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Complemented hereditary radicals

Robert L. Snider

The complemented elements of the lattice of hereditary radicals

are characterized. A hypernilpotent complemented hereditary-

radical is the upper radical determined by a finite number of

finite matrix rings. As a corollary, Stewart's characterization

of radical semisimple classes is obtained. The methods are

universal algebraic in nature.

In [14], we showed that the natural order on the class of all radicals

for associative rings gives rise to a complete lattice in which the

hereditary radicals form a complete sublattice, where for hereditary

radicals a and B , the meet (a A 6)(i?) = a(i?) n B(i?) for any ring B .

The semisimple class of the join a v $ is the intersection of the

semisimple class of a and the semisimple class of 3 . We also showed

that the lattice of hereditary radicals is Brouwerian and hence

distributive. In [74], we raised the question of characterizing the

complemented elements of this lattice. In this paper, we completely

characterize the complemented hereditary radicals by a detailed study of

the polynomial identities of certain algebras. As an application, we

quickly obtain a recent result of Stewart [75] characterizing radical

semisimple classes.

Our approach is somewhat universal algebraic in nature. We suggest

the reader unfamiliar with this approach see Gratzer [S]. For elementary

definitions and notions concerning radicals, see [7] or [7 7].

We shall always use lower case Greek letters to denote radicals. If

R is a ring, then the n x n matrix ring over R will be denoted by

R . \A\ will denote the cardinality of the set A .
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308 Robert L. Snider

For a hereditary radical a , let a* denote its pseudocomplement

where the pseudocomplement is the largest radical X such that

a A X = 0 . a* must exist since our lattice is Brouwerian. If a has a

complement, its complement must necessarily be a* . Suppose now that a

is complemented. Since (a v a*)(z ) = Z and (a A a*)(z ) = 0 where

Z is the integers with zero multiplication, we have either a(Z } = Z

and a*(Z ) = 0 or a(Zo) = 0 and a*(Z ) = Z . In the remainder of

the paper, we shall always assume a(Z ] = Z . This means that a is

hypemilpotent. We shall characterize the hypemilpotent complemented

radicals. A non-hypernilpotent complemented hereditary radical is then

just the complement of a hypemilpotent one.

Let a be a hereditary radical. In [4], Andrunakievic constructed

the largest radical a' among all those radicals 3 with a(R) n g(i?) = 0

for every ring R . Clearly if a' is hereditary, ar = a* . If a is

hypernilpotent, he showed that a' and a" were hereditary. Therefore,

if a is also complemented, we have ar = a* and a" = a** = a . It then

follows from [4] that

a*(R) = P1{J : R/I is subdirectly irreducible with a-radical heart} ,

and

a(R) = a**(R) = D{_r : R/I is subdirectly irreducible with

a-semisimple heart} .

THEOREM 1. If S is an a-semisimple simple ring where a is a

aomplemented hypernilpotent radical, then S is finite.

Proof. Let C be the centroid of 5 . C is a field since 5 is

simple and S can be regarded as an algebra over C . In LI42, we showed

that C is finite. We show S satisfies a polynomial identity over C .

Suppose not. Let F be the free algebra over C with max{H , |s|}

generators. Let / + 0 be in F ; then there exists a homomorphism

h : F ->• S such that h{f) + 0 since S does not satisfy a polynomial

identity. If x,, .. . , x are the generators of F in the expression of

/ , we define h' : F •* S by h' Ix.) = h(x.) , i = 1, . . ., n and

defining h' on the other generators making h' onto. This can be done
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since F has at least as many generators as 5 has elements. Hence

rKkerfc : h : F -»• S is onto} = 0 , that is F is a subdirect sum of

copies of S . Therefore a{F) = 0 . Let H be an infinite field

containing C and G a simple ring which satisfies no polynomial

identities but contains H in its center (for example, a division ring

over H infinite dimensional over its center). Let F' be the free ring

with max{H , \s\, G\] elements. Repeating the above argument, we

obtain a(Fr) = 0 . Also F' is a subdirect sum of copies of G .

a{G) = G since G has infinite centroid [74]. Therefore a*(G) = 0 and

hence a*{F') = 0 . We then have (a v a*)(F') = 0 , contradicting the

fact that a v a* = 1 . (l is the radical for which all rings are

radical.) Since S satisfies a polynomial identity, S is primitive by

a theorem of Herstein in [73]. By a theorem of Kaplansky [9], S is

finite dimensional over its center which must be C . Therefore S is

finite since C is finite.

