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In this work we study the undesired effects of electron density fluctuations (in the
form of blob structures which may exist in the edge region of tokamak plasmas) to the
electron-cyclotron wave propagation and current drive in connection to the efficiency
of neoclassical tearing mode stabilization. Our model involves the evaluation of the
driven current in the presence of density perturbations, by using a combination of a
wave solver based on the transfer matrix and electromagnetic homogenization methods
for the propagation part prior to and inside the region of these structures (where standard
asymptotic propagation methods may not be valid due to the short-wavelength limit
breakdown), with a ray tracing code including island geometry effects and current drive
computation for the propagation past the perturbed region. The computed driven current
is input into the modified Rutherford equation in order to estimate the consequences of
the wave deformation (driven by the density fluctuations) to the mode stabilization.
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1. Introduction

In tokamak experiments, electron-cyclotron (EC) waves are launched into the plasma in
the form of spatially narrow beams, and exchange energy with electrons passing the beam
region when the specific resonance condition is satisfied (Brambilla 1998),

ω − lhωc

γ
− k‖v‖ ≈ 0, lh = ±1,±2, . . . , (1.1)

with ω, ωc the wave and cyclotron frequencies, respectively, γ the Lorentz factor and k‖,
v‖ the wavevector and particle velocity components parallel to the magnetic field. When
k‖ ≈ 0, the result of the wave–particle interaction is plasma heating, whereas in cases
where k‖ �= 0 non-inductive current is generated (Erckmann & Gasparino 1994). Apart
from the wave frequency and geometry, the power absorption and current drive efficiency
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depend on the magnetic equilibrium and the spatial distribution of the plasma density and
temperature. Since the tokamak magnetic field is non-uniform, under specific choices for
the beam launching conditions, the EC resonance may be realized in a very narrow spatial
region. In this respect, using EC waves gives the advantage of good localization in the
power deposition, which is exploited in applications relevant to auxiliary plasma heating
(Prater 2004), plasma ramp-up and breakdown assistance (Granucci et al. 2012), sawtooth
and neoclassical tearing mode (NTM) instability control (LaHaye 2006), as well as plasma
diagnostics based on electromagnetic (EM) waves like, for example, reflectometry and
interferometry (Hutchinson 2005).

From the EC-relevant applications, NTM stabilization is of central interest in this work.
Neoclassical tearing modes are resistive magnetohydrodynamic (MHD) instabilities that
limit the performance of tokamaks, because the magnetic islands they generate reduce the
plasma energy and angular momentum, leading to significant loss of confinement (LaHaye
2006). An NTM appears in a combination of the finite plasma resistivity and magnetic
perturbations, which leads to the appearance of helical currents and tearing of magnetic
flux surfaces of rational safety factor, i.e. q = m/n where m, n are the poloidal and toroidal
mode numbers (Wilson 2012). As a result of energy conservation, what follows is magnetic
reconnection and the formation of island structures, which in turn provoke the loss of axial
symmetry and plasma pressure flattening. The NTM process starts from an initially small
island (also known as seed island) and can grow to a large amplitude due to the lack of
pressure-gradient-driven bootstrap current, leading to a reduction of the plasma current
and, possibly, device disruption. Supported also by theory, various techniques are under
development for the control of these unstable modes, among which the application of
localized EC current drive (ECCD) has been demonstrated as very effective in several
experiments (see e.g. Maraschek (2012) for work done in ASDEX Upgrade).

In principle, theory models for EC propagation should be based on coupling the wave
equation with the medium response function. The corresponding full-wave methods are
the most complete, but also most resource-demanding option. For high-frequency waves
in fusion devices, in most cases of interest the wavelength is much shorter than the
plasma inhomogeneity scale, and the complexity is reduced by applying frequency-domain
asymptotic methods. These techniques are based on geometric optics (GO), where
the solution is obtained via canonical differential equations, using as Hamiltonian the
dispersion function (Bernstein & Friedland 1980). The most popular of these tools is
ray tracing, which provides a physical picture of the propagation in terms of wave
rays; however, its validity becomes questionable when diffraction effects are present
(Tsironis 2013). More efficient asymptotic techniques, which retain the GO description
along propagation but also solve for the transverse beam profile including diffraction,
are quasi-optical (Nowak & Orefice 1993) and paraxial beam tracing (Pereverzev 1998).
Whenever the short-wavelength limit breaks down, the tools coming from asymptotic
methods should be replaced by full-wave solvers. Such tools span from simpler techniques
such as the transfer matrix (Born & Wolf 1999), which is based on the electric field
continuity conditions across physical boundaries, to more comprehensive methods such
as time-domain finite differences (Taflove & Hagness 2005), which discretize differential
equations by approximating the derivatives as finite differences on a properly defined grid.

For the closure of the wave–plasma description, the plasma response is required in
terms of the wave-induced electric current. Most models assume cold plasma dispersion
for the propagation plus cyclotron damping only within the resonance area, motivated by
the fact that, in modern fusion devices, the wave intensity is small and the wave–plasma
coupling far from EC resonance is very weak (see e.g. Tsironis (2013) for details). The
GO-based solvers implement this style by solving the real cold-plasma dispersion relation
for the real part of the wavenumber and calculate its damping-related imaginary part
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from the complex dispersion relation only in the resonance area (Bernstein & Friedland
1980), whereas full-wave solvers employ a cold-plasma fluid equation or an effective
hot-plasma dielectric tensor based on the linearized Vlasov equation (Tsironis, Samaras
& Vlahos 2008). In all cases, turbulent structures may be incorporated as a perturbation
function to the background plasma density. In case the incorporation of such structures
without involving the associated steep density gradients is desirable, one may resort to
EM homogenization methods (Mackay & Lakhtakia 2015) for deriving a plasma dielectric
tensor that includes the density perturbations as a spatially averaged effect within the area
of interest.

With reference to ECCD, theoretical modelling of the NTM stabilization process
focuses on the effect of EC power deposition and current drive on the nonlinear mode
dynamics. The magnetic island growth and decay may be computed using simple tools,
based on the magnetic field diffusion equation (Wilmot-Smith, Priest & Hornig 2005), or
more sophisticated models which solve the full MHD problem in the presence of kinetic
effects. In the former category, the most established model is the modified Rutherford
equation (MRE), which is a generalization of the Rutherford equation for classical tearing
modes (Rutherford 1973) by including the neoclassical physics term of the bootstrap
current and the external electric current effect (the reader is pointed to Urso (2009)
for details). Other effects which may play a crucial role in the EC deposition have
been included in the context of the MRE, such as the significant changes introduced
by the island topology in the magnetic field equilibrium and the plasma density and
temperature profiles as compared with axisymmetric configurations, for example due to
island asymmetry (Lazzaro & Nowak 2009), particular flux surface nesting (Isliker et al.
2012) or plasma rotation (Ayten & Westerhof 2012). More advanced models treat the
wave–island interaction self-consistently by employing a closed set of EM wave and MHD
equations (an example is the numerical code NIMROD (Jenkins & Kruger 2012)).

