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Abstract

In this paper, it is shown that there exists a connected topological group which is not homeomorphic
to any ω-narrow topological group, and also that there exists a zero-dimensional topological group
G with neutral element e such that the subspace X = G \ {e} is not homeomorphic to any topological
group. These two results give negative answers to two open problems in Arhangel’skii and Tkachenko
[Topological Groups and Related Structures (Atlantis Press, Amsterdam, 2008)]. We show that if a
compact topological group is a K-space, then it is metrisable. This result gives an affirmative answer
to a question posed by Malykhin and Tironi [‘Weakly Fréchet–Urysohn and Pytkeev spaces’, Topology
Appl. 104 (2000), 181–190] in the category of topological groups. We also prove that a regular K-space
X is a weakly Fréchet–Urysohn space if and only if X has countable tightness.
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1. Introduction

This paper consists of two parts. In the first part, we consider two open problems posed
by Arhangel’skii and Tkachenko in [2]. The first (Open Problem 3.4.6) asks whether
every connected topological group is homeomorphic to an ω-narrow topological
group. The second (Open Problem 1.4.1) asks whether for a zero-dimensional
topological group G with neutral element e, the space X = G \ {e} is homeomorphic
to a topological group. In this paper we will show that there exists a connected
topological group which is not homeomorphic to any ω-narrow topological group,
and this gives a negative answer to the first open problem. We show that there exists
a zero-dimensional topological group G with neutral element e such that the subspace
X = G \ {e} is not homeomorphic to any topological group, and this gives a negative
answer to the second open problem.

In the second part, we consider an open problem posed by Malykhin and Tironi
in [9] for topological spaces. This asks whether a compact K-space X must have
countable tightness. We restrict our attention to the category of topological groups,
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and prove that a compact topological group which is a K-space must be metrisable.
This gives an affirmative answer to the open problem in the category of topological
groups. Moreover, we prove a stronger result that every locally compact topological
group which is a K-space must be metrisable.

Recall that a topological group G is a group G with a topology such that the product
mapping of G ×G into G is jointly continuous and the inverse mapping of G onto
itself associating x−1 with arbitrary x ∈G is continuous. Obviously, each topological
group is homogeneous. Thus, to define a topological group topology on a group G, it
is enough to define a local base at the identity e of G and then translate it to all points
in G.

A topological group G is called ω-narrow [5] if and only if for every open
neighbourhood V of the neutral element e in G, there exists a countable subset A of G
such that AV = G. The class of ω-narrow topological groups contains all Lindelöf
topological groups and all topological groups with countable cellularity. Also,
ω-narrow topological groups are characterised as subgroups of topological products
of families of second countable topological groups (see [5]).

A topological space X is called a K-space [9] if, for every x ∈ X and B ⊂ X satisfying
x ∈ B \ B, there exists a sequence ζ = {Ki : i ∈ ω} of disjoint compact subsets of B such
that, for every neighbourhood U of x, {i ∈ ω : Ki ∩ U = ∅} is finite. For convenience,
we denote this relation of x and ζ by x(K)ζ.

We say that the tightness of a topological space X is countable if, for each x ∈ X and
A ⊂ X satisfying x ∈ A, there exists a countable subset B of A such that x ∈ B.

Recall that a topological space X is called a weakly Fréchet–Urysohn space [9] if,
for each x ∈ X and A ⊂ X satisfying x ∈ A \ A, there exists a sequence ζ = {Fi : i ∈ ω}
consisting of disjoint finite subsets of A such that for every neighbourhood U of x,
{i ∈ ω : Fi ∩ U = ∅} is finite. For convenience, we denote this relation of x and ζ by
x(F)ζ.

By the definitions, every weakly Fréchet–Urysohn space is a K-space. We will
show that a regular K-space X is a weakly Fréchet–Urysohn space if and only if X has
countable tightness.

In this paper, a topological group G always means a Tychonoff space. Also, ω, ω1

and c denote the first infinite cardinality, the first uncountable cardinality and the
cardinality of the continuum, respectively. Further, ω(X) and c(X) denote the weight
and the cellularity of the space X, respectively. For other terms and symbols we refer
to [2] or [4].