LEMMA 2. G?{pq) satisfies the identity xn+r - xn = 0 where r

is the exponent of Gh[n, p^) .

Proof. Let GF(p") act on an n dimensional GF (p ) vector space

V . If A is in GF(p^j , then we have a descending chain of subspaces,

AV 3 A2V 3 ... 3 AnV 2 • • • which must terminate at AnV since V has

dimension n . A then induces an automorphism (f> on A V which can be

— —2*
extended to an automorphism <)> of V . Hence (|) = 1 . For any v in

V , we have An{v) = <j>V(i>) = ? V ( v ) = An+T{v) . Therefore An = An+r .

LEMMA 3. Let V be the variety of GF(p) algebras generated by

GF [p ) • If S is in V and A is a subalgebra of S isomorphia to

GF(p) , then A annihilates every nilpotent ideal of S .

Proof. The proof is by induction on the index of nilpotence. Let

N be an ideal of 5 and suppose N2 = 0 . Let e denote the identity

of A . It is sufficient to show that eN = Ne = 0 . First suppose

elle # 0 . Since the action of GF(p)e is the same on both sides of effe ,
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we can regard eNe as a left A ®r,-ni \ A module where A denotes

the opposite algebra of A . Multiplication is by (a ® b){ene) = aeneb .

A ®rvi \ A = GF(p) 2 • All modules over GF(p) 2
 a r e "the sum of simple

modules; hence eNe contains a simple submodule. All simple modules

over GF(p) 2 a r e isomorphic; hence we may identify one such simple

submodule with all

JGF(p)

Identify A with GF(p) Let I denote the s * s Identity matrix.s

Let

y =

0 0

J 0

+

1
1

•

®

1
0

0

which is in S . Recalling N2 - 0 , we compute

2
y -

n-X
y

0

1 _

=

0

0

0 0"

1 o_

*

0
1

•

1

"o"

•

1
1

®

®

1
0

•

0

Y
0

•

0_
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and y = 0 .

By the previous lemma, we have

b
•

0
1

Y
0

•

0_

n n+r
= y = y = o ,

a contradiction.

Therefore eNe = 0 . Suppose now that eN £ 0 . eN is a unital

module and hence has a simple submodule which we may identify with all

since all simple A modules are isomorphic. Let

0 0

z =

n-1

As before using eNe = 0 , we compute

z =

and 2 = 0 . We now obtain

n n+r _= z = z = 0
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as before. Therefore eN = 0 . Similarly Ne = 0 .

Suppose now that A annihilates all nilpotent ideals of index less

than k . Suppose N has index k . Clearly A n N = 0 . Passing to

S/N2 , we have A isomorphically embedded in S/N2 . Therefore by the

above, we have (e+N2)N/N2 = 0 or eN c Nz . N2 has index of nilpotence

less than k ; therefore, our induction hypothesis applies. We obtain

eN = e2N c eN2 = 0 . Similarly Ne = 0 .

LEMMA 4. Let F be a finite field of characteristic p . If V is

the variety of GF(p) algebras generated by F 3 then the free algebra

over 1/ with XQ generators can be described as follows: let

A-, = \x. . be the n x. n matrix with entries commuting indeterminates

with \X..\\F\ = x\. and px\. = 0 . The free algebra is the algebra

\. '-<? J >-3 I'd
generated by the A, with ordinary matrix multiplication and addition.

REMARK. Amitsur [2] states this without proof for infinite fields of

characteristic not necessarily p .