Dedicated experiments and theoretical studies with the tools mentioned above have
established that, in order to achieve effective mode stabilization, the driven current
should be highly localized around the island’s O-point (in terms of both the peak value
position and the profile width of the current density) and also its direction should be
aligned with the equilibrium bootstrap current (Urso 2009). However, the EC beam
before reaching the targeted region crosses the plasma edge, where density fluctuations
connected to turbulence may appear and induce additional wave distortion. This situation
has a different consequence compared with the normal refraction in inhomogeneous
plasma, which always generates an effect in the same direction to the propagation angle;
turbulent structures scatter the wave spectrum components randomly, resulting more to
diffractive-like broadening of the beam than a shift in its position. For larger tokamaks,
like for example ITER and DEMO, where the distance from the launch points to the flux
surfaces of rational q may be several metres, even a small modification of the beam
properties (also known as broadening and/or axial shift) may lead to a considerable
deviation in the intended EC deposition location and extent (Tsironis et al. 2009).

Numerous articles have been devoted to the effect of electron density perturbations on
the propagation of tokamak-relevant EC beams, and, for the most part, verified the aspects
described above. We refer to a cross-section of these studies (see references therein for
the complete amount of work), which involve the majority of asymptotic and full-wave
models available in the literature: ray tracing (Hizanidis et al. 2010; Peysson et al. 2011),
quasi-optical beam tracing (Balakin, Bertelli & Westerhof 2011; Sysoeva et al. 2015),
Helmholtz equation solver (Ram & Hizanidis 2016), finite differences in time domain
(Williams et al. 2014; Köhn et al. 2016) and frequency domain (Papadopoulos et al.
2019), finite elements (Chellai et al. 2018) and wave kinetic solver (Weber, Maj & Poli
2015; Snicker et al. 2017). A series of wave effects that may affect the intended beam
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quality have been identified, like for example partial reflection of the beam, radiation
emission by the density perturbations and conversion of the wave polarization. Moreover,
dedicated experiments for measuring the edge turbulent structures in the presence of EC
wave beams have been conducted in TCV (Chellai et al. 2017), and the experimental
results agree adequately with the theoretical predictions. Overall, assuming characteristic
values within [0.05, 0.5] of the background density for the fluctuations amplitudes and
[0.01, 0.2] minor radii for their spatial scales, the typical effects to the beam span within
[10−3, 10−1] degrees for the angular shift and [0.05, 0.25] propagation lengths for the spot
size broadening.

Something that has not been addressed extensively in the literature is the quantification
of the effect of the beam alteration on the instability control effort (see e.g. Poli et al.
(2015)). In this work, our main objective is to investigate the undesired effects of
edge-resident density fluctuations to the EC wave propagation aimed at plasma heating and
current drive, in connection with the efficiency of NTM stabilization. We use a modelling
loop that incorporates all the system physics: the propagation of the wave beam through
the perturbed layer and up to the magnetic island, the power absorption and current drive
on the island’s flux surfaces and, finally, the ECCD-driven mode dynamic evolution. Our
tools include a full-wave solver for the propagation part prior to and inside the region
of density perturbations, a ray tracing code (equipped with ECCD computation) for the
propagation past the turbulent region, and an MRE solver for the computation of the island
growth and decay. By assessing the input and output at each step of the modelling chain,
an estimation of the consequences to the NTM control is made.

The structure of the paper is as follows. In § 2 we refer to the models used in our study
(full-wave propagator in § 2.1, GO-based solution in § 2.2 and island dynamics in § 2.3).
In § 3 we describe the set-up of the numerical simulations, giving special attention to the
input–output connection of the three models and explaining the selection of the physics
parameters, and in § 4 we present and discuss all the results, focusing on the implications
of the density fluctuation intensity to the NTM decay time. Finally, in § 5 we draw the
conclusions of this work and comment on the limitations of our modelling.

2. Description of the physics models

In this section we present the physics modelling chain for the beam propagation in the
inhomogeneous plasma, the absorption and current drive on the magnetic island, and
the mode response to the external current. The EC propagation through the tokamak
edge is modelled using the transfer matrix technique for computing the wave electric
field, in conjunction with a homogenized description of the plasma medium within the
turbulent layer. The propagation after the edge until the island region, together with the
current deposition on the flux surfaces of interest, is computed with a ray tracing code
including the EC resonance and island geometry features. In the last part, the unstable
mode dynamics is modelled in terms of the MRE in the presence of the external current.

2.1. Transfer matrix technique and EM homogenization method
In a plasma that contains density fluctuations, the use of asymptotic methods is
not recommended because the short-wavelength limit breaks down when the size of
these perturbations is comparable to the wavelength. There, the toolbox for modelling
propagation requires a full-wave method for computing the beam field as well as a
description of the plasma medium that includes the density perturbations. Our choice
has been to combine an implementation of the transfer matrix technique for the wave
propagation with an EM homogenization method for the perturbed plasma region.
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We assume a Gaussian EC beam in a Cartesian coordinate system (x, y, z) aligned with
the tokamak geometry ( ŷ is the toroidal direction and ẑ the vertical direction). The beam
propagates along the direction k̂ indicated by the wavevector, whereas its electric field
amplitude spans across k̂ over a half-width w. For our calculation, the beam is analysed
into l plane-wave modes, where each mode propagates in the direction k̂l implied by its
specific wavevector, and their wavevectors are distributed symmetrically around the one
of a central mode l = 0. The lengths in the directions of beam propagation and amplitude
profile are mapped to the Cartesian coordinate system via the projections of k̂l on the
position radius vector r, which are correspondingly k̂l · r and r[1 − (k̂l · r̂)2]1/2.

Furthermore, each mode’s propagation angle and refraction index with respect to the
direction parallel to the magnetic field is defined accordingly as φl = cos−1(k̂l · B/|B|)
and k‖l = k̂l · B/|B|. In this context, the electric field El per mode is given by

El (r)
Emax

l
= exp

{
−
[

1 −
(

k̂l · r̂
)2
]

r2

w2

}
exp (ikl · r) , (2.1)

and the total beam electric field by summing all modes over their propagation angles and
parallel refraction indexes (Valvis 2019),

E (x, y, z)
Emax

=
∑
φl

∑
k‖l

exp
{
i
[
xkx

(
k‖l, φl

)+ yky
(
k‖l, φl

)+ zkz
(
k‖l, φl

)]}

× exp
{
−
(w

2

)2 [
k2

x

(
k‖l, φl

)+ k2
y

(
k‖l, φl

)+ k2
z

(
k‖l, φl

)]}
. (2.2)

The transfer matrix technique is based on a phasor representation of the Faraday
and Ampere laws (also known as Maxwell’s curl equations). Denoting the electric and
magnetic field normalized complex vector phasors as ê and ĥ, these equations read

ĥ = n × ê, K · ê = n × ĥ, (2.3a,b)

where N = ck/ω is the refraction index vector and K is the plasma dielectric permittivity
tensor. If one formulates (2.3) in Cartesian coordinates (x, y, z) and then eliminates the
components êx, ĥx using two from these equations, thus considering solving only for the
field components along the toroidal and vertical directions y and z, the four equations of
interest may be cast in the form (Born & Wolf 1999)

NxKxxV = M(N,K) · V , (2.4)

where V = [êy ĥz êz ĥy]T is the solution vector and the 4 × 4 matrix M is given by

M =

⎡
⎢⎢⎢⎣

−NyKxy Kxx − N2
y −NyKxz NyNz

Kxx(Kyy − N2
z )− KyxKxy −NyKyx Kxx(NyNz + Kyz)− KyxKxz NzKyx

−NzKxy −NzNy −NzKxz N2
z − Kxx

KzxKxy − Kxx(NyNz + Kzy) NyKzx Kxx(N2
y − Kzz)+ KzxKxz −NzKzx

⎤
⎥⎥⎥⎦ .