2. The answers to two questions of homeomorphisms of topological groups

As a generalisation of the Lindelöf property in topological groups, the ω-narrow
property has many interesting results (see [2]). Typical examples of ω-narrow
topological groups include the product topological groups Rκ which is connected and
Zκ which is not connected, where R and Z denote the additive groups of reals and
integers with the usual topology, respectively. In [2], some open problems about ω-
narrow topological groups were left. The following is one of them.
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P 2.1. Is every connected topological group homeomorphic to an ω-narrow
topological group?

To answer this question, we first recall an interesting topological group constructed
by Hartman and Mycielski in [6] from a given topological group G.

Let (G, ·) be a topological group with identity e. Hartman and Mycielski constructed
a new topological group as follows. Take Ġ to be the set of all functions f defined on
the interval J = [0, 1) with values in G such that, for some sequence 0 = a0 < a1 · · · <
an = 1, f is constant on [ak, ak+1) for each k = 0, . . . , n − 1. A binary operation ∗
is defined on Ġ such that ( f ∗ g)(x) = f (x) · g(x), for all f , g ∈ Ġ and x ∈ J. Then
every element f ∈ Ġ has a unique inverse f −1 ∈ Ġ defined by ( f −1)(r) = f (r)−1 for
each r ∈ J. It is easy to see that (Ġ, ∗) is a group with identity ė, where ė(r) = e for
each r ∈ J. For any open neighbourhood V of e in G and a real number ε > 0, we
define a subset O(V, ε) of Ġ by O(V, ε) = { f ∈ Ġ : µ({r ∈ J : f (r) < V}) < ε}, where µ is
the usual Lebesgue measure on J. Let N(e) be a base for G at e and N(ė) = {O(V, ε) |
V ∈ N(e), ε > 0}. Then (Ġ, ∗) becomes a Hausdorff topological group withN(ė) being
a local base at the identity of Ġ.

The following important result is due to Hartman and Mycielski [6].

T 2.2. Let (G, ·) be a topological group. Then the topological group (Ġ, ∗) is
pathwise connected and G is topologically isomorphic to a closed subgroup of Ġ. If G
is metrisable, then Ġ is metrisable.

Now we use the topological group (Ġ, ∗) constructed above to give a negative
answer to Problem 2.1 [2, Open Problem 3.4.6].

T 2.3. Let G be the additive group (R, +) of all real numbers with the discrete
topology. Then the topological group Ġ is not homeomorphic to any ω-narrow
topological group.

P. Obviously, G is a metrisable topological group. By Theorem 2.2, Ġ is a
connected metrisable topological group and ω(Ġ) ≥ ω(G) = c.

According to [2, Proposition 3.4.5], a first countable ω-narrow topological group
has a countable base. Thus, if Ġ is homeomorphic to some ω-narrow topological
group H, then ω(H) = ω since Ġ is first countable. It follows that ω(Ġ) = ω, which
contradicts ω(Ġ) ≥ c. �

Recall the definition of balanced groups [2, p. 69]. Assume that G is a topological
group. A subset A of G is said to be invariant if xAx−1 = A for each x ∈G. A
topological group G is called balanced if it has a local base at the neutral element
consisting of invariant subsets.

T 2.4. Suppose that G is a balanced topological group such that for each open
neighbourhood U of the neutral element e, there exists a countable subset M of G
satisfying UMU = G. Then G is an ω-narrow topological group.
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P. Take an arbitrary open neighbourhood V of e. Since G is a balanced topological
group, we can choose a neighbourhood W of e such that W2 ⊂ V and xWx−1 = W
for each x ∈G. According to the assumption, there exists a countable subset M of
G satisfying WMW = G. Since xWx−1 = W, that is, xW = Wx, for each x ∈G, it
follows that WM = MW. Hence, G = WMW = MW2 ⊂MV , which means that G is
an ω-narrow topological group. �

Theorem 2.4 gives a partial answer to [2, Open Problem 5.1.12].
Since every abelian topological group is balanced, the following result is obvious.

C 2.5. Suppose that G is a topological group such that for each open
neighbourhood U of the neutral element e, there exists a countable subset M of G
satisfying UMU = G. If G is an abelian group, then G is an ω-narrow topological
group.

