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Abstract

A space Y is called an extension of a space X if Y contains X as a dense subspace. An extension Y of X
is called a one-point extension if Y\X is a singleton. Compact extensions are called compactifications
and connected extensions are called connectifications. It is well known that every locally compact
noncompact space has a one-point compactification (known as the Alexandroff compactification) obtained
by adding a point at infinity. A locally connected disconnected space, however, may fail to have a one-
point connectification. It is indeed a long-standing question of Alexandroff to characterize spaces which
have a one-point connectification. Here we prove that in the class of completely regular spaces, a locally
connected space has a one-point connectification if and only if it contains no compact component.
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1. Introduction

Throughout this article by completely regular we mean completely regular and
Hausdorff (also referred to as Tychonoff).

A space Y is called an extension of a space X if Y contains X as a dense
subspace. An extension Y of X is called a one-point extension if Y\X is a singleton.
Compact extensions are called compactifications and connected extensions are called
connectifications.

It is well known that every locally compact noncompact space has a one-
point compactification, known as the Alexandroff compactification (see [3]). A
locally connected disconnected space, however, may fail to have a one-point
connectification; trivially, any space with a compact open subspace has no Hausdorff
connectification. (The lack of compact open subspaces, however, does not guarantee
the existence of a connectification; see [2, 7, 18, 21].) There is indeed an old question
of Alexandroff of characterizing spaces which have a one-point connectification.
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This so far has motivated a significant amount of research. The earliest serious work
in this direction dates back perhaps to 1945 and is due to Knaster [8]; it presents
a characterization of separable metrizable spaces which have a separable metrizable
one-point connectification. Knaster’s characterization is as follows.

Theorem 1.1 (Knaster [8]). Let X be a separable metrizable space. Then X has a
separable metrizable one-point connectification if and only if it can be embedded in a
connected separable metrizable space as a proper open subspace.

More recently, in [1], Abry et al. have given the following alternative characteri-
zation of separable metrizable spaces which have a separable metrizable one-point
connectification.

Theorem 1.2 (Abry et al. [1]). Let X be a separable metrizable space in which every
component is open. Then X has a separable metrizable one-point connectification if
and only if X has no compact component.

Here we characterize locally connected completely regular spaces which have a
completely regular one-point connectification. Our characterization resembles that of
Abry et al. as stated in Theorem 1.2 and, as we will now explain, may be viewed as
a dual to Alexandroff’s characterization of locally compact Hausdorff spaces having a
Hausdorff one-point compactification. Observe that locally compact Hausdorff spaces
as well as compact Hausdorff spaces are completely regular. The Alexandroff theorem,
now reworded, states that a locally compact completely regular space has a completely
regular one-point compactification if and only if it is noncompact. Keeping analogy,
we prove that a locally connected completely regular space has a completely regular
one-point connectification if and only if it contains no compact component. Our
method may also be used to give a description of all completely regular one-point
connectifications of a locally connected completely regular space with no compact
component. Further, for a locally connected completely regular space with no compact
component, we give conditions on a topological property P which guarantee the space
to have a completely regular one-point connectification with P , provided that each
component of the space has P . This will conclude Section 2. In Section 3, we
will be dealing with T1-spaces. Results of this section are dual to those we proved
in Section 2 rephrased in the context of T1-spaces. In particular, we will prove that
a locally connected T1-space has a T1 one-point connectification if it contains no
compact component.

We will use some basic facts from the theory of the Stone–Čech compactification.
Recall that the Stone–Čech compactification of a completely regular space X, denoted
by βX, is the Hausdorff compactification of X which is characterized among all
Hausdorff compactifications of X by the fact that every continuous mapping f : X →
[0, 1] is continuously extendable over βX. The Stone–Čech compactification of a
completely regular space always exists. We will use the following standard properties
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of βX. (By a clopen subspace we mean a simultaneously closed and open subspace.)

