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ON THE DECOMPOSITION OF NONSINGULAR CS-MODULES 

JOHN CLARK AND NGUYEN VIET DUNG 

ABSTRACT. It is shown that if M is a nonsingular CS-module with an indecom­
posable decomposition M = ® / e /M/, then the family {Mj | / € /} is locally semi-7"-
nilpotent. This fact is used to prove that any nonsingular self-generator E-CS module is 
a direct sum of uniserial Noetherian quasi-injective submodules. As an application, we 
provide a new proof of Goodearl's characterization of non-singular rings over which 
all nonsingular right modules are projective. 

Introduction. A module M is called a CS-module if every submodule of M is essen­
tial in a direct summand of M. CS-modules present a generalization of quasi-continuous 
and continuous modules (see Mohamed and Muller [MM]), which in turn generalize 
quasi-injective and injective modules. It has recently been shown in [Dl] (see also 
[DHSW, 8.13]) that if M = ©/G/M/ is a decomposition of a CS-module M into sum-
mands Mi's with local endomorphism rings, then the family {Mt \ i G 1} is locally 
semi-r-nilpotent. It is natural to ask whether this result can be extended to the general 
case, without the local endomorphism ring hypothesis. 

In this note, by using different techniques, we show that if M = ©/Ç/M/ is any inde­
composable decomposition of a nonsingular CS-module M, then the family {Mz | i G 1} 
is locally semi-r-nilpotent. This result is used to show that any nonsingular self-generator 
S-CS module is a direct sum of uniserial Noetherian quasi-injective submodules. As an 
application, we give a new proof of a well-known theorem, due to Goodearl [Gl], [G2], 
that every nonsingular right module over a right nonsingular ring R is projective if and 
only if R is (left and right) hereditary serial Artinian. We also show that, if R is a right 
nonsingular ring such that every Kj-generated nonsingular right i?-module is projective 
and either/? is right quasi-continuous orR is commutative, then R is semisimple Artinian. 

Definitions. Throughout this note all rings are associative with identity and all mod­
ules are unitary right modules. A submodule N of a module M is said to be essential in M 
ifNDK ^ 0 for every nonzero submodule K of M. A submodule C of M is called closed 
in M provided C has no proper essential extensions in M. A module M is a CS-module 
(or, as in [DHSW] and [O], an extending module) if and only if every closed submodule 
of M is a direct summand. M is called I-CS (or ^-extending in [CW]) if every direct sum 
of copies of Mis a CS-module. Recall that M is said to be continuous if it is CS and every 
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submodule of M which is isomorphic to a direct summandof Mis also a direct summand 
of M. Also a module M is called quasi-continuous if it is CS and whenever M\ and M2 

are direct summands of M with M\ Pi M2 = 0 then Mi © M2 is also a direct summand of 
M. 

A family of modules {M, | / G /} is called locally semi-T-nilpotent if, for any count­
able set of non-isomorphisms {fn\Min —> M/n+1} with all /„ distinct in /, and for any 
x G M/,, there exists k (depending on x) such thaty* * • -f\ (x) = 0. 

Results. We begin with the following result. 

THEOREM 1. Let M be a nonsingular CS-module such that M = ©/€/ M/, where M, 
is indecomposable for all i G /. Then the family {Mi \ i G /} is locally semi-T-nilpotent. 

PROOF. Consider any infinite sequence of non-isomorphisms f„ 

M/t JL>Mi2-^> > M,-, -^-> • • •. 

For simplicity we may write in — n. Clearly Mn is uniform, hence if Ker/^ ^ 0 it 
would imply that/„(M„) is a singular submodule of Mw+i, a contradiction because M is 
nonsingular. Thxxsfn is a monomorphism for all n > 1. Let E(M\) be the injective hull 
of Mi. Then/f1 :f (M\ ) —> M\ can be extended to a monomorphism g2'M2 —> E(M\ ). 
Setting N2 — g2(M2), we clearly have Mi C A2 and Mi ^ N2. Repeating this argument 
on the non-isomorphic monomorphism f2g2

x '-N2 —* M3 produces a submodule A3 of 
E(M\) such that A3 properly contains N2 and A3 ~ M3. Continuing this procedure we 
get a strictly ascending sequence 

Mi C N2 C N3 C • • • C Nn C • • • Ç E(MX) 

where Nn ~ Mn for all n > 2. 
Next set 7V1 = Mi and let </?: © ^ A„ —> £(Mi) be the homomorphism defined by 

