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Abstract

In this paper, a finite-state mean-reverting model for the short rate, based on the
continuous-time Ehrenfest process, will be examined. Two explicit pricing formulae
for zero-coupon bonds will be derived in the general and special symmetric cases. Its
limiting relationship to the Vasicek model will be examined with some numerical results.
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1. Introduction

One of the fundamental approaches to term structure modelling is based on the specification
of the short-term interest rate—the short rate. Vasicek [19] first introduced a mean-reverting
short-rate model with Gaussian distribution and derived a closed-form representation for the
zero-coupon bond (ZCB) price. Since then, a variety of short-rate models have become
established, each having its advantages and disadvantages.

Albeit the earliest, Vasicek’s model is still very popular among practitioners owing to its
analytical tractability with regard to ZCB prices and European options thereof. Unfortunately,
the model has some shortcomings. The most prominent of these is the possibility that the
interest rates become negative—a fact relating to all models with Gaussian distribution. Even
though the probability of negative rates is rather small, not only is the realism of the model
questionable, but also problems may appear while valuing ZCBs with a long time to maturity
and a low interest rate level.

The idea of using both the discrete- and continuous-time versions of the Ehrenfest process
in finance is well known. The discrete-time approach was used, for example, by Okunev and
Tippett [13] in modelling accumulated cashflows, by Takahashi [18] in exploring changes in
stock prices and exchange rates for currencies, and by Bühlmann [5] in modelling interest rates.
With regard to the modelling of interest rates, it seems that the discrete-time approach leads in
general only to a recursively computable term structure. Sumita et al. [16] studied the passage
times and the historical maximum of the Ornstein–Uhlenbeck process via an approximation by
means of a special case of the continuous-time Ehrenfest process.

In this paper we propose a finite-state mean-reverting model for the short rate related to the
continuous-time Ehrenfest process. By choosing arbitrary lower and upper bounds for the rate,
the respective short-rate process can be seen as a suitably linearly transformed birth-and-death
process on {0, 1, . . . , N}, N ∈ N. By choosing the lower bound to be nonnegative, the problem
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694 A. KAPLUN

of negative interest rates can be avoided. Furthermore, the model allows an explicit evaluation
of ZCB prices. In this way, the model aims at realism and analytical tractability.

The main outcome of the paper is the derivation of pricing formulae for ZCBs in the general
and the special symmetric cases of the model. In both cases the arbitrage-free ZCB price at
time t and maturity T is given as follows:

P(t, T ) = CP1(t, T )kP0(t, T )N−k,

where C is a constant, k ∈ {0, 1, . . . N}, and P1 and P0 can be expressed in terms of the
1F1 hypergeometric functions of a matrix argument given in Section 2 (see also [7]). In the
general case the model is governed by five parameters—a valuable fact considering the fitting
of the model to the market data. The special case provides four parameters and is characterized
by the symmetry of the underlying distribution with respect to the mean-reverting value. The
advantage here is that we have more tractable expressions for P1 and P0 from the computational
point of view. Moreover, a suitably transformed symmetric case of the model yields the Vasicek
model in the limit as N tends to ∞.

The paper is organized as follows. In Section 2 we give a short review of the special
functions we will encounter throughout this paper. Section 3 deals with the Ehrenfest process
in continuous time. The main results are given in Section 4, where the Ehrenfest short-rate
model is defined and the ZCB pricing formulae are derived. Section 5 gives an overview of
the Vasicek model and its limiting relationship to the Ehrenfest short-rate model. Section 6
illustrates the advantages of the Ehrenfest short-rate model.

2. Special functions and orthogonal polynomials

Throughout this paper we make use of some well-known facts concerning the Krawtchouk
polynomials (see [8], [17, Section 2.82], and [20]) and 1F1 functions (see [7]), as well as some
of their practical implications. In the interests of clarity we give in this section an overview of
these special functions.

2.1. Hypergeometric functions of matrix argument

Definition 1. (a) A partition m := (m1, m2, . . . , mn) is an n-tuple (n ∈ N) of nonnegative
integers such that m1 ≥ m2 ≥ · · · ≥ mn.

(b) For a partition m, the generalized Pochhammer symbol is defined by

[a]m :=
n∏

j=1

(a − j + 1)mj
,

where (a)k := a(a + 1) · · · (a + k − 1) denotes the usual Pochhammer symbol.

(c) For a partition m, the normalized Schur function of index m is defined by

Zm(z) := |m|!
∏

1≤j<k≤n(mj − mk − j + k)∏n
j=1(mj + n − j)!

det(z
mj +n−j

i )∏
1≤i<j≤n(zi − zj )

.

(d) The hypergeometric function pFq of a matrix argument is defined as a real-analytic function
on the space Sn(n ∈ N) of n×n Hermitian matrices with eigenvalues z := (z1, . . . , zn)

� ∈ R
n,
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and is given by the series

pFq(a1, . . . , ap; b1, . . . , bq; z) :=
∞∑

j=0

1

j !
∑

|m|=j

[a1]m · · · [ap]m
[b1]m · · · [bq ]m Zm(z), (1)

where, for 1 ≤ i ≤ p and 1 ≤ j ≤ q, ai ∈ C and none of the numbers −bi + j − 1 is a
nonnegative integer.