We now consider the second problem. We know that, for a topological group G
with neutral element e, its subspace G \ {e} can fail to be homogeneous. A typical
example is the product topological group R × Zω of the topological group R of reals
and the topological group Zω. But if G is a zero-dimensional topological group with
the identity e, then the space G \ {e} is homogeneous (see [2, p. 36]).

Taking account of the homogeneity for every topological group, Arhangel’skii and
Tkachenko posed the following question [2, Open Problem 1.4.1].

P 2.6. Let G be a zero-dimensional topological group with neutral element e.
Must the space X = G \ {e} be homeomorphic to a topological group?

We give a negative answer to this question as follows.

T 2.7. There exists a zero-dimensional topological group G with neutral
element e such that the subspace X = G \ {e} is not homeomorphic to any topological
group.

P. Let G be the product topological group Dω1 , where D is the two-element
topological group {0, 1}. Obviously, G is zero-dimensional. We claim that the
subspace X = G \ {e} is not homeomorphic to any topological group.

Assume the contrary, that is, there exists a topological group H which is
homeomorphic to X. Since X is open in the compact topological group G, it is locally
compact, which implies that H is locally compact. According to [2, Corollary 3.1.4],
a locally compact topological group is paracompact, so that H is paracompact, which
implies that X is paracompact. By the Hewitt–Marczewski–Pondiczery theorem in [4]
we know that Dω1 is separable, that is, G is separable. It follows that X is separable
since X is open in G. Therefore, the Souslin number of X is countable. Taking into
account that X is paracompact and c(X) = ω, we conclude that X is Lindelöf.

For each ordinal α < ω1, put

Kα = {(xβ) ∈G : xβ = 0, β ≤ α};
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then Kα is closed in G for each α < ω1. Let Fα = Kα ∩ X; then Fα is closed in X
for each α < ω1. Therefore, we have a family {Fα : α < ω1} consisting of decreasing
nonempty closed subsets of X. Since

⋂
α<ω1

Kα = {e} and e < X, we know that⋂
α<ω1

Fα = ∅, which implies that the family {X \ Fα : α < ω1} is an open cover of X.
Since X is Lindelöf, {X \ Fα : α < ω1} has a countable subcover {X \ Fαi : i ∈ ω}, that
is,
⋂

i∈ω Fαi = ∅. Taking into account that ω1 is a regular cardinality, we can find an
ordinal number γ such that γ < ω1 and γ > αi for each i ∈ ω. Since {Fα : α < ω1} is a
decreasing family, we conclude that Fγ ⊂

⋂
i∈ω Fαi = ∅, which is contradiction. �

3. Some results on K-topological groups

If a topological group G is a K-space, then we will call it a K-topological group.
In [9], Malykhin and Tironi investigated weakly Fréchet–Urysohn spaces and

Pytkeev spaces. The following open problem was posed in [9, Question 6.4].

P 3.1. Must a compact K-space X have countable tightness?

We now consider this problem for compact topological groups; equivalently, we ask
whether a compact K-topological group must have countable tightness. To answer this
question, we first recall a theorem in [2, Theorem 4.2.1].

T 3.2. If G is a nonmetrisable compact topological group of weight τ, then the
space Dτ is homeomorphic to a subspace of G, where D is the two-element topological
group {0, 1}.

Theorem 3.2 is an easy corollary from a famous theorem (every compact topological
group G is a dyadic compactum) in [7] and a general result of Engelking on dyadic
compacta in [3]. From Theorem 3.2 we can obtain the important theorem in [1]: every
compact topological group with countable tightness is metrisable.

We now show that for compact topological groups, Problem 3.1 has an affirmative
answer.

T 3.3. Suppose that G is a compact topological group. If G is a K-topological
group, then G is metrisable.

P. Assume the contrary, that is, that G is not a metrisable topological group.
Then there exists a cardinal number τ such that ω(X) = τ and τ ≥ ω1. According
to Theorem 3.2, the space Dτ is homeomorphic to a subspace of G. Since Dω1 is
homeomorphic to a subspace of Dτ, it follows that Dω1 is homeomorphic to a subspace
of G.