(̂ (x) = x\ + x2 + • • • +xk for eachx = (xi,. . . ,X£,0,0,...) G ©^1 M»- Since E{M\) is 
nonsingular, it follows that A = Ker </? is a closed submodule of © ^ N„. But ffij^ A„ is 
isomorphic to © ^ Mn which is CS, hence A is a direct summand of © ^ Nn. Therefore 
we have ©JJti Nn — A 0 B for some submodule 5. Then 5 is isomorphic to a submodule 
of £(Mi ), hence uniform, so B contains a finitely generated essential submodule C. There 
exists a positive integer m such that C Ç ©™= j Aw, thus C is essential in a direct summand 
D of ©™=1 Nn. But © ^ j Art is nonsingular, hence every submodule of © ^ , N„ has a 
unique maximal essential extension in © ^ Nn (see e.g. [Ol, Lemma 2]). In particular, 
it follows that B = £>, thus 5 Ç ©™=1 #„. 

Now, for any xm+i G Nm+\, consider the element y — (0 , . . . , 0,xw+i, 0,0,...) G 
©ï£Li Nn. There are elements a e A and Z? G B such that 7 = a + b. Clearly a and Z? must 
have the forms a = (x t , . . . ,xm,xw+i,0,0,.. .)and6 — (—xj,...,—xw,0,0,...), for some 
Xk G AA, A: = 1, . . . , m. But a £ A = Ker (/?, so this implies that xi + • • • + xm + xm+i = 0, 
hence xm+i G Ai + • • • + Nm = Aw. Therefore we get Aw = Am+Î, a contradiction which 
completes the proof. • 
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It is well-known that over a right Noetherian ring any right CS-module has an in­
decomposable decomposition (see, e.g., [MM, Theorem 2.19] or [GJ, Theorem 1.10]). 
However, by [GD, Corollary 1.7], if the ring R has merely finite right uniform dimension, 
then any nonsingular CS right 7?-module is a direct sum of uniform submodules. 

We now show by example that we can not remove from Theorem 1 the hypothesis 
that the summands Mj are indecomposable. 

EXAMPLE 2. Let V be an infinite-dimensional right vector space over a division ring 
D and let R be the ring End/)(F) of linear transformations on V. It is well-known that R 
is a von Neumann regular right self-injective ring (see [G2, Proposition 2.23]) and so, 
by [DS, Proposition 3], RR

H) is CS. Moreover, for each n G N, RR ~ R%\ the direct 
sum of « copies of R, (see Anderson and Fuller [AF, Exercise 8.14]). Thus, if we take 
Mn — R^ for each n G N, the module ®neHMn is CS. Now define/,:Mn —> Mn+\ 
to be the monomorphism from RR

n) to RR
n+]) = R ® RR

n) induced by the isomorphism 
from R^ to the first summand/^. Then, since each/, is not an isomorphism, we get that 
{Mn | n € N} is not locally semi-r-nilpotent. 

If R is a right nonsingular ring such that the module RR is Z-CS then R is (left and right) 
Artinian (see, e.g., [DS, Corollary 2]). Following [DS], a module M is called countably 
I-CS if M^N) is a CS-module. By [DS, Proposition 3], every (von Neumann) regular right 
self-injective ring R is countably S-CS as a right module over itself. However, since R 
need not be Artinian, it follows from above that RR need not be X-CS. In view of this, it 
seems natural to ask if there exists a regular right self-injective ring R such that R^ is CS 
for some index set / of uncountable cardinality but RR is not Z-CS. Rather surprisingly, 
such a ring does not exist. The authors are very grateful to Prof. Ken Goodearl for point­
ing out this fact and showing them how it could be deduced from results in Osofsky's 
paper [02]. The following proposition extends this observation to quasi-continuous rings 
and is proved using Osofsky's ideas. 

PROPOSITION 3. Let R be a right nonsingular right quasi-continuous ring such that 
Rf is CS for some index set I of uncountable cardinality. Then R is semisimple Artinian. 

PROOF. We show first that R does not contain an infinite set of (nonzero) orthogonal 
idempotents. Assume to the contrary that {en \ n G N} is a countably infinite set of 
orthogonal idempotents in R. Note that, since RR is nonsingular CS, every right ideal K 
ofR has a unique maximal essential extension K' which is a direct summand oïR (see, 
e.g., [01, Lemma 2]). Let E«GN ^nR be essential in eR, where e is an idempotent in R. 