(2.5)

In general, the solution consists of two forward (+) and two backward (−) propagating
waves, which may be determined by the real part of the x-component of the associated
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Poynting vector phasor ŝx = 1
2(êyĥ∗

z − êzĥ∗
y): the forward waves correspond to Re(ŝx) > 0,

while negative values indicate backward waves and zero values indicate evanescence.
The problem may be solved in terms of the associated eigenvalue/eigenvector problem,

where the respective eigenvalues specify the refraction indexes in the direction tangential
to the problem boundaries. In physical space, the solution leads to (Valvis 2019)

V (x, y, z) = Π ·Φ (x) · A exp
[
i
(

yky + zkz
)]
, (2.6)

where A = [A+
1 A+

2 A−
1 A−

2 ]T is the amplitude vector, Π = [π+
1 π+

2 π−
1 π−

2 ] is the
polarization tensor with the normalized vectors π±

1,2 = [π±
êy,1,2

π±
ĥz,1,2

π±
êz,1,2

π±
ĥy,1,2

]T

and Φ(x) = diag[exp(ik+
x,1x) exp(ik+

x,2x) exp(ik−
x,1x) exp(ik−

x,2x)] is the phase tensor. In
accordance with the above mentioned for ŝx, the choice between +, − and 1, 2 is
determined by the quantity π±

êy,1,2
(π±

ĥz,1,2
)∗ − π±

êz,1,2
(π±

ĥy,1,2
)∗. The complex amplitude

coefficients A±
1,2 are evaluated from the boundary conditions, which, for each transition

through a boundary (denoted as j → j + 1) have the form V j(xj, y, z) = V j+1(xj+1, y, z).
The calculation of the wave’s EM field still requires the determination of the plasma

dielectric response, in order to provide the elements of tensor K appearing in (2.4) and
(2.5). For our studies, we consider a cold plasma (i.e. far from EC resonance) which is
divided into three adjacent regions separated by two interfaces: the first and the third
region are of the background plasma, while there is a second region in-between which
contains turbulent blob-like structures. In the plasma, the background electron density
varies according to a given radial profile ne(r), whereas the blob density is specified by
the fluctuation amplitude δne. For the background plasma regions, the elements of K
are derived on the basis of the standard cold-plasma permittivity tensor, after rotational
transformations over the propagation angles φ and θ (Brambilla 1998):

Kxx = S − (S − P) cos2 θ sin2 φ, (2.7a)

Kxy = Kyx = ∓iD cosφ + (S − P) sin θ cos θ cos2 φ, (2.7b)

Kxz = Kzx = ±iD sin θ sinφ + (S − P) cos θ sinφ cosφ, (2.7c)

Kyy = S − (S − P) sin2 θ sin2 φ, (2.7d)

Kyz = Kzy = ±iD cos θ sinφ − (S − P) sin θ sinφ cosφ, (2.7e)

Kzz = S2 sin2 φ + P2 cos2 φ. (2.7f )

In the above, S , D and P are the Stix elements for cold magnetized plasma waves, which
are known functions of the cyclotron, plasma and wave frequencies.

The intermediate region consists of a mixture of field-aligned density blobs, which
are described by an arbitrary permittivity tensor K B. The blobs are located in a cold
magnetized plasma with dielectric tensor K P of the form (2.7), and are elliptical on the
direction transverse to B. The apparent method to tackle the problem is to define K B based
on existing know-how (see § 1). However, the result would provide the dielectric response
for only one realization of the blobs in the plasma, whereas many such realizations are
required in order to have a sufficient statistical base towards the calculation of the effects
on the propagation. To avoid this drawback, the problem is formulated in terms of EM
homogenization methods, according to which the blob region is replaced by an equivalent
homogenized dielectric region and the plasma is described by an effective permittivity
tensor K eff similar to K P . There are a variety of homogenization formalisms, most of which
employ depolarization dyadics arising from associated Green’s functions (the reader is
pointed to Mackay & Lakhtakia (2015) for a survey).
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Concerning our effort, the popular methods have the shortcoming that the implemented
depolarization dyadic does not take into account the blob size, assuming that it is much
smaller than the wavelength. This issue may be overcome by adapting accordingly the
core of the previous methods in order to include the wavelengths and blob sizes relevant
to our problem. In this direction, starting from a technique proposed by Sihvola (1996), a
generalized EM homogenization (gEMH) method has been developed (Bairaktaris 2019).
For the derivation, it has been assumed that G(r − r′) is the dyadic Green’s function of the
wave equation’s differential operator and G(k − k′) is its spatial Fourier transform. The
integral equation that the EM field must satisfy is

E (r) = EP (r)+ i
∫

VB

G(r − r′) · (K P − K B
) · E

(
r′) d3r′, (2.8)

with EP the solution in the absence of blobs in the plasma and VB the volume occupied by
an ellipsoidal blob inclusion. By a Fourier transformation of the above equation, we obtain
the useful relation E = EP + iUBG · (K P − K B) · E , where E , EP and UB are the Fourier
transforms of E, EP and of the Heaviside step function inside the blob.

Using the Fourier transform G, as found above, (2.8) can be handled within the
frame of Liouville–Neumann infinite series (Bairaktaris 2019). Ultimately, one is led to
a differential equation for the unknown tensor K eff as follows:

dK eff (ν)

dν
	 K B − K eff (ν)

1 − ν

{
1 + εQ1

[
N,K eff (ν)

]+ ε2Q2

[
N,K eff (ν)

]}
, (2.9)

where ν is the fraction of the total blob volume versus the volume of the turbulent
region, Q1,2 are functions arising from the Fourier integration in wavevector space, and
the scaling parameter ε ≈ (Lb/λω)(|δne|/ne) � 1 is proportional to the ratio of the blob
size over the wavelength multiplied by the relative density contrast of the blobs versus
background plasma. Equation (2.9) is further simplified by decomposing the effective
tensor into orders of ε as K eff = K eff

0 + εK eff
1 + ε2K eff

2 + · · · . In this fashion, separate
equations emerge per order of ε, which can be solved independently. In zero order, an
analytical solution is feasible, which yields K eff

0 = νK B + (1 − ν)K P . The complexity of
the higher-order differential equations rises proportionally to their order: the first-order
one involves integrals of six variables, the second-order one integrals of nine variables,
etc. Solving up to second order, and also using the zero-order solution for the dielectric
tensor inside the integrand, is a simplification sufficient for approximating the behaviour
of the effective permittivity.

