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Abstract

Several generalizations are given of the Gauss-Winckler inequality for the moments of a
probability distribution.

1. Introduction

Bounds on the moments of probability distributions are important in the area of
stochastic analysis generally and also in operations research. In this article we extend
several known results.

To fix our notation, let Q : [0, a] -*• [0, 1] (a € (0, oo]) be a nondecreasing
function with Q(0) = 0 and Q(a) = 1, that is, Q is a probability distribution function
with support [0, a]. The r-th moment vr of Q is defined by

xrdQ(x).

This is naturally defined for r > 0, though we shall find that a number of results
actually hold for r > — 1. In the remainder of this paper we assume that Q has the
above-mentioned properties.

In recent years a rich variety of relations has been uncovered between the moments
of distributions. The roots of this go back over a century. Thus, under the additional
constraint of a nonincreasing density function, the Gauss-Winckler inequality says
that

((r + \)vr)
Ur < (is + l)vs)

1/s for r < s.
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When r = 1 and s = 2, this gives

which is a surprising and useful strengthening of the familiar v2 > v\.
Slightly more involved is the following theorem of the authors [6, 9].

THEOREM A. 1° Let a = 1 and suppose Q has a derivative of order (n + 1)
such that (—1)"+1 <2(n+1) is nonnegative.

(a) For n e {1,2} the function fn defined by

Mr) = 1

is concave on (—1, oo).
(b) Ifn > 3 and (-I)"-*"1 ^'""^(l) > 0/or it = 2 , . . . , n - 1, fften/„ w concave

also.

2° If a 6 R and if Q is nondecreasing, then f\ is concave.

For n = 1, part (a) says that if a distribution on a bounded interval (which we
may take as [0, 1]) has a monotone nondecreasing density function, then (r + l)vr is
logconcave on (—1, oo). The same conclusion holds (for n = 2) if the distribution
has a concave density function.

Similarly we derived the following result.

THEOREM B. (a) If a = oo and (— I)""1 Q(n) is positive, continuous and nonin-
creasing for n = 1, 2 . . . , N, then /„ (n = 1, 2 , . . . , N) is convex.
(b) If a e R and Q' is nonincreasing, then f\ is convex.

As a consequence of the concavity of /„ in Theorem A, we have for r > 0 and
r\,.-. ,rm >Othat

When /„ is convex, the reverse of (1) holds. For n = 1, the reverse of (1) was
proved by Pecaric [5] using Chebyshev's inequality. It is an extension of Stolarsky's
inequality ([7], see also [6, 4] and Section 4).

These results are suggestive of much more. We explore some of the possibilities in
this paper.

In Section 2 we give a weighted version of (1) and connect it with the Petrovic
inequality.
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In Section 3 we use a similar idea to derive generalizations of a result related to the
Gauss-Winckler inequality. These involve integrals /* f r(x) dx, where / (Q(x))/x
is nondecreasing. In Section 4 we take up the common case of an exponential
distribution, standardised to unit mean, to derive new inequalities for the gamma
function. A simple choice of distribution on a finite interval similarly gives results
for the beta function. These are, of course, intimately associated with the gamma
and beta distributions. Finally, in Section 5, we derive an improvement of Stolarsky's
inequality.

2. Weighted inequality

THEOREM 1. Let fn be a concave function {that is, the conclusions of Theorem A
hold). If r, pi, r, (i = 1, . . . , m) are real numbers such that ££ . , /?,/", 4- r, r; + r
(j = 1 , . . . , m) and r are greater than — 1, p{ > 0 (i — 1 , . . . m) and

E M - I U 0 - y =1,..".,/», (2)

then

where Pm = £ X i Pi-
Vri ' ( ZXi P'r> ~ rj) — ^ 0' = 1> • • • > m)> then the inequality is reversed.

PROOF. Suppose (2) holds. Since / „ is concave, for any p, q,s > —1, p > q,
p ^ s, q 7̂  5, we have

p — s ~ q — 5

(see [3, p. 2]).
Thus for p, q, s > —1, p > q, p ^ s, q ^ 5, we get

/(TK V""" < f r n V*" (4)

If/y > 0 then 5 2 ^ , pin > rj and setting p = ]r^L, /?,r, + r, q = rt• + r and s = r in
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(4) we obtain

...
( 5 )

If Tj < 0 then YTi=\ P>rt < 0 an<* setting p = rj + r, q = Y17=i P>r> + r anc^ * = r m

(4) we obtain (5).
By multiplication of these inequalities for j : = 1, . . . , m we get (3). The other

cases can be proved analogously.

REMARK 1. If p,, = 1, r, > 0 (i = 1, . . . , m) then (3) reduces to (1).

REMARK 2. The Petrovic inequality (see [3, p. 11]) states the following.