Now let A be any subset of N. Denote the unique maximal essential extensions of 
T,neA £nR and Y<n<fA e"R by FA and GA respectively. Then FA D GA = 0 and E«GN enR is 
essential in FA ®GA. Since R is right quasi-continuous, FA®GA is a direct summand ofRR, 
hence of eR. From this it follows that eR — FA(&GA. With respect to this decomposition 
let e(A) denote the projection of e in FA. In the particular case where A is the singleton 
subset {k} for some k G N we denote e(A) by e(k). We will show that the sets {e(k) | 
k e N} and {e(A) | A Ç N} satisfy the hypotheses of [02, Proposition 5], namely that 
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{e(k) | k G N} is an infinite set of orthogonal idempotents such that, for all k G N and 
all subsets A,B of N, 

(1) e(k)e(A) = e(A)e(k) = e(k)XA(k) 

where \A denotes the characteristic function of A and 

(2) e(A)e(B) = e(B)e(A). 

Firstly let,4 andB be disjoint subsets of N. Since £wG4 enRnT,neB enR — 0 it follows 
that e(A)RPie(B)R = 0. Now, since R is right quasi-continuous, we get that e(A)R^e{B)R 
is also a direct summand of RR and hence of eR. This readily implies that e(A)e(B) = 
e(B)e(A) = 0 and e(A U B) = e(A) + e(B). Now let A and B be arbitrary subsets of N. 
Then, from above, we have e(A) = (?04\£)+e(,4n£)ande(£) = e(B\A)+e(AnB).From 
this it follows that e(A)e(B) = e(B)e(A) — e(A Pi ,5), verifying (2) and the first equation 
of (1). Moreover, if k and / are distinct elements of N then, since {k} H {/} = 0 we also 
get from above that c(k)e(l) = 0. Thus the infinite set of idempotents {e(k) \ k G N} is 
orthogonal. 

Next let k G N and A be a subset of N. If k G A then e(k)R Ç e(A)R and this gives 
e(A)e(k) = e(k). On the other hand, if kg A then {k} HA = 0 and so e(^M*) = 0. Thus 
e(A)e(k) = e(k)\A(k) for all possible k and^4, completing the verification of (1). 

We may now apply [02, Proposition 5] to get a nice set of idempotents £/ in R such 
that the cardinality of U is 2H° (see [02, p. 641] for the definition of "nice"). Choose a 
subset V — {ga | a G Q} of U where Q is a set of cardinality Hi. Then V is also a 
nice set of idempotents and it follows from [02, Theorem A] that the right ideal of R 
generated by V is not projective (in fact of projective dimension one). 

On the other hand, if we denote the cardinality of the index set / by H, then, since R^p is 
CS, it follows from the proof of [DS, Proposition 1] that every K-generated nonsingular 
right /^-module is projective. In particular, since Hi < H, V must be projective. This 
contradiction shows that R does not contain an infinite set of orthogonal idempotents. 

Since R is right nonsingular with no infinite set of orthogonal idempotents and ^^N) is 
CS, it follows from [DS, Theorem 4] that RR is E-CS and so, by Goodearl's Theorem [G1, 
Theorem 2.15] (see also [DS, Corollary 2]), R is (left and right) serial Artinian. Then it is 
well-known that the indecomposable summands oïRR are quasi-injective (see, e.g., [W, 
55.16]) and, since R is right quasi-continuous, these summands are relatively injective 
(see [MM, Proposition 2.19]). It follows that R is right self-injective and so, since R is 
right nonsingular, the Jacobson radical of R is zero. Hence R is semisimple Artinian, as 
required. • 

REMARK 4. It would be interesting to know if the "right quasi-continuous" condition 
in Proposition 3 can be removed. In view of (the proof of) [DS, Proposition 1], this 
would mean that iïR is a right nonsingular ring for which every Hi -generated nonsingular 
right i?-module is projective then every nonsingular right 7?-module is projective, thereby 
giving a stronger form of Goodearl's Theorem [Gl, Theorem 2.15]. This will be true if 
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R is commutative, since in this case the proof of Proposition 3 can be modified (and 
simplified) as follows. Suppose that R contains an infinite set {e^ \ k G N} of orthogonal 
idempotents. For each subset^ of N, the ideal £w e 4 enR is essential in a direct summand 
e(A)R, where e(A) is an idempotent of R. Clearly e„ = e{A)en for each n G N. Also, if 
n £ A, then en (Eme4 CmR) — 0. By [CH, Lemma 1.1], e(A)H Ç £wG4 emR for some 
essential ideal H of R. Then ene(A)H = 0 and so, since R is nonsingular, ene{A) = 0. It 
now follows that the sets {en \ n G N} and {e(A) \ A Ç N} satisfy conditions (1) and (2) 
above. We now complete the argument as in the proof of Proposition 3. Thus we have 
shown that ifR is a commutative nonsingular ring for which the 7?-module R$ is CS for 
some index set / of uncountable cardinality then R is a finite direct sum of fields. 