• A clopen subspace of X has open closure in βX.
• Disjoint zero-sets in X have disjoint closures in βX.
• βT = βX whenever X ⊆ T ⊆ βX.

For more information on the subject and other background material, we refer the reader
to the texts [5, 6, 17].

2. One-point connectifications of completely regular spaces

The following subspace of βX plays a crucial role throughout our whole discussion.

Definition 2.1. Let X be a completely regular space. Define

δX =
⋃
{clβXC : C is a component of X},

considered as a subspace of βX.

Recall that a space X is called locally connected if for every x in X, every
neighborhood of x in X contains a connected neighborhood of x in X. Every
component of a locally connected space is open and thus is clopen, as components
are always closed. Observe that any clopen subspace of a completely regular space X
has open closure in βX. Therefore, in a locally connected completely regular space X
each component of X has open closure in βX; in particular, δX is open in βX.

The following theorem characterizes locally connected completely regular spaces
which have a completely regular one-point connectification.

Theorem 2.2. A locally connected completely regular space has a completely regular
one-point connectification if and only if it contains no compact component.

Proof. Let X be a (nonempty) locally connected completely regular space.
Sufficiency. Suppose that X contains no compact component. We show that X has

a completely regular one-point connectification. Let C be a component of X. Then
clβXC\X is nonempty, as C is noncompact. Choose an element tC in clβXC\X. Let

P = {tC : C is a component of X} ∪ ( βX\δX).

Note that P misses X, as βX\δX does so, since X is contained in δX trivially. Also, P is
nonempty, as X is so. We show that P is closed in βX. Let t be in clβXP. Obviously, t is
contained in P if it is contained in βX\δX. Let t be in δX. Then t is contained in clβXD
for some component D of X. We show that t is identical to tD. Suppose otherwise.
Then

U = clβXD\{tD}

is an open neighborhood of t in βX. (Observe that the closure in βX of D is open in
βX, as D is a component of X and X is locally connected.) We show that U misses P.
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Let E be a component of X distinct from D. Then E is necessarily disjoint from D.
This implies that E and D have disjoint closures in βX, as they are disjoint zero-sets
(indeed, disjoint clopen subspaces) in X. Therefore, tE is not in U, as it is contained in
clβXE. It is trivial that U misses βX\δX. Thus, U misses P, which is a contradiction.
This shows that P is closed in βX.

Let T be the space which is obtained from βX by contracting the compact subspace
P of βX to a point p and let φ : βX → T denote the corresponding quotient mapping.
Consider the subspace Y = X ∪ {p} of T . Then Y is completely regular, as T is so,
and contains X densely, as T does so. That is, Y is a completely regular one-point
extension of X. We verify that Y is connected. Note that p is contained in clYC for
every component C of X, as

p = φ(tC) ∈ φ(clβXC) ⊆ clTφ(C) = clTC.

Since clYC is the closure of a connected space, it is connected for every component C
of X. Therefore,

Y =
⋃
{clYC : C is a component of X}

is connected, as it is the union of a collection of connected subspaces of Y with
nonempty intersection.

Necessity. Suppose that X has a completely regular one-point connectification Y .
We show that no component of X is compact. Suppose otherwise. Then X contains
a compact component C. Trivially, C is closed in Y , as Y is Hausdorff. On the other
hand, C is open in Y , as C is open in X, since X is locally connected, and X is open
in Y . That is, C is clopen in Y . Since Y is connected, we then have C = Y , which is a
contradiction. �

Remark 2.3. Theorem 2.2 is valid if we replace local connectedness of X by the
requirement that every component of X is open; this follows trivially by an inspection
of the proof.

The method used in the proof of Theorem 2.2 can be modified to give a description
of all completely regular one-point connectifications of a locally connected completely
regular space X with no compact component; this will be the context of our next
theorem.

The following lemma follows from a very standard argument; we therefore omit the
proof.