Proof. Let R be the algebra generated by the A's. R is

clearly free over V since every substitution by elements of F for the

(k)
x. . 's clearly induces a homomorphism of R into F . Therefore we need
i-j n

only show R is in 1/ . To see this, consider the algebra T generated

(k)
by the x\.'s . T is clearly the free algebra of \){F) . Hence

^J^ •

Id(f) = Id(T) . From [72, Theorem 3 ] , Id(F ) = I d ( y J . Clearly

RcT . Therefore R i s in 1/ since T i s .
— 7i n

For a class of rings M , we denote the upper radical of M by UM .

THEOREM 5. Let F = GF(pq) . If a = U{^} , then a is a

complemented hereditary radical.

Proof, a A a* = 0 . Suppose then that a v a* < 1 . Since the

semisimple class of the join is the intersection of the semisimple classes

[74], there exists a ring R * 0 such that a(R) = a*(R) =0 . {Fj is

https://doi.org/10.1017/S0004972700046669 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700046669


Hereditary radicals 313

a special class since every class of simple rings with unity is special

[4], hence a(i?) = fl{l : R/I = F } ; that is, R is a subdirect sum of

copies of F . It follows that R is in the variety generated by F .

Also since a is hypernilpotent, we have a* = a1 where a1 is the

complementary radical of Andrunakievic [4]. Therefore

a*{R) = D{j : R/I is subdirectly irreducible with a-radical heart} .

By Lemma 2, F and hence R satisfies the identity x - x = 0

where r is the exponent of GL{n, F) . Therefore R is a P.I. algebra

and also an algebraic algebra and hence R is locally finite [70]. There

exists an epimorphism h : R -+ F . Let {a:.} be a complete set of

liftings of F . The subalgebra <a;.> generated by {a:.} is finite
Yl " L I -

since R is locally finite. h\(x.) is onto. Let J((x.)) denote the

Jacobson radical of (x.) . R/J[(x.>) is a separable algebra; hence by

a generalization of the Principal Theorem of Wedderburn [7], <x.) and
Is

hence R contains a subalgebra A isomorphic to F

R is a subdirect sum of subdirectly irreducible rings {S .} with
0

a-radical hearts. The image of A must be nonzero in some S. • A is

simple; hence the image is an isomorphic copy. We suppose now that

AcS. . Let H be the heart of S. . Suppose H2 = H . H is then a
1/ Is

simple ring. H satisfies a polynomial identity since R does. By a

theorem of Herstein in [73], H is primitive and hence by a theorem of

Kaplansky [9], H is isomorphic to D where D is a division ring

finite dimensional over its center C • C must satisfy x - x = 0 .

Therefore C is finite and C = D . C has a unit. It follows that C
m m

is a direct summand of S . S. is subdirectly irreducible, hence

C = S. . Recall A c C . Since A satisfies no identities of degree
m % — m

less than 2n [3], we have n < m since C satisfies the standard
in

identity of degree 2rn [3]. Also C satisfies all identities of F
m n
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since R does. Therefore m 5 n . Since A c C , [/(A) cl/(c) and

clearly by construction {/(c ) c [/(A) = V (F ) . Let <4 > be the free

algebra with H generators of l/(F } described in the previous lemma

and (B-,), the corresponding free algebra for \l [C J . The mapping

A-, -*• B. induces an isomorphism. It is clear then that C = F . This is

impossible since C = S. was assumed to have a-radical heart, but
n v

a[F ) = 0 . Therefore Hz = 0 .

Let s denote the identity of A . Let X be the collection of all

idempotents x of eS .e such that ax = xa for all a- in A . X is
Is

not empty since e is in X . Let I = \{Ax : x is in X} . The

Jacobson radical J(S.) of S. is nilpotent since S. is an algebraic
Is Is Is

algebra of bounded index [4]. e annihilates J[S-) by Lemma 3. It
Ts

follows that eS .e n J [S.) = 0 . Clearly I c eS .e . It is then
Is Is Is

sufficient to show that I is an ideal of 5. since this will contradict
v

the subdirect irreducibility of S. . Let x be in X and y in S. .

I* i.