Suppose f is convex on I = [a, b] (0 € /) and r,, p, (/ = 1, . . . , m) are real
numbers such that r, J ^ l , p,r, € / (p, > 0)/or i = 1, . . . , m. If (2) holds, then

'L, , ,,
Iff is concave, the inequality is reversed.

In our case /„ is concave and /n(0) = In v0 = 0, so the inequality becomes

'r, + nN

n } ' f_!\\ n

Also putting r = 0 in (3) gives (6).

REMARK 3. When/n is convex, that is, when the conclusion of Theorem B holds,,
then the inequality is reversed.

3. Some further results

The following theorem was proved in [2].

THEOREM 2. Let f : [0, 1] ->• R be nondecreasing and positive. Iff(Q(x))/x is
nondecreasing, then for m < r

https://doi.org/10.1017/S1446181100011913 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100011913


[5] Some integral inequalities with bounds for moments of distribution II 271

Iff(Q(x))/x is nonincreasing, then the inequality is reversed.

Using the idea in the proof of Theorem 1, we obtain the following.

THEOREM 3. Let f : [0, 1] -» R be nondecreasing and positive. Let p{ (i =
1, . . . ,m) be positive real numbers and r, (i = 1 , . . . , m) real numbers such that r,
(i = 1 , . . . , m) and Y17=i P'r' are greater than — 1. Iff(Q(x))/x is nondecreasing
and ifrj ( £™=i p,r, - rj) >0 (j = I,... ,m), then

* • 'Pi '

rj ( YM=\ P>r' ~ rj) - 0 0 = 1, . . . ,m), the inequality (7) is reversed.
Iff(Q(x))/x is nonincreasing, the above results are reversed.

Let us mention some special cases when (2) holds.

1° For/ = 1 we have vPiri+...+Pmrm > v£' • • • v£\
2° For / (x) = x and Q(x)/x nondecreasing, we have

while if g(^) A is nonincreasing, the opposite inequality holds.
3° For/ (x) = xi/k (k > 0) and Q(x)/xk nondecreasing, we have

Pin H Ypmrm +k
: vn • •-\-pmrm _

When Q(x)/xk is nonincreasing the opposite inequality holds. The case pi = p2

• • • = pm = 1 can be found in [6].

4. The gamma and beta functions

If a = oo and <20O = 1 — £~\ then Q satisfies the assumptions of Theorem B(a)
for any Af e N, so /„ is convex for any n e N. In this case vr = T(r + 1) and we
derive the following inequalities for the gamma function.

COROLLARY 1. (a) Suppose p , (i = 1 , . . . , m) are positive real numbers and

r, r< (i = 1 , . . . , m) are real numbers such that r > — 1, Y17=i P>r' + ^ > — 1 and
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rj + r > —Iforj = 1,.. . , m. If (2) holds, then

(b) If p; (i = 1,... ,m) are positive real numbers and rt (i = I,... ,m) real
numbers such that r,, (i = 1 , . . . , m) and Y17=\ P>r< are Sreater tnan ~1> tnen

and

r I
\ '=1

> f[ ( ^
/or * > 1.

If inequality (2) « reversed, then so are (8)-(10).

If a = 1 and Q(x) = 1 - (1 - *)a + 1 (a > 0), then Q satisfies the assumptions of
Theorem B(b) and we derive inequalities for the beta function.

COROLLARY 2. Suppose pt (i = 1, . . . , m) are positive real numbers and r, r,
(i = 1 , . . . , m) are real numbers such that r > — 1, £7=1 pj, + r > — 1 and
^ + r > -\forj = 1,... , w. If (2) /IOMJ, f/ien

((r + l)fl(r + 1, a + I ) / " - ' \T,P-ri + r+l\ B

r; +r

B(JC + 1, y 4- 1) = /OV(1 - 0 ' dt.
(b) //"/?, (i = 1 , . . . , m) are positive real numbers and r,- (i = 1 , . . . , m) real

numbers such that r, (i — 1 , . . . , m) and Y17=\ P<r> are greater than —1, then

m

.-r, + 1, a + 1 ) > (a + 1)P"-' ]~[ flW(r; + 1, a + 1)
7 = '
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and

J^p,r, + 1 5 \Y,Pin + 1, a + 1 J
m

> (a + I / " - 1 Y\(rj + \Y> Bp> (rj + 1, a + 1).

Reversal of the direction of inequality (2) reverses those of the above conclusions.

5. Integral inequalities involving derivatives

Stolarsky [7] has established the following theorem.

THEOREM C. Iff : [0, 1] —>• [0, 1] is nonnegative and nonincreasing, then for
positive a and b

aU~'if{x)dx >ab [ x"-lf(x)dx [ xb-l[ xaU~'if{x)dx >ab [ x"-lf(x)dx [ xb-lf(x)dx. (11)
o Jo Jo

In probabilistic terms, this gives the following. Suppose fQ f (x)dx = 1, that is,
/ is a probability density on [0, 1]. If this is nondecreasing, then

(a + b)va+b_i > abva_ivb_i.