Lemma 2.4. Let Y = X ∪ {p} be a completely regular one-point extension of a space X.
Let φ : βX → βY be the continuous extension of the identity mapping on X. Then βY
is the quotient space obtained from βX by contracting φ−1(p) to p and φ is its quotient
mapping.

The following theorem describes, for a locally connected completely regular
space which has no compact component, all its completely regular one-point
connectifications.
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Theorem 2.5. Let X be a locally connected completely regular space with no compact
component. Let Y = X ∪ {p} be the quotient space obtained by contracting a nonempty
compact subspace of βX\X which intersects the closure in βX of each component of X
to the point p. Then Y is a completely regular one-point connectification of X. Further,
any completely regular one-point connectification of X is obtained in this way.

Proof. Let P be a nonempty compact subspace of βX\X which intersects the closure
in βX of every component of X. Let T be the quotient space of βX which is obtained
by contracting P to a point p. An argument similar to the one given in the proof of
Theorem 2.2 shows that the subspace Y = X ∪ {p} of T is a completely regular one-
point connectification of X.

To show the converse, let Y = X ∪ {p} be a completely regular one-point
connectification of X. Let φ : βX → βY be the continuous extension of the identity
mapping on X. It follows from Lemma 2.4 that βY is the quotient space obtained from
βX by contracting φ−1(p) to p and φ is its quotient mapping. We need to show that
φ−1(p) intersects the closure in βX of each component of X. Let C be a component of
X. Suppose to the contrary that

φ−1(p) ∩ clβXC = ∅.

Then p is not contained in φ(clβXC) and, since clβYC ⊆ φ(clβXC), p is not contained in
clYC either. Therefore, C is closed in Y , as it is closed in X. But C is also open in Y ,
as it is open in X, since X is locally connected (and X is open in Y). This contradicts
the connectedness of Y . �

In [10] (see also [9] and [11–15]), we have studied topological properties P such
that any completely regular space which has P locally has a completely regular
one-point extension which has P . Motivated by this, we consider conditions on a
topological property P which guarantee a locally connected completely regular space
with no compact component to have a completely regular one-point connectification
with P , provided that all its components have P .

We need the following definition.

Definition 2.6. Let P be a topological property. Then:

(1) P is closed hereditary if any closed subspace of a space having P has P ;
(2) P is finitely additive if any space which is expressible as a finite disjoint union

of closed subspaces each having P has P ;
(3) P is co-local if a space X has P provided that it contains a point p with an

open base B for X at p such that X\B has P for any B in B.

Remark 2.7. The condition stated in (3) in Definition 2.6 has been introduced by
Mrówka [16], where it was called condition (W).

Remark 2.8. Some authors call a topological property P finitely additive if any space
which is a finite (and not necessarily disjoint) union of closed subspaces each having
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P has P . The reader is warned of the difference between this definition and the
definition given in Definition 2.6.

Theorem 2.9. Let X be a locally connected completely regular space with no compact
component. Let P be a closed hereditary finitely additive co-local topological
property. If every component of X has P (in particular, if X has P), then X has
a completely regular one-point connectification with P .

Proof. Note that if X has P , then each of its components has P , as P is closed
hereditary. We may therefore prove the theorem in the case when every component of
X has P .

Let P, T , φ and Y be as defined in the proof of Theorem 2.2. Since P is co-local,
to show that Y has P it suffices to show that Y\U has P for any open neighborhood
U of p in Y . Let U be an open neighborhood of p in Y and let U′ be an open subspace
of T with U = U′ ∩ Y . Then

βX\δX ⊆ φ−1(p) ⊆ φ−1(U′),

as p is contained in U′, and thus

βX\φ−1(U′) ⊆ δX.

By compactness (and the definition of δX), it then follows that

βX\φ−1(U′) ⊆ clβXC1 ∪ · · · ∪ clβXCn, (2.1)

where Ci is a component of X for each i = 1, . . . , n. Intersecting both sides of (2.1)
with X gives

X\U ⊆ C1 ∪ · · · ∪Cn = D.