Note that Ax = xA ; hence it sufficies to show Ay c J . Consider the

subalgebra (,A, y) generated by A and y . (A, y) is finite

dimensional since 5. is an algebraic algebra which satisfies a polynomial
Is

identity and hence is locally finite [/(?]. (A, y)/j((A, z/>] is separable

where J {(A, y)) is the Jacobson radical of {A, y) . By the Principal

Theorem of Wedderburn, (A, y) contains a subalgebra B which is

isomorphic to (A, y)/J[(A, y)) and (A, y) = B + J[(A, y)) . The

previous sum is a vector space direct sum. By Lemma 3, A annihilates the

nilpotent ideal J[(A, y)) since 4 2 GF(p) . e - z + j with z in B

and j in J[(A, y)) . The projection of A into B is a ring

homomorphism since J[<A, y)) is an ideal. Therefore ImU) is

isomorphic to A and hence zj = jz = 0 whenever a = z + k for some a

in A . We then have e = e 2 = e{z+j) = ez = {z+j)z = z2 = z for

e = s + j . Hence A c B . By the Wedderburn-Artin Theorem

B = C © C © ... © C where C. are matrix rings over division rings.

https://doi.org/10.1017/S0004972700046669 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700046669


Hereditary radicals 315

The projection of A on each factor is either 0 or an embedding. As

before, if F = A c C. , we have A = C. . By renumbering if necessary,

we have B = C © Co © . . . © C, © C © ... © C where F = C. and

ec = ce , i 2 t 3 and gC. = 0 , j > t . Then ee .e = c and c .a = ac.
Q % % V

for each a in A where c. is the identity of C. , t 5 t . Hence

c. is in £ and Ac. = C. . Now y = h + j . ay = ab + aj = ab is in

(C, © C2 © ... © C.)2> c C © C © .. . © C c I . Therefore I is an

ideal.

THEOREM 6. Let a be a hypernilpotent radical, a is complemented

if and only if a is the upper radical determined by a finite number of

matrix rings over finite fields.

Proof. First suppose a = UIF^H . Let a. = U / F ^ H . a. is
* (n./._ ^ I n. / ^

complemented by the previous theorem, a = a, A a? A ... A a [74].

Clearly 3 = a* v a* v ... v a* is the complement of a .

Conversely suppose a has a complement, a = a" since a is

hypernilpotent. It follows that a is the upper radical determined by

the subdirectly irreducible rings with a*-radical hearts. Let 5 be

such a ring with heart H . Since a is hypernilpotent, S is a

semiprime ring and hence H2 = H . Therefore J is a simple ring.

Therefore by Theorem 1, H is finite and hence is a matrix ring over a

finite field. H has an identity and hence J is a direct summand of 5 .

Therefore H = S . We now have that a is the upper radical determined by

matrix rings over finite fields. We must show that their number is finite.

Suppose first of all that for some prime p , the number of

a-semisimple simple rings is finite. Let {F > be these rings. We

first show n is bounded. Suppose not. It follows that no identity over

(i)
GF(p) can be satisfied by all the F since all identities satisfied

by i^ have degree at least 2M. [3]. Consider the free GF(p)
ni l
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algebra G with a (cardinality of the continuum) generators. As in the

proof of Theorem 1, we see that G is a subdirect sum of the F
It

Therefore a(G) = 0 . If on the other hand S is a simple algebra

satisfying no polynomial identities over GF(p) and |s| £ c (for

example, all linear transformations of finite rank on a vector space of

countably infinite dimension over GF(p)) , then a(5) = S . a is

complemented; hence a*(S) = 0 . As before we see that G is a

subdirect sum of copies of 5 . Therefore a(ff) = a*{G) = (a V a*)(G) = 0,

a contradiction since a v a* = 1 . Therefore n. is bounded. Hence for

some n , there is an infinite number of fields F of characteristic

p with n . = n . We distinguish two cases.
u

Case I. All but finitely many finite fields of characteristic p

are in \F : n . = n
J

Case II. Infinitely many finite fields of characteristic p are

not FJ's .