Let Y be the subspace of Dω1 consisting of all elements of (xα) such that, for some
successor ordinal β < ω1, the αth coordinate xα is 0 whenever α < β, and all other
coordinates of (xα) are 1. Obviously, the cardinality of Y is ω1. We claim that Y is a
discrete subspace of Dω1 . Indeed, for an arbitrary element y = (yα) of Y , suppose that
γ is the first coordinate of y which equals 1. Then, by the choice of Y , γ is a successor
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ordinal. We denote the predecessor of γ by γ − 1. Put

U = {(xα) ∈ Dω1 : xγ = 1, xγ−1 = 0};

then the subset U is an open neighbourhood of y in Dω1 and U ∩ Y = {y}. Therefore, Y
is a discrete subspace of Dω1 .

It is easy to see that the element x = (0α) of Dω1 satisfies x ∈ Y \ Y where 0α = 0
for each ordinal α < ω1. Since G is a K-space, then it follows from the hereditariness
of K-spaces that Dω1 is a K-space. Thus, there exists a sequence ζ = {Ki : i ∈ ω} of
disjoint compact subsets of Y satisfying x(K)ζ. Since each Ki is compact and Y is
discrete, it follows that each Ki is a finite subset. Therefore,

⋃
i∈ω Ki is a countable

subset of Dω1 \ {x}. It follows from the choice of Y that there exists a β < ω1 such that
the βth coordinate of each element of

⋃
i∈ω Ki is 1. Put V = {(tα) ∈ Dω1 : tβ = 0}; then V

is an open neighbourhood of x. However, V ∩ (
⋃

i∈ω Ki) = ∅, which contradicts x(K)ζ.
Hence, Dω1 is not a K-space. Since K-spaces are hereditary, we know that G is not

a K-space, which is a contradiction. Thus, G is metrisable. �

From the proof of Theorem 3.3 we can see the topological group Dω1 is not a
K-space. Thus the following result is obvious.

C 3.4. A compact topological group need not be a K-space. In particular, an
ω-narrow topological group need not be a K-space.

In Theorem 3.3 the compactness of G cannot be replaced by countable compactness.
A suitable example is the Σ-product of ω1 copies of a two-element topological group
D, which is countably compact. We denote this group by H. Then H is a Fréchet–
Urysohn space, which implies that H is a K-space. However, H is nonmetrisable.
Another example is the σ-product of ω1 copies of D, which is a σ-compact space. We
denote this group by M. Since M is a subspace of H, it is a K-space. Taking account of
the fact that M is dense in H, we have χ(M) = χ(H), so that M is nonmetrisable either.
Therefore the compactness of G in Theorem 3.3 cannot be replaced by σ-compactness.

It turns out that Theorem 3.3 remains valid if one replaces the compactness of G by
Čech-completeness. To prove this, we first need an auxiliary result.

Recall that a topological group G is feathered [2, p. 235] if it contains a
nonempty compact subset K of countable character in G, that is, K has a countable
neighbourhood base in G.

T 3.5. A f eathered topological group G is metrisable if and only if it is a
K-topological group.

P. Necessity is obvious. It remains to verify sufficiency.
Since G is feathered, according to [2, Lemma 4.3.19], there exists a compact

subgroup H of G such that the left coset space G/H is metrisable. By the condition
that G is a K-topological group, we know that H is a K-topological group. Then,
by Theorem 3.3, H is metrisable. Since H and G/H are both first countable,
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by [2, Corollary 1.5.21], we know that G is first countable. Therefore, G is
metrisable. �

Since every Čech-complete topological group is feathered, the following result is
obvious.

C 3.6. Every Čech-complete K-topological group is metrisable. In
particular, each locally compact K-topological group is metrisable.

Since every sequential space is a K-space, we have the following result.

C 3.7. Every Čech-complete sequential topological group is metrisable. In
particular, each locally compact sequential topological group is metrisable.

Now we consider K-topological groups with countable pseudocharacter. We will
show the following result.

T 3.8. Every K-topological group with countable pseudocharacter has
countable tightness.

The proof of this theorem will follow from the next two results. First, we recall
the definition of Gδ-diagonal. A topological space X is said to have a Gδ-diagonal if
there exists a sequence {Vi : i ∈ ω} of open covers of X such that

⋂
i∈ω st(x,Vi) = {x}

for every x ∈ X, where st(x,Vi) =
⋃
{V ∈ Vi : x ∈ V}.