Note that D has P , as it is a finite disjoint union of closed subspaces each with P
and P is finitely additive. Thus,

Y\U = X\U

has P , as it is closed in D and P is closed hereditary. �

Remark 2.10. There is a long list of topological properties, mostly covering
properties (topological properties described in terms of the existence of certain
kinds of open subcovers or refinements of a given open cover of a certain
type), satisfying the requirements of Theorem 2.9. Specifically, we mention
the Lindelöf property, paracompactness, metacompactness, subparacompactness,
the para-Lindelöf property, the σ-para-Lindelöf property, weak θ-refinability, θ-
refinability (or submetacompactness), weak δθ-refinability and δθ-refinability (or the
submeta-Lindelöf property). (See [10, Example 2.16] for the proof and [4, 19, 20] for
the definitions.)
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3. One-point connectifications of T1-spaces

This section deals with one-point connectifications of T1-spaces. The results of
this section will be dual to those we have obtained in the previous section. We will
make critical use of the Wallman compactification; this will replace the Stone–Čech
compactification, as used in the previous section.

Recall that the Wallman compactification of a T1-space X, denoted by wX, is the T1

compactification of X with the property that every continuous mapping f : X → K of
X to a compact Hausdorff space K is continuously extendable over wX. The Wallman
compactification is the substitute of the Stone–Čech compactification which is defined
for every T1-space. The Wallman compactification of a T1-space X is Hausdorff if and
only if X is normal and, in this case, it coincides with the Stone–Čech compactification
of X. The Wallman compactification has properties which are dual to those of the
Stone–Čech compactification. In particular, a clopen subspace of a T1-space X has
open closure in wX, and disjoint zero-sets in X have disjoint closures in wX.

The next theorem is dual to Theorem 2.2.

Theorem 3.1. A locally connected T1-space has a T1 one-point connectification if it
contains no compact component.

Proof. Let X be a (nonempty) locally connected T1-space with no compact
component. Let δX, tC and P be as defined in (Definition 2.1 and) the proof of
Theorem 2.2 with βX substituted by wX in their definitions. As argued in the proof
of Theorem 2.2, it follows that P is a nonempty closed subspace of wX which misses
X. Let T be the quotient space of wX which is obtained by contracting P to a point
p. Then T is a T1-space, as singletons are all closed in T . As argued in the proof of
Theorem 2.2, the subspace Y = X ∪ {p} of T is a connected T1 one-point extension
of X. �

We do not know whether the converse of Theorem 3.1 holds true; we state this
formally as an open question.

Question 3.2. For a locally connected T1-space, does the existence of a T1 one-point
connectification imply the nonexistence of compact components?

The next two theorems are dual to Theorems 2.5 and 2.9, respectively. We omit the
proofs, as they are analogous to the proofs we have already given for Theorems 2.5
and 2.9, respectively (with the use of Theorem 3.1 in place of that of Theorem 2.2).

Theorem 3.3. Let X be a locally connected T1-space with no compact component. Let
Y = X ∪ {p} be the quotient space obtained by contracting a nonempty closed subspace
of wX, which is contained in wX\X and intersects the closure in wX of each component
of X, to the point p. Then Y is a T1 one-point connectification of X.

https://doi.org/10.1017/S1446788714000676 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788714000676
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Question 3.4. For a locally connected T1-space X with no compact component, does
Theorem 3.3 give every T1 one-point connectification of X?

Theorem 3.5. Let X be a locally connected T1-space with no compact component.
Let P be a closed hereditary finitely additive co-local topological property. If every
component of X has P (in particular, if X has P), then X has a T1 one-point
connectification with P .
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[3] P. Alexandroff, ‘Über die Metrisation der im Kleinen kompakten topologischen Räume’, Math.
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