}}^{(i)}$. Consider $g\left(x_{1}, \ldots, x_{n}\right), g\left(x_{1}, \ldots, x_{n}\right)=0$ (mod p) for only finitely many primes p. Let s be the degree of $g\left(x_{1}, \ldots, x_{n}\right)$. We can find some prime p such that $g\left(x_{1}, \ldots, x_{n}\right) \neq 0$ (mod p) and there is a $K_{n_{i}}^{(i)}$ of characteristic p with $2 n_{i} \geq s$. Since $K_{n_{i}}^{(i)}$ satisfies no identity of degree less than $2 n_{i}$, $g\left(x_{1}, \ldots, x_{n}\right)$ is not identity in $K_{n_{i}}$. As before the free algebra over the integers with sufficiently many generators is a subdirect sum of the $K_{n_{i}}^{(i)}$ and the subdirect sum of copies of some infinite simple ring which satisfies no identities over the integers. It follows that the free algebra is $\alpha \vee \alpha^{*}$-semisimple. Again this is a contradiction and hence n_{i} is bounded. As before, we must have infinitely many n_{i} equal n for some positive integer n. Again we have the polynomial ring $(Z[x])_{n}$ (Z denotes the integers) is a subdirect sum of the $K_{n_{i}}^{(i)}$'s. Also for each p, we can pick $G_{n}^{(p)}$ with $\alpha\left(G_{n}^{(p)}\right)=G_{n}^{(p)}$ where G is a finite field of characteristic $p .(Z[x])_{n}$ is also a subdirect sum of the
$G_{n}^{(j)}$. Therefore $\alpha\left(z[x]_{n}\right)=\alpha^{*}\left(Z[x]_{n}\right)=0$, a contradiction.
We are now able to obtain a recent theorem of Stewart [15] characterizing radical semisimple classes. A radical semisimple class M is a radical class which is simultaneously a semisimple class for some other radical.

THEOREM 7 (Stewart). M is a radical semisimple class if and only if there exists an integer n such that

$$
M=\left\{R: x^{n}=x \text { for every } x \text { in } R\right\} .
$$

Proof. It is easy to verify that if M is as above, then M is a radical semisimple class. Suppose then that we are given a radical semisimple class M. M is closed under homomorphic images and subdirect sum. Therefore M is a variety. Let β be the radical with M as its radical class and α the radical whose semisimple class is M. We show that $I^{2}=I$ for every ring I of M. Suppose not. We then have I / I^{2} is in M and I / I^{2} is a zeroring. Every ideal of Z_{0}, the integers with zero multiplication, can be mapped into I / I^{2} with nonzero image. Since M is a semisimple class we have Z_{0} is in M. This implies B is larger than the Baer lower radical. Armendariz has shown [6] that this implies that M is all rings, a contradiction. $I^{2}=I$ implies β is subidempotent [4], hence the complementary radical β^{\prime} is hereditary [4] and hence $\beta^{\prime}=\beta^{*}$. Clearly $\beta^{\prime} \geq \alpha$. It is then clear that $\beta^{*} \vee \beta=1$ and β is complemented. We then have that β^{*} is the upper radical determined by a finite number of finite matrix rings $\left\{F_{n_{i}}\right\}_{i=1}^{n}$. Each $F_{n_{i}}^{(i)}$ is in M since $B\left(F_{n_{i}}^{(i)}\right)=F_{n_{i}}^{(i)}$ and hence all subrings are in M since M is a variety. If any $n_{i}>1$, then M must contain rings with zero multiplication, but $I^{2}=I$ for every ring in M, a contradiction. Therefore $n_{i}=1$. Let n be the least common multiple of the $\left|F^{(i)}\right|^{(i s} . n$ clearly is the n demanded in the theorem.

References

[1] A. Adrian Albert, Structure of algebras (Colloquium Publ. 24, Amer. Math. Soc., New York, 1939).
[2] S.A. Amitsur, "Associative rings with identities", Some aspects of ring theory, ed. I.N. Herstein, (Centro Internazionalo Matematico Estivo, Roma, 1966).
[3] A.S. Amitsur and J. Levitzki, "Minimal identities for algebras", Proc. Amer. Math. Soc. 1 (1950), 449-463.
[4] V.A. Andrunakievič, "Radicals of associative rings. I", (Russian), Mat. Sb. N.S. 44 (86) (1958), 179-212.
[5] Richard F. Arens and Irving Kaplansky, "Topological representation of algebras", Trons. Amer. Math. Soc. 63 (1948), 457-481.
[6] E.P. Armendariz, "Closure properties in radical theory", Pacific J. Math. 26 (1968), 1-7.
[7] Nathan Divinsky, Rings and radicals (University of Toronto Press, Toronto, 1965).
[8] George Grä†zer, Universal algebra (Van Nostrand, Princeton, New Jersey; Toronto; London; Melbourne; 1968).
[9] Irving Kaplansky, "Rings with a polynomial identity", BulZ. Amer. Math. Soc. 54 (1948), 575-580.
[10] Irving Kaplansky, Topological representation of algebras. II", Trans. Amer. Math. Soc. 68 (1950), 62-75.
[11] A.G. Kuroš, "Radicals of rings and algebras", (Russian), Mat. Sb. N.S. 33 (75) (1953), 13-26.
[12] U. Leron and A. Vapne, "Polynomial identities of related rings", Israel J. Math. 8 (1970), 127-137.
[13] M. Susan Montgomery, "The Lie structure of simple rings with involution of characteristic $2^{\prime \prime}$, (Ph.D. thesis, University of Chicago, Chicago, 1969).
[14] Robert L. Snider, "Lattices of radicals", (to appear).
[15] Patrick N. Stewart, "Semi-simple radical classes", Pacific J. Math. 32 (1970), 249-254.

University of Miami,
Coral Gables,
Florida, USA.