2.2. Ray tracing algorithm
The approach of frequency-domain asymptotic techniques amounts to modelling the wave
propagation in terms of rays or beams which are continuously refracted by a slowly
space-varying medium, in the same way as the trajectory of a particle is deflected by a
scalar potential (Bernstein & Friedland 1980). In this context, our problem is formulated
as the propagation of a constant-frequency, linear-amplitude EM wave in a stationary,
anisotropic and weakly inhomogeneous magnetized plasma, and the wave physics is
described by the vector Helmholtz equation (Brambilla 1998),

∇ × [∇ × E(r)] − ω2

c2
K(r, ω) · E(r) = 0. (2.10)

The conditions implied by the slow spatial variation of the medium are summarized in
the relation κ = ωLp/c 
 1, where κ is known as the short-wavelength-limit parameter
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and Lp is the inhomogeneity scale length of the plasma, defined as the maximum value of
the relative gradients ∇X /X among the parameters X affecting propagation (i.e. entering
the dispersion relation). Assuming the validity of this condition, the vector Helmholtz
equation allows solutions of a generalized plane-wave ansatz E(r) = A(r) exp[iκσ(r)],
where the phase k · r has been replaced by an eikonal function defined as k = κ∇σ .

For each ray, one can determine the ‘backbone’ of the wave field by means of a set of
ordinary differential equations that give the variation of the wave phase and the electric
field amplitude along the ray. This is achieved with the expansion of the amplitude in an
asymptotic series over the large parameter κ (A = A0 + κ−1A1 + κ−2A2 + · · · ), followed
by the insertion of the amplitude series in (2.10), the separation of terms of different order
in different equations, and the solution of these equations. In this process, an additional
assumption is that the effect of the resonant absorption on the wave dispersion is not
significant; this is quantified by setting the antihermitian part of the dielectric tensor to
the next asymptotic order with respect to its Hermitian part, thus implying the relation
K = K H + iκ−1K A. The sequence reveals that in zero-order one follows the ray position
and wavenumber, and in first order the amplitude transport, whereas the inclusion of
higher-order equations partly describes wave interference and diffraction (for details the
reader is pointed to Tsironis (2013)).

To zero order, the asymptotic expansion terms build up the following relation:[
c2

ω2

(−k2I + kk
)+ K H

]
· A0 = Λ · A0 = 0, (2.11)

where I is the unitary tensor and kk is a dual product. The solvability condition of (2.11)
reads det[Λ(r, ω)] = 0, and apart from being the EC wave dispersion relation it is also
a Hamilton–Jacobi equation for the eikonal function. The corresponding solution yields
Hamiltonian equations for r and k of each ray,

dr
dτ

= ∂H
∂k
,

dk
dτ

= −∂H
∂r
, (2.12a,b)

with H = det(Λ) playing the role of the Hamiltonian function, and τ being a normalized
coordinate measuring the length along propagation. Going now to the first-order terms,
these provide the following equation for the wave amplitude damping:

d|A0|2
dτ

+ (∇ · vg + 2ê∗ · K A · ê
) |A0|2 = 0. (2.13)

where vg = ∂ω/∂k is the group velocity and the other addend stands for the damping
coefficient. Equation (2.13) implies that the wave energy propagates in the direction of
the group velocity and that absorption is proportional to the projection of the dielectric
tensor’s antihermitian part onto the polarization vector. It may be transformed to an
equation for the absorption of wave power P, reading dP/dτ = −2 Im(k) · vgP. The
driven current is then given by ICD = ηCDPabs/2πRmaj, with Pabs the absorbed power
(computed from the previous equation), Rmaj the tokamak major radius, and the current
drive efficiency ηCD is calculated by solving the associated drift kinetic problem, including
the effects of trapped particles and ion–electron collisions (see Prater (2004) for details).

As seen from (2.11) and (2.13), ray tracing requires knowledge of the Hermitian part
of the dielectric tensor, the group velocity and the imaginary part of the wavenumber.
Adopting cold plasma propagation, and given radial profiles for the magnetic field and the
plasma density and temperature, for K H we make use of the permittivity tensor of (2.7).
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Then, vg and Im(k) may be found from the real and imaginary part of the dispersion
relation, respectively. In this context, the modifications to the system geometry due to
the magnetic islands are added from the viewpoint of the associated effects to wave
propagation. The first modification amounts to a poloidal perturbation in the magnetic field
strength, which may be added to the equilibrium field within its Clebsch representation in
the toroidal and poloidal angle coordinates ϕ and ϑ (Morrison 2006),

B = ∇Ψϕ · ∇ϑ − ∇Ψϑ · ∇ϕ. (2.14)

The toroidal flux is given by ∂Ψϕ/∂r = rBϕ and the poloidal flux is perturbed on the
rational surfaces q(rm,n

s ) = m/n, with the zero-order term given by ∂Ψϑ0/∂r = RBϑ and
the perturbation term having the form (Isliker et al. 2012)

Ψϑ1 (r, ϑ, ϕ) = −
∑
m,n

1
m
δBm,n

ϑ r(r − rm,n
s ) cos(mϑ − nϕ). (2.15)

The second modification is the fixation of the plasma pressure inside the island, which,
according to the equation of state, corresponds to a flattening of the electron density and
temperature profiles within the island region. Denoting ne, Te as X , their profiles outside
the island as XE(r) and the island half-width as W, the radial profiles take the form

X (r) = XE(r) [U (rs − W − r)+ U (r − rs − W)] + XE(rs)U (W − |r − rs|) . (2.16)

2.3. MRE
The evolution of the magnetic islands resulting from NTM instability growth may be
calculated with the MRE model, which is based on a nonlinear equation for the island’s
width. This equation stems by applying a modified Ohm’s law on the plasma circuit around
the mode’s flux surface, and has the form (Hegna & Callen 1997)

Tr

rs

dW
dt

= rs
(
Δ′

N +Δ′
BS +Δ′

CD

)
. (2.17)

In the above, Tr = 0.82μ0r2
s /�p is the resistive time scale for the mode growth, which is

proportional to the square of the radial coordinate rs of the island’s O-point and inversely
proportional to the plasma resistivity �p (μ0 is the vacuum magnetic permeability), and the
Δ′ indexes determine altogether the NTM stability: if their sum is positive then the mode
is unstable, whereas if their sum is negative then the mode is stable. There are a variety
of physics effects impinging on NTM dynamics for which a Δ′-term has been matched
(the reader is pointed to Urso (2009) for a survey). In our description, we include the
three most important indexes regarding ECCD-driven modes: neoclassical stability (Δ′

N),
bootstrap current (Δ′

BC) and external current drive (Δ′
CD).