L 3.9. A regular K-space X with a Gδ-diagonal has countable tightness.

P. Suppose that x ∈ X, A ⊂ X and x ∈ A \ A. Since X is a K-space, there exists a
sequence ζ = {Ki : i ∈ ω} consisting of disjoint compact subsets of A such that x(K)ζ.
In particular, x ∈

⋃
i∈ω Ki. Since X has a Gδ-diagonal, for each i ∈ ω, the subspace Ki

also has a Gδ-diagonal. Then, for each i ∈ ω, Ki is a separable and metrisable, which
follows from the fact that Ki is compact and has a Gδ-diagonal. Choose a countable
dense subset Ci of Ki for every i ∈ ω. Then B =

⋃
i∈ω Ci is a countable subset of A and

x ∈ B. Hence, X has countable tightness. �

Since every submetrisable space has a Gδ-diagonal, the following result is obvious.

C 3.10. Every regular submetrisable K-space has countable tightness.

L 3.11. Every topological group G with countable pseudocharacter has a Gδ-
diagonal.

P. Since G has countable pseudocharacter, there exists a sequence {Ui : i ∈ ω} of
open subsets of G such that

⋂
i∈ω Ui = {e}, where e is the identity of G. Taking account

of the fact that G is a topological group, we can find another sequence {Vi : i ∈ ω}
of open symmetric neighbourhoods of e such that V2

i+1 ⊂ Vi ∩ Ui for each i ∈ ω. By
virtue of {Vi : i ∈ ω} we have a sequence {Vi : i ∈ ω} of open covers of G such that
Vi = {xVi : x ∈G} for each i ∈ ω.
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We claim that
⋂

i∈ω st(x,Vi) = {x} for every x ∈G. Assuming the contrary, there
exist two distinct points y and z such that z ∈

⋂
i∈ω st(y,Vi). Then, for each i ∈ ω, there

exists a point xi ∈G such that {y, z} ⊂ xiVi, that is, we can find two points ui, vi in Vi

such that y = xiui and z = xivi. It follows that xi = yu−1
i , which implies that

z = yu−1
i vi ∈ yV−1

i Vi = yV2
i ⊂ yUi for every i ∈ ω.

Since
⋂

i∈ω Ui = {e} and G is homogeneous,
⋂

i∈ω yUi = {y} which implies y = z. This
is a contradiction. Hence, G has a Gδ-diagonal. �

Lemma 3.11 fails to be valid in the category of topological spaces, even for compact
spaces. A suitable example is the Alexandroff double circle [4, Example 3.1.26]
X which is compact and first countable. However, the Souslin number of X is c,
which means that X does not have a Gδ-diagonal. Otherwise, X would be separable
and metrisable, which implies that the Souslin number of X is countable. This is a
contradiction.

P  T 3.8. The theorem follows directly from Lemmas 3.9 and 3.11. �

We recall an interesting result given by Arhangel’skii and Tkachenko [2,
Lemma 3.3.22].

L 3.12. The following conditions are equivalent for a topological group G:

(a) every compact subspace of G is first countable;
(b) every compact subspace of G is metrisable.

T 3.13. Assume that G is a K-topological group. If every compact subspace of
G is first countable, then G has countable tightness.

P. Suppose that x ∈G, A ⊂G and x ∈ A \ A. Since G is a K-space, there exists a
sequence ζ = {Ki : i ∈ ω} of disjoint compact subsets of A such that x(K)ζ. By virtue
of the assumption, we know that Ki is first countable for every i ∈ ω. According to
Lemma 3.12, each Ki is metrisable, so that the compact subspace Ki is separable.
Therefore, the subspace

⋃
i∈ω Ki is separable. From x ∈

⋃
i∈ω Ki we can conclude that

G has countable tightness. �

We know that every weakly Fréchet–Urysohn space is a K-space but the converse
is not true. So it is interesting to ask under what conditions a K-space is a weakly
Fréchet–Urysohn space. The following result gives a complete answer to this question.

T 3.14. A regular K-space X is a weakly Fréchet–Urysohn space if and only if
X has countable tightness.

P. We begin with necessity. By the definition of weakly Fréchet–Urysohn spaces,
every weakly Fréchet–Urysohn space has countable tightness.