In the first section we mentioned that (1) is an extension of Stolarsky's result (11).
In this section we give another improvement of (11).

THEOREM 4. Let f : [a, b] -> R be of bounded variation and g, h : [a, b] -> R
nonnegative and nondecreasing with continuous first derivative and g(a) = h(a) = 0.

/ /0 <f(b)<f(x)<f (a) for all x € [a, b], then

f(a) f (g(t)h(t))'f(t)dt> f g'(t)f(t)dt f h'(t)f(t)dt. (12)
Ja J a Ja

IfO < f (a) < f (x) < f (b), the inequality is reversed.

PROOF. If 0 < f(b) < f (x) < f (a), then we may without loss of generality
assume that/ (b) <f (a), because if/ (b) = f (a), then / = C and (12) holds. The
following inequality of Chebyshev type, established in [1], will be used.
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I f / i i fi '• [a, b] -> R are nondecreasing and continuous and / : [a, b] -*• R of
bounded variation such that f (a) <f(x) < f (b) for all * e [a, b], then

/ df(x) f Mx)f2(x)df (x) > f fdx)df(x) [ Mx)df(x). (13)
Ja Ja Ja Ja

Now integration by parts and (13) give

f"
/ (g(t)Ht))'f(t)dt (14)

Ja

= f (b)g(b)h(b) + f g(t)h(t)d(-f)(t)
Ja

>f{b)g{b)h(b)+ {/&)-/&)]-* I g(t)d(-f)(t) f h(t)d(-f)(t).
J a Ja

From the identity

we have

for (aj > a2,b\ > b2) or («i < a2. ^i 5 b2) and pi, P2 > 0. This is the discrete
Chebyshev inequality.

We now set

P\=f[f>), ax=g{b), bx = h(b), p2=f(a)-f(b),

in (15). To use (16), we need only check that a\ > a2 and b\ > b2. We have

(al-a2)(f(a)-f(b))=g(b)(f(a)-f(b))-g(t)(-f)(t) " - [ f(t)g\t)dt

" Ja

f=f (a)g(b) - f f (t)g'(t) dt= f(f (a) -f (t))g'(t) dt.
J a J a

By assumption the last expression is nonnegative, so ax > a2. The other statement
is proved similarly.
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We combine (14) and (16) to obtain

/ (g(t)h(t))'f(t)dt
Ja

~fla){f (b)8(b) ~ f 8it)df ( ° ) (f (b)k(b) ~ / H(t)df W )
= TT\l g'(Of(t)dt I h'(t)f(t)dt,

J v"/ Ja Ja

which establishes the first part of the proof.
If 0 < / (a) < f (x) < / (b) for all * e [a, b], a similar proof applies, the only

difference being that in place of (16) we use

(Pi +Pi)(Pia1bi +p2a2b2) < (pia, +p2a2)(p\bl +pib2)

for pi > 0, p2 < 0 and ax > a2, b\ > b2. This is a consequence of (15).

REMARK 4. If 0 < / (b) < / (x) < / (a) for all x e [a, b] and / , g, h satisfy the
assumptions of Theorem 4, then the condition g{a) = h(a) = 0 can be omitted. For
define functions h and ~g by

h(x) = h(x) - h(a) and g(x) = g(x) - g(a).

Then h(a) = g~(a) = 0 and h, g~ satisfy the assumptions of Theorem 4, so

f(a) I (g(t)h(t)Yf(t)dt
Ja

= f(a) f (g(t)h(t))'f(t)dt+ I (h(a)g'(t) + g(a)h'(t))f(t)dt
Ja Ja

>f(a)f (g(t)h(t))'f(t)dt>f(a) I g'(t)f(t)dt f h\t)f(t)dt.
Ja Ja J a

The result below now follows by an easy induction on n.

COROLLARY 3. Let f : [a, b] -> R be of bounded variation and xt : [a, b] -» R
(i = 1, . . . ,«) nonnegative, nondecreasing functions with continuous first derivative

dxi(a) = 0(i = l,... ,n).
IfO <f(b)<f(x)<f (a) for all x e [a, b], then

(f f I
Ja

IfO < f (a) < f (x) < f (b)for all x e [a, b], the inequality is reversed.
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REMARK 5. Setting a = 0, b = 1, g(x) = xa, h{x) = xb, / (0 ) = 1 in (4)
gives Stolarsky's inequality, but with a weaker condition on / . In Theorem C / is
monotonic, but in Theorem 4 / is of bounded variation and f (x) e [f(b),f (a)].
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