The neoclassical stability index incorporates the (neoclassical) nonlinear saturation
effect to the (classical) linear tearing-mode stability

Δ′
N(W) = −m

rs
− W

2.44r2
min
, (2.18)

and the bootstrap current index includes the effect of the associated helical current

Δ′
BS(W) =

√
εAβP

W
Lq

Lp

(
W2

W2 + W2
cs

+ W2

W2 + 28W2
b

− W2
pol

W2

)
, (2.19)

where εA = rmin/Rmaj is the tokamak aspect ratio (rmin the minor radius), βP is the plasma
beta, Lq and Lp the shear lengths of the safety factor and the plasma pressure and Wcs,
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Wb, Wpol are threshold values for the island width: Wd is the critical width for classical
destabilization, Wb the width below which banana orbits weighs in to the bootstrap current
and Wpol the width below which the current response to diamagnetic island rotation is
significant; a detailed physics analysis may be found in LaHaye (2006) and references
therein. Finally, the current drive index describes the effect of ECCD,

Δ′
CD(W) = −U

(
t − ton

CD

)
�CD

16μ0√
π

rsLq

Bϑ

dCDjCD0

W2
exp

(
−δr

2
CD

d2
CD

)
, (2.20)

with the EC turned on at t = ton
CD, jCD0 the current density per unit area, dCD the deposition

width, δrCD = rCD − rs the radial misalignment of the deposition with respect to the
O-point, and the optimization factor �CD (there we denote uCD = W/dCD) is

�CD = 0.07u2
CD + (

0.34 − 0.07u2
CD

) [
0.3uCDU (2 − uCD)+ exp (−uCD)U (uCD − 2)

]
.

(2.21)

The MRE reproduces well the main aspects of the NTM dynamics. First, by looking
at the inequality dW/dt � 0, one sees that a ‘seed’ island (matched to a minimum
initial width) is required for the mode onset. The bootstrap current term is destabilizing
for normal tokamak operation, since to have Δ′

BS < 0 requires reversed shear. On the
contrary, ECCD appears a net stabilizing effect provided that δrCD � W � 3dCD. Finally,
an unstable mode that goes beyond the limit Wd = rmin − rs leads to disruption, since the
island size exceeds the tokamak boundaries and, as a consequence, particles trapped in the
island may follow trajectories that intersect the tokamak wall.

3. Set-up of the numerical simulations

The scenario simulated here is the stabilization of low-order NTMs in ITER-like plasma
and in the presence of edge density fluctuations, using an EC wave beam for generating
current drive near the O-point of the associated magnetic island. The beam is launched
into the plasma at an angle to the toroidal magnetic field with a Gaussian electric
field amplitude profile and, before reaching the island, encounters the electron density
perturbations in the form of curvilinear-shaped blobs. The modified beam is then absorbed
at the EC resonance layer, which is aligned to the island’s flux surfaces, adding up its
stabilizing effect to the mode evolution. In figure 1, an indicative case for the geometry of
the processes composing the aforementioned scenario is visualized. Below we define the
parameters for the EC wave, the tokamak device (magnetic field and electron plasma), the
blob structures and the NTM instability, and also describe the linking of the theoretical
tools presented in § 2 while building the overall modelling chain.

The physics parameters of the background plasma and the EC wave are relevant to the
ITER design (Holtkamp 2009). The magnetic equilibrium has a circular cross-section and
its magnetic field is represented as B = Bϕϕ̂ + Bϑ ϑ̂ , where the toroidal component is
axisymmetric and the poloidal component is defined in terms of the safety factor

Bϕ(r, ϑ) = Rmaj

Rmaj + r cosϑ
B0, Bϑ(r, ϑ) = r

Rmaj

Bϕ(r, ϑ)
q(r)

. (3.1a,b)

The radial profiles of the electron density and temperature, as well as the safety factor
profile, are parabolic functions of the form

XE(r)− XE(0)
XE(rmin)− XE(0)

= r2

r2
min
. (3.2)
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FIGURE 1. Example geometry for the problem of NTM control with ECCD in tokamak plasma:
(a) three-dimensional view of the magnetic field configuration, (b) poloidal projection of the
beam propagation and the plasma equilibrium in the presence of magnetic islands and density
blobs.

The parameter values which are required in order to configure (3.1) and (3.2) are the
following: Rmaj = 6.2 m, rmin = 1.9 m, B0 = 5.1 T, q(0) = 1 and q(rmin) = 4, ne(0) =
1020 m−3 and ne(rmin) = 1019 m−3, Te(0) = 10 KeV and Te(rmin) = 1 KeV. As far as
the wave launching conditions are concerned, the frequency is ω/2π = 170 GHz, which
corresponds to the first EC harmonic for the specific value of B0, and the mode of electric
field polarization is ordinary (O). The Gaussian beam is assumed to be injected from the
point (r0, ϑ0, ϕ0) = (rmin, 0, 0) at angles θ0 = 0◦ in the poloidal direction and φ0 = −5◦

toroidally, with power P0 = 1 MW and half-width w0 = 3 cm. The beam is launched at its
waist position, orthogonally and without initial focusing, which practically corresponds to
a wavefront curvature radius much larger than Rmaj.

Regarding the MHD instability properties, here we consider NTMs of order equal to 2/1
and 3/2. These modes, according to the q-profile defined above, appear and develop on
the flux surfaces r2,1

s = 0.58rmin and r3,2
s = 0.4rmin, respectively. The plasma resistivity is

set equal to �p = 1.1 × 10−9 Ω m, which, taking into account the specific value of rs for
each mode, yields T2,1

r ≈ 1251 s and T3,2
r ≈ 595 s for the growth time scale in each case.

The plasma beta is set to βp = 0.6, and the ratio of the pressure and safety factor shear
lengths is assumed to be Lp/Lq = 1, where the value of Lq per mode is computed from
its definition Lq = q(rs)/[dq(rs)/dr] on the basis of the q-profile. The last parameters to
be specified are the characteristic threshold values defined along (2.19), which are Wcs =
0.01rs, Wb = 0.02rs and Wpol = 0.015rs. As initial conditions, we choose that the island
is detected at t = 0 with a size equal to 6 cm, and that the EC wave source is turned on
immediately after detection (ton

CD = 0). For the synchronization of the current drive with
the island rotation, in our model we have assumed that the EC power source is modulated
very close to the island rotation frequency and the power-on phase is centred around the
O-point passage through the beam.

Finally, we specify the parameters related to the electron density fluctuations. These
appear close to the tokamak edge in the form of ellipsoidal blobs, and occupy a thin
plasma layer containing a few flux surfaces (see figure 1b). The blob layer is centred
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FIGURE 2. Block diagram showing the various stages of the simulation approach.

around normalized radius ρb = rb/rmin = 0.8, and its full-width 2δρb is equal to 0.04. We
note here that the restriction ε � 1 imposes limitations to the selection of the values for Lb
and δne; e.g. since for frequency 170 GHz the wavelength is around 2 mm, the blob size
cannot exceed 4 mm for density contrast 50 % or 2 mm for density contrast 100 %. In this
frame, we assume for each blob a characteristic length Lb = 0.2 cm and ellipticity factors
αb1, αb2 that distribute uniformly within 0.8 and 1.2; in terms of these, the single blob
volume may be calculated from the formula VB = 4παb1αb2L3

b/3. The inhomogeneous
plasma content of the blob region (as described up to this point) is replaced with an
equivalent homogeneous plasma by applying the gEMH method shown in § 2.1; for the
values of the parameters involved, the density perturbation δne varies from 50 % to 100 %
of the local background density, and that the blob filling ratio ν is fixed to 0.3.