We now prove sufficiency. Assume x ∈ X and A ⊂ X satisfying x ∈ A \ A. Since X
has countable tightness, there exists a countable subset B of A satisfying x ∈ B \ B.
It follows from the fact X is a K-space that there exists a sequence ζ = {Ki : i ∈ ω}
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consisting of disjoint compact subsets of B satisfying x(K)ζ. Since each Ki is compact
and countable, according to [4, Theorem 3.1.19 ], it is separable and metrisable.
By [8, Lemma 13.2], each Ki, as a countable compact metrisable space, has isolated
points, where by an isolated point we mean it is isolated in the subspace Ki. In addition,
each accumulation point (if it exists) on Ki is a limit point of some countable isolated
points on Ki for every i ∈ ω. If there exists an infinite subfamily η of ζ such that
each element of η contains only isolated points, then there is nothing to prove, since a
compact subset consisting of isolated points is a finite subset.

Now we assume that for each i ∈ ω, Ki has accumulation points. Let Hi = {xi,m :
m ∈ ω} be the subset of accumulation points on Ki. For each i, m ∈ ω, take a sequence
{xk

i,m : k ∈ ω} ⊂ Ki \ Hi such that {xk
i,m : k ∈ ω} converges to xi,m. Put F l

i,m = {xk
i,m : k ≥ l},

i, m, l ∈ ω. We consider the following two cases.

Case 1. For each neighbourhood U of x, {i ∈ ω : U ∩ Hi = ∅} is finite. Therefore,
ξ = {F l

i,m : i, m, l ∈ ω} is a countable π-network of X at x consisting of infinite subsets.
According to [9, Proposition 1.1], there exists a countably infinite sequence λ of finite
subsets of B satisfying x(F)λ.

Case 2. There exists a neighbourhood U of x such that {i ∈ ω : U ∩ Hi = ∅} is infinite.
Suppose that M = {i ∈ ω : U ∩ Hi = ∅}. According to the definition of ζ, we have the
following conclusion: for each neighbourhood V of x, {i ∈ M : V ∩ (Ki \ Hi) = ∅} =

{i ∈ M : V ∩ Ki = ∅} is finite (∗). Choose a neighbourhood O of x satisfying O ⊂ U,
then O ∩ Ki = O ∩ (Ki \ Hi) for every i ∈ M. According to (∗), we can assume that
O ∩ (Ki \ Hi) is not empty for each i ∈ M. Thus, each O ∩ Ki = O ∩ (Ki \ Hi) is
compact and discrete. It follows that Ti = O ∩ (Ki \ Hi) is finite for each i ∈ M. For
any two distinct m, n ∈ M, Tm ∩ Tn ⊂ Km ∩ Kn = ∅. For each neighbourhood W of x, it
follows from (∗) that

{i ∈ M : W ∩ Ti = ∅} = {i ∈ M : (W ∩ O) ∩ (Ki \ Hi) = ∅}

is finite. Therefore, x(F){Ti : i ∈ M}. �

L 3.15. Suppose that X is a T2 K-space, x ∈ X, A ⊂ X and x ∈ A \ A. Then there
exist two disjoint subsets B, C of A satisfying x ∈ B and x ∈C.

P. By virtue of the assumption, there exists a sequence ζ = {Ki : i ∈ ω} of disjoint
compact subsets of A satisfying x(K)ζ. Put

B =
⋃
i∈ω

K2i and C =
⋃
i∈ω

K2i+1;

then B ∩C = ∅, x ∈ B and x ∈C, which follow from x(K)ζ. �

The following result gives an example of a countable topological group which is
not a K-space, so the countable tightness and countable pseudocharacter cannot make
a topological group be a K-space.
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C 3.16. Suppose that βω is the Stone–Čech compactification of ω, p ∈
βω \ ω. Let X = ω ∪ {p} be the subspace of βω. Then the countable free topological
group F(X) is not a K-space.

P. Obviously, p ∈ ω \ ω. Since p is a free ultrafilter, there do not exist two
disjoint subsets B, C of ω such that x ∈ B and x ∈C. By Lemma 3.15, X is not a
K-space. Since X is a subspace of the free topological group F(X), F(X) is not a
K-space. �
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