EDITORIAL: YES, WE CANN!

The aim of this editorial is to increase the acceptance of neural net modeling
in the actuarial community. Neural nets may substantially improve classical
actuarial models, if appropriately applied. We illustrate this on a toy example
but, in fact, this should be understood as a universal concept. Assume we have
a classical regression problem where the distribution of a response Y = Y(x)
can be described by covariates x. A common actuarial problem is to determine
the premium u(x) = E[Y(x)] as a function of the covariates x. Actuaries have
developed excellent skills to solve such problems through finding appropriate
regression functions x +— w(x). This editorial shows how these skills can fur-
ther be improved using the toolbox of neural nets. For this, the following two
assumptions are crucial:

(1) There exists a sufficiently good classical parametric actuarial model for
describing the responses. The parameters of this model can efficiently be
estimated with maximum likelihood estimation (MLE) methods.

(2) Embedding of the classical actuarial model in a neural net is feasible.

If (1) and (2) are fulfilled, then one proceeds as follows:

(3) The calibration of the neural net uses the classical actuarial model as initial
value in the gradient descent algorithm with the deviance loss as objective
function.

This embedding of the classical actuarial model in a neural net can be inter-
preted as model blending or as neural net boosting of the actuarial model. We
describe this on an easy example and call it the Combined Actuarial Neural
Net (CANN) approach.

(1) The existence of a classical parametric actuarial model that describes the
responses sufficiently accurately is the starting point, and (2) and (3) aim at
challenging this model. MLE maximizes the likelihood function or, equiv-
alently, minimizes the deviance loss. As toy example we choose a simple
generalized linear model (GLM) with regression function

x> O M(x) =exp {(x, B)},

where (x, 8) denotes the scalar product between the covariate x and the model
parameter 8. For illustration, we choose an exponential response function. We
assume an efficient MLE of B8 denoted by gMLE,
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2 EDITORIAL

(2) In a first step, we describe the classical parametric actuarial model in a (first)
neural net architecture. Neural nets offer great flexibility, and in many/most
cases this first step is possible. For our GLM this is straightforward, we choose
one neuron in the output layer with weights 8 and exponential activation
function.

In a second step, we choose a second neural net architecture that describes
the same regression problem. In our toy example, we assume that this second
neural net has two hidden layers with hyperbolic tangent activation function
and neurons z! in the first hidden layer and neurons z'¥ in the second hid-
den layer. This is schematically shown by the following two sets of hidden
neurons

x> zV(x)=tanh (b + Bjx) and x> z?(x)=tanh (b, + B>z (x)),

with intercept vectors b, and b,, and weight matrices B; and B,. Remark that
tanh (- ) is applied element-wise. This provides a neural net regression function

x> "N (x) = exp {bs + Byz?(x)},

with exponential activation function, intercept b;, and weights Bs in the output
layer. The art of neural net designing is first to find a good architecture and
second a good calibration of that architecture.

In the last step, we blend the two regression functions "™ and u™N to the
following CANN regression function

x> NN =exp {(x, B) + bs + Bz 2(x)).

In machine learning jargon, this is called adding a skip connection to the
feed-forward neural net uNN. This skip connection exactly contains the clas-
sical actuarial regression function log (11S™). This blended model has network
parameter 6 = (8, by, b,, b3, By, By, Bs). State-of-the-art neural net modeling
uses versions of the gradient descent algorithm to minimize the objective
function for finding a good network parameter 6.

(3) As described above, we use a version of the gradient descent algorithm for
finding a good network parameter 6. To be consistent with the GLM approach
of (1) we choose the deviance loss function as the objective function in the gra-
dient descent algorithm. The second important ingredient for gradient descent
is the ip\itial value 6, for 0 in the algorithm. We choose as initial value 6, the
MLE BMLE of (1) for B, and we set b3 =0 and B; =0. This initialization is
the crucial and subtle point in our concept, it implies that the gradient descent
algorithm starts in ©Y*M, and the blended model ©““NN can be understood
as a boosting enhancement where the gradient descent algorithm challenges
wS™ for additional model structure. In particular, the gradient descent algo-
rithm tries to reduce the initial GLM deviance loss (in-sample) by exploring the
CANN structure.
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EDITORIAL 3

We close with remarks.

If the blended model u“*NN provides a substantial improvement in the
deviance loss (subject to over-fitting), then "™ misses important model
structure and the CANN approach p““NN should be used. Otherwise we
should stay with the GLM.

If we have a sufficiently good GLM from (1), we expect fast (near) conver-
gence of the gradient descent algorithm because we are already starting the
algorithm in a model that is close to optimal. In particular, this implies that
bootstrapping of neural nets becomes feasible.

In the gradient descent algorithm described in (3) we may either train f
or declare the initial value SM"* to be an untrainable weight. We may
also modify the corresponding GLM part to (x,apM"") with a trainable
weight a € (0, 1) and letting BME being untrainable. In this latter case « is
interpreted as the credibility weight assigned to the GLM part.

The CANN approach can be applied to a huge variety of classical paramet-
ric actuarial models, in particular, we can easily treat categorical covariates
using embedding layers in neural nets.

Furthermore, the CANN approach even works if we consider several port-
folios simultaneously in one blended neural net. This then allows learning
across different portfolios. Another option is to have several parametric
actuarial models in different skip connections, and letting them compete
against each other.

MARIO V. WUTHRICH AND MICHAEL MERZ
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