The simulation procedure constitutes of three parts in sequential order, summarized
in figure 2. In the first part (propagation through density fluctuations), we provide at
input the launched beam profile (in the form (2.2)) and the plasma configuration, and
then a MATLAB algorithm decomposes the beam into plane wave modes, computes the
effective permittivity tensor of the turbulent region (solving (2.9)) and applies the transfer
matrix for advancing each mode in space. The initial refraction index for each mode is
found via the dispersion relation (solvability condition of (2.11)), and then decomposed
per propagation direction according to the angles θ0 and φ0. Then, one can solve the first
eigenvalue problem in (2.6) and determine the polarization in the region of incidence,
as well as the four eigenvalues for the z-component. For the incident wave with O-mode
polarization, one eigenvalue coincides with the one of the four solutions above. Then,
the same values for the perpendicular refraction indexes, which are preserved within the
boundary conditions, apply to the next problem that determines the polarizations and
the associated eigenvalues for the refraction index along x. The algorithm continues the
propagation up to the leftmost boundary of the turbulent layer, located at ρb − δρb; in the
output, the Cartesian components of the beam field are provided at each point.

The second part involves the beam trajectory from the stopping point of the full-wave
calculation to the magnetic island. The computation is performed with a FORTRAN 95
code which solves the Hamiltonian equations (2.12) and the power damping law that
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stems from (2.13). As input, apart from the magnetic equilibrium and the plasma profiles
(including NTM islands), the code requires initial conditions per ray for the position,
the wavevector and the power fraction. Within our approach, the beam is described
as the synthesis of three different rays: one ‘central’ ray, which represents the beam
axis and along which the power absorption is computed, and two ‘peripheral’ rays for
the description of the beam width in each direction transverse to the propagation. By
processing the output from the preceding computation, all the required initial values
may be expressed in terms of the local Poynting vector and the moments of the electric
field distribution. After the initial condition assignment, the code propagates the rays
and computes the transmitted power and ECCD along their trajectories. The computation
terminates on the high-field side of the island’s outer flux surface (located at r = rs − W),
and yields the radial profiles of the absorbed power and driven current.

The sequence for defining the initial conditions is the following: the initial position
of the central ray rc

1 coincides with the maximum value of E on the surface r = rb − δrb;
then, the wavenumber kc

1 is found from the dispersion relation at this position, and the
direction of propagation k̂

c

1 emanates from Poynting’s vector and yields the toroidal and
poloidal propagation angles φc

1 = sin−1(k̂
c

1 · ŷ) and θ c
1 = cos−1(k̂

c

1 · x̂/ cosφc
1). Next, the

moments of E2 are defined in a Cartesian coordinate system (χ,ψ, ζ ) attached to the beam,
where, at each propagation point, the wavevector lies on the χ -axis and the field profile
spans over the ψ–ζ plane (Tsironis & Papadopoulos 2014),

〈ψ jψ ζ jζ 〉(χ) =

∫ +∞

−∞

∫ +∞

−∞
ψ jψ ζ jζ E2(χ, ψ, ζ ) dψ dζ∫ +∞

−∞

∫ +∞

−∞
E2(χ, ψ, ζ ) dψ dζ

. (3.3)

At r = rc
1, the first-order moments give the transverse coordinates of the beam centre

as ψ c
1 = 〈ψ1ζ 0〉(χ c

1) and ζ c
1 = 〈ψ0ζ 1〉(χ c

1), while the second-order moments provide
the associated beam widths as w2

ψ,1 = 〈ψ2ζ 0〉 − (ψ c
1)

2 and w2
ζ,1 = 〈ψ0ζ 2〉 − (ζ c

1 )
2. With

this information available, one may define the initial positions for the peripheral rays
as rfp

1 = rc
1 + wψ,1ψ̂ and rsp

1 = rc
1 + wζ,1ζ̂ . The axes of the local coordinate system are

mapped to the ones of the global Cartesian system using the transformation relation⎡
⎢⎣
χ̂

ψ̂

ζ̂

⎤
⎥⎦ =

⎡
⎣cosφc

1 0 − sinφc
1

0 1 0
sinφc

1 0 cosφc
1

⎤
⎦ ·

⎡
⎣cos θ c

1 − sin θ c
1 0

sin θ c
1 cos θ c

1 0
0 0 1

⎤
⎦ ·

⎡
⎣x̂

ŷ
ẑ

⎤
⎦ , (3.4)

which emerges from the fact that these two coordinate systems may be aligned after
two successive rotations (one per propagation angle). The following step is to define
the initial wavevectors of the peripheral rays; along propagation, these match up to
the wavevector on the beam axis, but, in the transverse directions, they also have
components with their signs reflecting the beam focusing status (− for focused, + for
defocused). In this sense, the relations providing the associated refraction indexes are
Nfp

1 = Nc
1 + wψ,1R−1

ψ,1ψ̂ and Nsp
1 = Nc

1 + wζ,1R−1
ζ,1ζ̂ , where the curvature radii are given

by w2
ψ,1R−1

ψ = 〈ψ1ζ 0〉�(〈ψ1ζ 0〉) and w2
ζ,1R−1

ζ = 〈ψ0ζ 1〉�(〈ψ0ζ 1〉); here, � denotes that
the moments are calculated in Fourier space for the transformed electric field. Finally, the
beam power is found from Poynting’s vector (referring to the beam spot area size) and
assigned solely to the central ray; the physics formula reads P1 = πwψ,1wζ,1S.
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In the third part, we compute the evolution of the magnetic island growth as influenced
by the ECCD. We use a MATLAB script for solving (2.17), which gets as input the
equilibrium, profiles and all the other parameters appearing in (2.18), (2.19) and (2.20)
(see the third paragraph in this section), and gives as output the time series of the island
width. Since each equilibrium geometry corresponds to a certain size of the island, the
ray computation must be performed for every value of W yielded by the MRE. This
feedback-loop situation can be simplified by employing the linearity of current drive:
we run the ray tracing code for different islands and apply regression analysis to derive
a relation connecting the ECCD parameters with W. The data related to current drive,
as delivered from the ray tracing code, require further processing in order to make up
consistent input for the MRE solver. First, for obtaining the proper numbers for rCD, jCD0
and dCD from the ECCD profile, the driven current should be translated to area current
density. Instead of dividing the values of ICD with their equivalent values of flux surface
area, we perform this more easily with the relation jCD = ηCD dPabs/dVs. The flux surface
volumes are calculated from (Isliker et al. 2012)

Vs = −1
n

∫ 2πn

0

∫ ξ2

ξ1

∫ r2

r1

(
Rmaj + r cosϑ

)
r dr dξ dϑ, (3.5)

where ξ = mϑ − nϕ is the helical angle, and the integration limits for ξ and r are defined
on the basis of the following normalized parameter:

Ω(r, ξ) = −n
2

B0

δBm,n
θ

1
Rmaj

(
1
rs

− 1
Lq

)
(r − rs)

2 + r
rs

(
1 + r − rs

rmin

)
cos ξ, (3.6)

that labels the flux surfaces as follows: |Ω| > 1 yields surfaces outside the island, whereas
|Ω| � 1 refers to the surface nest of the island (Ω = 1 corresponds to the separatrix).