Case I. Let C be the direct limit of the F^J''s where the

F 's form a direct system with the inclusion maps. C exists since all

but finitely many finite fields of characteristic p are represented. C

is a field and C is the direct limit of the F . Clearly

U)F{n
3) ECn , hence Id(cJ cnid[^j)) . Also if p{x±, . . ., xj = 0 is

an identity for each F J then since C is a direct limit of the

F , we have p(x , ..., x ) is an identity for C . Hence

\j[C ) = VIF 3 I . Therefore the free GF(p) algebra H over this

(7)
variety with N generators is a subdirect sum of the F s as before.

Therefore a{H) = 0 . Now a* [C ) = 0 and H is a subdirect sum of

copies of C , hence a*(H) = 0 = a(H) = (a v a*)(H) , a contradiction.
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Case II. Consider the polynomial ring (GF(p)[a;]) . [GF{p)[x])

is a subdirect sum of the F and hence we have a(GF(p)[a;]) = 0 .

Also since there are infinitely many F with a*[F ) = 0 , we have

a*[GF(p)[x]) = 0 . Again we have (a V ,01*) (GF(p) [a;]) = 0 , a

contradiction.

We now have that for each prime p , there are only finitely many

a-semisimple simple rings of characteristic p . We now show that only

finitely many p are represented. Suppose not. Let K be the

a-semisimple simple rings. We first show n. is bounded above. Suppose

not. We show that no polynomial identity over the integers is satisfied

by all the K^' . Consider g[x±, .. . , x j . g[xx, . . . , xj = 0

(mod p) for only finitely many primes p . Let s be the degree of

g [x. , . . . , x ) . We can find some prime p such that g [x , . . . , x ) ^ 0

(i)
(mod p) and there is a K of characteristic p with 2n. 2 s .

ni t

(I)
Since K satisfies no identity of degree less than 2n. ,

g (x- , ..., x) is not identity in K . A s before the free algebra over
i

the integers with sufficiently many generators is a subdirect sum of the

(i)K and the subdirect sum of copies of some infinite simple ring which

satisfies no identities over the integers. It follows that the free

algebra is a v a*-semisimple. Again this is a contradiction and hence

n- is bounded. As before, we must have infinitely many n. equal n

for some positive integer n . Again we have the polynomial ring [z[x])

(£)(Z denotes the integers) is a subdirect sum of the K 's . Also for

each p , we can pick G P with a p = G P where G is a finiter n { n j n

field of characteristic p . (Z[x]j is also a subdirect sum of the
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G . Therefore a(z[>] ) = a*{Z[x] } = 0 , a contradiction.
Yl Yt Yt

We are now able to obtain a recent theorem of Stewart [75]

characterizing radical semisimple classes. A radical semisimple class M

is a radical class which is simultaneously a semisimple class for some

other radical.

THEOREM 7 (Stewart). M is a radical semisimple class if and only

if there exists an integer n such that

M = {R : x = x for every x in R] .

Proof. It is easy to verify that if M is as above, then M is a

radical semisimple class. Suppose then that we are given a radical

semisimple class M . M is closed under homomorphic images and subdirect

sum. Therefore M is a variety. Let 0 be the radical with M as its

radical class and a the radical whose semisimple class is M . We show

that I2 = J for every ring I of M . Suppose not. We then have I/I2

is in M and I/I2 is a zero ring. Every ideal of Z . the integers

with zero multiplication, can be mapped into 1112 with nonzero image.

Since M is a semisimple class we have Z is in M . This implies 0

is larger than the Baer lower radical. Armendariz has shown [6] that this

implies that M is all rings, a contradiction. I2 = I implies g is

subidempotent [4], hence the complementary radical 0' is hereditary [4]

and hence 01 = 0* . Clearly g1 > a . It is then clear that 0* v 0 = 1

and 6 is complemented. We then have that 0* is the upper radical

( U))n
determined by a finite number of finite matrix rings iF > . Each

d) i d)) (i)
F is in M since 0 F = F and hence all subrings are in M

since M is a variety. If any n. > 1 , then M must contain rings with

zero multiplication, but I2 = I for every ring in M , a contradiction.

Therefore n. = 1 . Let n be the least common multiple of the

\F |'S . n clearly is the n demanded in the theorem.
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