Our next objective is to give necessary and sufficient conditions for a nonsingular 
countably X-CS module to be X-CS, which may be considered as a module-theoretic 
generalization of [DS, Theorem 4]. For this we need a result which has recently been 
proved in [D2]. 

LEMMA 5. Let {Mi \ i G /} be a family of uniform modules with local endomorphism 
rings. Then M = ©/G/M/ is a CS-module if and only if®ieK M is a CS-modulefor each 
countable subset K of I. 

PROOF. See [D2, Theorem 2.4]. • 

PROPOSITION 6. Let M be a nonsingular module. Then the following conditions are 
equivalent: 

(a) M is I-CS; 
(b) M is countably E-CS and M is a direct sum of uniform submodules. 

PROOF, (a) => (b). Suppose that M is nonsingular and X-CS. Let M be the M-
injective hull of M, i.e. the injective hull of M in the Grothendieck category u\M\ (see 
Wisbauer [W]). Then M generates injective objects of a[M] (see, e.g., [W, 16.3]), hence it 
follows from [GD, Proposition 1.13] that Mis X-quasi-injective. By [GD, Corollary 1.6], 
we get that M is a direct sum of uniform submodules. (See also [CW, Proposition 2.2] 
for a more general result.) 

(b) => (a). Assume that M is nonsingular countably X-CS and M = 0 /G/M/, where 
eachM/ is uniform. Since A/jN) is nonsingular and CS, it follows by Theorem 1 that every 
monomorphism/:M/ —> M/ must be an isomorphism. Hence each Mt is continuous, 
therefore M\ has a local endomorphism ring by [MM, Proposition 3.5]. Now the result 
follows by Lemma 5. • 

A module M is called a self-generator provided M generates all submodules of M, i.e. 
every submodule of M is a quotient of a direct sum of copies of M. For basic properties, 
characterisations and examples of self-generators, we refer to Zimmermann-Huisgen [Z-
H]. We note in particular that a self-generator need not be a generator (see [Z-H, Exam-
pie 1.2]). 

We now describe the structure of a nonsingular X-CS module which is also a self-
generator. Recall that a module U is said to be uniserial if for any submodules A and B 
of U, we have either A ÇB orB ÇA. 
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THEOREM 7. Let M be any nonsingular self-generator I-CS module. Then M has 
a direct decomposition M — 0 / e/M/, where each Mi is uniserial Noetherian quasi-
injective. Furthermore, if the family {Mi \ i G /} has only a finite number of non-
isomorphic modules, then each Mi is of finite (composition) length. 

PROOF. By Proposition 6 ((a) => (b)), there is a direct decomposition M = 0 / G / M„ 
where each M, is uniform. As in the proof of Proposition 6 ((b) => (a)) we can show 
that each M, is continuous, hence EndM, is local. Now M, 0 M, is CS and M, is not 
isomorphic to any proper submodule of M/, so it follows that Mt is Mrinjective, i.e. M, 
is quasi-injective (see e.g. [DHSW, 7.3]). 

Next we show that M/ is Noetherian for each / G /. Let A be any submodule of Mi. 
Then, since M is a self-generator, there is an exact sequence 

Mi ̂  -U A —> 0 

for some index set J. But A is nonsingular, so it follows that Ker/ is a closed submodule 
of A/**7*, hence Ker/ is a direct summand of M**7*. Therefore A is isomorphic to a direct 
summand of M^ = (0 /G/M/) (J), and since EndM/ is local for all / G /, we get by the 
Krull-Schmidt-Azumaya theorem ([AF, Theorem 12.6]) that A ~ Mj for some j G /. 
Now suppose that there exists a strictly ascending chain of submodules of M/ 

A\ CA2 C ••• C An C ••• QMh 

Then by the above argument, each An is isomorphic to Min for some in G /. Hence the 
external direct sum D = 0 ^ A„ is isomorphic to 0 ^ j Min which is a direct summand 
of M^H\ so D is a CS-module. Obviously there is an infinite sequence of non-isomorphic 
monomorphisms 

A fl A h A f" 

A\ —>A2 —> ••• —>An —> ••• 

where fn is the identity map on An. By Theorem 1 we get a contradiction which proves 
that Mi is Noetherian for each / G /. 