4. Results and discussion

This section is devoted to the numerical results of each physics model in our sequence
(transfer matrix in gEMH-configured plasma, ray tracing in non-axisymmetric geometry,
MRE solution with ECCD term), focusing on the assessment of the effect of the beam
distortion by the density blobs to the NTM stabilization quality. To this end, the EC beam
spectrum that propagates through the density blobs, as well as the absorbed power and
driven current, are compared with the ones of a beam computed in unperturbed plasma
with ray tracing. The important quantities to be tracked are the propagation direction, the
beam width, the EC deposition radius (especially with respect to the NTM surfaces), the
peak value and radial extent of the ECCD profile as well as the magnetic island width.

We start with results coming from the full-wave propagation data and its
post-processing. In figure 3 we visualize the beam path in its course of crossing the
region populated by density fluctuations (contained within the grey planes), in terms
of plotting the spatial distribution of the real part of Poynting vector’s magnitude. In
the four-dimensional plot, the Cartesian axes refer to the local beam coordinate system
(χ,ψ, ζ ) introduced in § 3, but with an additional shift of the origin up to the geometric
centre of the blob layer, whereas Re(S) is represented by a colour code and normalized
to its maximum value on the incident wave. The numerical computations were performed
with the dedicated model described previously, and for the parameter values of the EC
wave, background plasma and density perturbations mentioned there. The following cases
are considered for δne as percentage of the local background density: (a) 50 % and (b)
100 %.

https://doi.org/10.1017/S002237782000149X Published online by Cambridge University Press

https://doi.org/10.1017/S002237782000149X


Effects of density fluctuations on stabilizing ECCD for NTMs 15

(a) (b)

FIGURE 3. Visualization of the EC beam propagation through the homogenized plasma region
containing electron density fluctuations, in terms of the isosurface of the real part of the
normalized Poynting vector. System parameters correspond to the case φ0 = −5◦, ρb = 0.8,
δρb = 0.02, ν = 0.3 and δne equal to (a) 50 % and (b) 100 % of the local background density.

By following the shape and trajectory of the beam prior to and past the perturbed
region, it is observed that the wave characteristics are altered by the density fluctuations.
Specifically, the beam distortion mainly amounts to a shift of the geometrical axis centre,
an effect owed to refraction, and to the broadening of the transverse electric field profile,
which is owed to diffraction and being quantified in terms of the beam width. Such
behaviour has been recently computed in similar scenarios by many authors (see e.g. Ram
& Hizanidis (2016), Köhn et al. (2016) and Snicker et al. (2017)). The axial shift and
the broadening of the beam are computed using the values of the beam axis coordinates
and the width at the entry and exit points on the perturbed layer, which may be found by
applying the relevant equations given in § 3 at these specific points. Regarding the beam
broadening definition, we should mention here that we have defined the broadening as
the difference between the beam width when propagating in the presence of perturbations
from the width of unperturbed plasma propagation. In case (a), the axial shift is found
equal to 0.14 cm and the beam broadening is 0.09 cm, whereas in case (b) these numbers
are 0.33 cm and 0.21 cm, respectively. In both cases, the computed reflection of the wave
power (visualized with the dark curve in figure 3) remains below 2 %, and thus it does not
constitute an important effect.

We move now to the ray tracing analysis and calculations that follow towards the
quantification of NTM dynamics. As described in § 3, the EC beam is modelled via
the synthesis of three rays, which are input into the code in order to compute each
ray’s position, the beam width per transverse direction and the current drive profile. For
including the island geometry to the ECCD parameters that model the stabilizing effect in
the MRE, it is necessary to derive relations connecting those parameters with the island
size. This has been performed as described in Chatziantonaki et al. (2013); in each case for
the NTM order and the blob amplitude, we have run ray tracing simulations for different
island sizes and, assuming the Gaussian form jCD(r) = jCD0 exp [−(r − rCD)

2]/d2
CD] for

the ECCD density radial profile, we have applied regression analysis on the output data
in order to calculate jCD0 and dCD. The results are given in figure 4: in panels (a) and (b)
we visualize the poloidal projection of the beam and the ECCD profile indicatively for
the case of a 3/2 NTM with δne/ne(rb) = 1, whereas in panels (c) and (d) we present the
calculated functions jCD0(W) and dCD(W) for all cases of m/n and δne.
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FIGURE 4. Ray tracing analysis of the EC propagation past the density fluctuations and up to the
magnetic islands: (a) poloidal projection of the beam path and (b) radial ECCD density profile,
in example for the case of a 3/2 NTM, and the calculated regression of (c) jCD0 and (d) dCD
versus the island width in all cases for the NTM order.

In figure 4(b), the radial profile of the ECCD is visualized with and without density
fluctuations present, so that comparisons are made regarding the effect of the blob
structure on the wave deposition. The latter result is based on the additional ray
computation mentioned above; this was performed by launching a beam similar to the one
considered in the full-wave computations but modelling it using ray tracing, since, in the
absence of density fluctuations, the asymptotic approximation is valid. By examining the
profiles, the deposition radius for each case is found: for m/n = 3/2, if δne/ne(rb) = 0.5
it is rCD = 0.3985rmin and if δne/ne(rb) = 1 it is rCD = 0.3972rmin, and for m/n = 2/1, if
δne/ne(rb) = 0.5 it is rCD = 0.5029rmin and if δne/ne(rb) = 1 it is rCD = 0.5037rmin. Under
the set-up that, in the absence of blobs, the deposition occurs exactly on the flux surface of
interest, these values correspond, respectively, to misalignments of 0.29 cm and 0.53 cm
for the cases of δne/ne(rb) equal to 0.5 and 1 when m/n = 3/2, and 0.55 cm and 1.08 cm
for the same cases when m/n = 2/1.

From previous works, it is well known that the dependence of the EC current density
amplitude and radial profile width on the NTM-driven magnetic island size stems from
the fact that, in the presence of the island, the beam power is deposited into volumes
increasingly smaller than those in its absence, which in turn leads to increasingly larger
values of the absorbed power density and the driven current (the reader is referred
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to Isliker et al. (2012) and Chatziantonaki et al. (2013) for details on these issues).
The dependence of dCD on W is much weaker than the one of jCD0, however, it has
been included in the modelling in order to ensure consistency. For practical reasons,
we have introduced appropriate functional forms jCD0 = fj(W) and dCD = fd(W) for the
self-consistent determination of the ECCD parameters, which are quantified by fitting over
the exact values computed with ray tracing. Since the ECCD computation is done in terms
of the linear adjoint method, it is expected that the scaling of jCD0 and dCD with W will be,
to a good approximation, linear. In figures 4(c) and 4(d), we plot the functions jCD0(W)
and dCD(W), respectively, for all the four cases that emerge from the combinations of the
selected values of m/n and δne/ne(rb), including also (for comparisons) the computations
where the blobs are absent.

As a first comment, regarding the functional dependencies, we can clearly see that the
result of linear fitting is indeed very successful in all cases, with the regression error for
fj(W) being less than 1 % and for fd(W) less than 3 %. By comparing the curves for the
different cases, for both jCD0 and dCD it is observed that the slopes of the linear functions
do not depend explicitly on the blob amplitude, but there is a weak dependence on the
NTM order. To be exact, the slope corresponding to jCD0 is slightly larger for m/n = 2/1,
whereas the slope of dCD it is slightly larger for m/n = 3/2; these effects are related
to the differences in the island geometry between the two cases, as explained in Isliker
et al. (2012). Nevertheless, the ranges of values for jCD0 and dCD depend both on m/n
and δne/ne(rb). The dependence on m/n is deduced through the comparison of curves
with the same value of blob amplitude, and has been analysed in Tsironis (2013) for the
mode 2/1 and in Isliker et al. (2012) for the mode 3/2. Regarding the dependence on the
density fluctuation strength, by inspecting the curves referring to the same mode order it
becomes apparent that, as δne/ne(rb) increases, the values of jCD0 reduce and the ones of
dCD increase accordingly. This was expected due to the effects of beam axis shifting and
electric field profile broadening by the blob structures on the wave propagation, which are
deleterious with reference to the control requirement of accurate ECCD deposition on the
magnetic island’s flux surfaces.

In the last part of this section, we study the properties of the MRE in the presence of
the effects and restrictions mentioned above. The central point in our analysis is to solve
the MRE self-consistently (i.e. including the modification of the island size at each time
step) by using the data output for the current drive from the previous modelling step, and
to compare the results between the scenarios where the density fluctuations are present
and absent for both cases of the NTM instability order. Within our study, the parameters
which are bound to affect the form of the self-consistent solution are the initial width W0,
because for larger islands the undesired effects on the ECCD stabilizing term are more
important, and the density fluctuation amplitude because, as seen previously, it affects the
shape of the ECCD profile via the parameters jCD0 and dCD. Since the effect of the value
of W0 has been studied extensively in Chatziantonaki et al. (2013), here we only consider
all the aforementioned cases for m/n and δne/ne(rb) at an ITER-specific initial condition
of the island width (6 cm). In figure 5 we visualize the calculated solution of the MRE,
which is expressed in terms of the time series of the island size W(t), and in our model
the applied ECCD is computed in the exact (non-axisymmetric) geometry of the magnetic
islands.

From the figures given above, it is found that the full stabilization of the mode is delayed
in the presence of density fluctuations. As expected, the specific time lag of delay does not
depend strongly on the mode order, but it has a significant dependence on the fluctuation
amplitude. To be specific, and with respect to the scenario where density fluctuations
are not present in the plasma, for the mode 2/1 the stabilization occurs with a delay
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FIGURE 5. Magnetic island size, as computed from the self-consistent solution of the MRE with
the ECCD stabilizing term computed in non-axisymmetric geometry, for all the aforementioned
values of the initial island size and density fluctuation strength in the two different cases for the
mode order: (a) m/n = 2/1, (b) m/n = 3/2.

of approximately 0.8 s when δne/ne(rb) = 0.5 and of nearly 3.5 s when δne/ne(rb) = 1,
whereas, in the same manner, for the mode 3/2 the stabilization occurs roughly 0.6 s later
when δne/ne(rb) = 0.1 and almost 2.9 s later when δne/ne(rb) = 1. To summarize, this
means that the time needed for the full mode stabilization in the presence of blobs is an
increasing function of both the mode order as well as the density perturbation strength.
The behaviour described here is strongly connected to the displacement of the ECCD
deposition with respect to the magnetic island’s O-point and to the broadening of the
current drive profile, which are induced by the beam axis shifting and width broadening
brought up by the density fluctuations.

5. Conclusion

In this paper, we have presented a first-principles approach to the development of an
integrated model for NTM dynamics in the presence of stabilizing ECCD and plasma
density fluctuations. The toolbox consists of three models, associated with the different
physics processes, which are applied in sequential order: an advanced model for the beam
propagation through the density blobs, which is based on a transfer matrix applied to an
electromagnetically homogenized medium; a simpler model for the propagation outside
the blob, which is based on asymptotic ray tracing; and a solver for the nonlinear evolution
of the magnetic island growth. The simulation results indicate that the density fluctuations
affect the mode stabilization through the alteration of the intended current drive, namely
the shifting of the deposition radius with respect to the island’s O-point and the broadening
of the deposition profile. These effects impose an increase in the time needed for mode
stabilization, which scales proportionally with the perturbation strength.

The aforementioned effects may be of importance in some cases, and therefore should
be taken into account by the control system commissioned with the NTM stabilization
(involving steerable wave launchers). For efficient mode control in ITER, it is expected
that the beam power should be deposited very close to the island centre with an allowed
misalignment of 1–2 cm in time scales smaller than 1 s (Henderson et al. 2008). Both the
displacement and the broadening of the ECCD deposition are equivalently undesirable
effects, with the former one being slightly more necessary to control. In this context,
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and within the parameter range simulated in this work, it becomes apparent that for large
density fluctuation amplitudes the increase in the needed time for stabilization is critical
and may not be manageable by the control system, thus annihilating the stabilizing effect
of the ECCD. Our current study is in a limited range of values for the density fluctuation
parameters that are effective, namely the perturbation amplitude, the blob size and the
turbulent layer width, which we will make an effort to extend in future work.

The computational resources (CPU time and memory) needed by our model are not
extreme; a full-wave simulation, in the range of parameters explored here, takes less than
10 minutes and has normal memory demands, whereas the ray tracing code and MRE
solver run in less than a minute. The total CPU time required also reduces because we use
ray tracing for the propagation outside the blob region, instead of a full-wave simulation
from beam launch up to the magnetic island. The latter would increase significantly
the overall computational burden not only due to the need for full-wave computations
on a longer propagation path, but also due to the required evaluation of the hot-plasma
dielectric response near the EC resonance, where asymptotic codes possess an advantage
in treating more efficiently the wave absorption and current drive (see e.g. Tsironis &
Papadopoulos (2014) for details). The difficulty in applying our model sequence lies in the
different steps required in order to supply each model part with the proper input: as seen in
§ 3, the assignment of proper beam input to the ray tracing code requires the computation
of the moments of the full-wave EM field output, whereas the coupling of the ECCD to
the MRE solver requires a regression analysis over the output data of several ray tracing
computations. These actions require an important amount of post-processing effort which,
for the moment, cannot be performed automatically.

A discussion on the limitations of our models is necessary. First, the full-wave solver
and the plasma homogenization technique may be improved by including more realistic
magnetic equilibria and plasma profiles (coming for example from experimental data),
a beam description based on non-plane waves, as well as the reflection effect at the
vacuum–plasma crossing (which will allow a more realistic simulation of the beam
launching conditions). Second, the ray tracing code, apart from accommodating realistic
magnetic field and plasma profiles, requires also an increase of the consistency in the
computation of the ECCD profile (e.g. by using a larger number of rays), as well as the
development of a more realistic description for the wave beam (such as, for example, in
paraxial beam tracing). Finally, improvements to the MRE solver are identified in the
inclusion of the description of rotating magnetic islands, gyrotron power modulation
and EC plasma heating, via the proper formulation of additional Δ′ terms. All these
extensions are considered in terms of current work on a more thorough analysis of the
effects presented in this paper.
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