Now we show that M/ is uniserial for each i G /. Let A\ and A2 be any nonzero 
submodules of M/. Thenyii ^ M/, and ^2 — M2 f° r some i\j2 ^ /• Hence End^i and 
End^2 are local, and the external direct sum A \ (&A2 is CS. By [KM, Corollary 14] either 
A1 can be embedded in A2 or A2 can be embedded in A \. Thus, without loss of generality, 
we may assume that there is a monomorphism (p:A\ ^ A2. Since M, is quasi-injective, 
(f can be extended to a homomorphism i/;:M, —> M/, and clearly -0 is an isomorphism. 
But A1 is quasi-injective, so it is fully invariant in A/,, hence A \ = ip(A \ ) = if (A \ ) Ç A2. 
This proves that M{ is uniserial. 

Finally, assume that the family {M, | / G /} contains only a finite number of non-
isomorphic members. Suppose that there exists a strictly descending chain of submodules 
of Mi 

B{Z)B2D-Z)BnZ)--. 
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As we have shown above, each Bn is isomorphic to Min for some /„ G /. Hence there are 
positive integers k and / with k < I such that Bk ~ B\. But this is impossible because Bk ~ 
Mtk is quasi-injective. This contradiction shows that Af, must be Artinian. Therefore, we 
conclude that M,- is of finite length for each /'. • 

We are able now to derive Goodearl's characterization of right nonsingular rings for 
which all nonsingular right modules are projective. Recall that a ring R is called right 
(left) serial if RR (respectively RR) is a direct sum of uniserial submodules. 

COROLLARY 8 (GOODEARL [Gl], [G2]). The following conditions are equivalent 
for a right nonsingular ring R: 

(a) Every nonsingular right R-module is projective; 
(b) R is a (left and right) hereditary serial Artinian ring. 

PROOF, (a) => (b). Assume that (a) is satisfied. Then it is easy to see that this condi­
tion is equivalent to the property that/?/? is a S-CS module (see, e.g., [DS, Proposition 1]). 
By Theorem 7, R is right serial right Artinian. Every right ideal of R is nonsingular, hence 
projective as a right /^-module, thus R is right hereditary. Now we essentially follow 
Goodearl [G2, Theorem 5.21] to show that every nonsingular left /^-module is projec­
tive. Let Q be the maximal right quotient ring of R. Then clearly Q is semisimple, and 
since QR is projective, it follows by [C, Theorem 2.3] that Q is also the maximal left 
quotient ring of R. Let M be any nonsingular left 7?-module and consider the injective 
hull E(M) of M. Then E(M) is a flat left g-module (cf. [G2, Theorem 2.2]), and since RQ 
is flat (see [Gl, Lemma 2.2]), this implies that E(M) is a flat left jR-module. But R is right 
hereditary, so it follows that M is a flat left /^-module (see, for example, [W, 39.12]). Be­
cause R is right Artinian, R is perfect, hence RM is projective (see [AF, Theorem 28.4]). 
Therefore RR is S-CS, and so by Theorem 7, R is left serial left Artinian. Obviously, R is 
left hereditary. 

(b) => (a). Assume that/? is (left and right) hereditary serial Artinian, and let M be any 
nonsingular right ^-module. By using the same argument as in (a) =» (b), we can show 
that MR is flat, hence MR is projective because R is perfect. • 

We finish with an example to show that the self-generator condition in Theorem 7 can 
not be replaced by "finitely generated projective". More precisely, we give an example 
of a uniform nonsingular projective E-injective module M which is neither uniserial nor 
Noetherian nor Artinian. 

EXAMPLE 9. Let S denote the ring of 3 x 3 matrices over Q, the field of rationals, 
and let R denote the subring of S generated by Se\ \, e^S and the identity, where e\ \ and 
<?33 denote the usual matrix units. Thus R is the lower triangular matrix ring 

ro o oi 
Q Z 0 , 

LQ Q Q\ 

where the (2,2) entries are integers. The ring R is featured on p. 70 of Tachikawa's mono­
graph [T]. It follows from [T, Theorem 5.4] that R is a left and right QF-3 ring with 
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M = e^S as a minimal faithful injective right ideal. Moreover the simple Artinian ring 
S is the maximal quotient ring of R and so R is a right nonsingular ring of finite right 
uniform dimension (see, e.g., [S, Chapter XII, Section 2]). Then, by [CH, Lemma 1.14], 
R satisfies the ascending chain condition on right annihilators. From this it follows by 
a result of Faith (see, e.g., [AF, Theorem 25.1]) that the injective right ^-module M is 
X-injective. Now the proper non-trivial submodules of Mare precisely of the form 

ro o oi 
0 0 0 , 

LQ H Oj 

where H is a subgroup of the abelian group Q. From this we get that M is uniform but is 
neither Noetherian nor Artinian nor uniserial. 
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