We will be particularly concerned with the 1F1 function, which is also known as the confluent
hypergeometric function of a matrix argument. From Theorem 4.1 of [7] we know that it
converges absolutely for all z ∈ Sn. An important result, which will be crucial later on, is given
without proof in the following remark (see [7, p. 25]).

Remark 1. Let �n denote the standard simplex in R
n(n ∈ N), defined by

�n :=
{
(x1, . . . , xn) ∈ R

n : xi ≥ 0, i = 1, . . . n,

n∑
i=1

xi ≤ 1

}
. (2)

Then, for a > 0, the following equation holds:

1F1(1; a + n; z) = (a)n

∫
�n

(
1 −

n∑
i=1

xi

)a−1

exp

( n∑
i=1

zixi

)
dx1 · · · dxn. (3)

In order to compute the pFq function numerically, we truncate the series in (1) at m ≤ H as
follows:

pFH
q (a1, . . . , ap; b1, . . . , bq; z) :=

H∑
j=0

1

j !
∑

|m|=j

[a1]m · · · [ap]m
[b1]m · · · [bq ]m Zm(z). (4)

Koev and Edelman [10] provided an effective algorithm for computing the pFH
q function.

For z ∈ Sn, the complexity of their algorithm is linear in n and subexponential in H , which is
acceptable if we consider the fast convergence of the power series (4).

2.2. Krawtchouk polynomials

For given N ∈ N and 0 < p = 1 − q < 1, the Krawtchouk polynomials Kl(x) :=
Kl(x; N; p) are the orthogonal polynomials that relate to the binomial distribution BN,p and
the probability mass function ω(x) := (

N
x

)
pxqN−x at the points x = 0, 1, . . . , N . They can be

defined in two different, but equivalent ways.

Definition 2. For x, l ∈ {0, 1, . . . , N}, we set

Kl(x) := 2F1

(
−l, −x; −N; 1

p

)
:=

N∑
k=0

(−l)k(−x)k

(−N)kk!
(

1

p

)k

, (5)

or

Kl(x) :=
(

N

l

)−1 N∑
k=0

(−1)k
(

N − x

l − k

)(
x

k

)(
q

p

)k

, (6)

where 2F1 is the classical Gauss hypergeometric function (see [17, Section 4.21]).
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696 A. KAPLUN

Definition 2 leads to the following basic well-known properties.

Lemma 1. (a) Symmetry:
Kl(x) = Kx(l) (7)

for all x, l ∈ {0, 1, . . . , N}.
(b) K0(x) = Kl(0) = 1 for all x, l ∈ {0, 1, . . . , N}.
(c) K1(x) = 1 − x/Np.

(d) Generating function: (
1 − q

p
s

)i

(1 + s)N−i =
N∑

k=0

(
N

l

)
Kl(i)s

l (8)

for all x ∈ {0, 1, . . . , N}.
(e) Recurrence relation:

−xKl(x) = (N − l)pKl+1(x) − [(N − l)p + lq]Kl(x) + lqKl−1(x) (9)

for all x, l ∈ {0, 1, . . . , N}.
(f) Orthogonality relation:

N∑
x=0

Kl(x)Km(x)ω(x) = δl,m

πl

, (10)

where

πl :=
(

N

l

)(
p

q

)l

= ω(l)q−N

for all l, m ∈ {0, 1, . . . , N}.
(g) For l, m ∈ {0, 1, . . . , N}, m ≤ l,

Bm,l :=
N∑

x=0

xKl(x)Km(x)ω(x) =

⎧⎪⎨
⎪⎩

0 if m ≤ l − 2,

−lq/πl−1 if m = l − 1,

((N − l)p + lq)/πl if m = l.

(11)

Note that Bl,m = Bm,l .

Proof. Parts (a)–(e) follow from (5), part (f) follows from (6), and part (g) is a direct
application of (9) and (10) (see, e.g. [17, Section 2.82]).

3. Original Ehrenfest model

The original Ehrenfest model describes the heat exchange between two isolated bodies, each
of arbitrary temperature. The temperatures are symbolized by the number of fluctuating balls in
two urns with a total of N ∈ N balls. For details of the continuous- and discrete-time versions
of the model, we refer the reader to [2], [8], [11], and [15].

In this section we shall discuss the continuous-time Ehrenfest process. Primarily, its
representation as a sum of independent simple processes will allow us to show the main result
of this paper, which we state in the next section. Furthermore, we examine the transition
semigroup of the Ehrenfest process and explore some of its basic properties.
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3.1. Ehrenfest process

Let N balls, initially distributed between urns I and II in such a way that k balls are in the urn I
and N−k balls are in the urn II, fluctuate independently in continuous time between the two urns.
We fix a fluctuation parameter λ > 0 and independent Poisson processes (N1

t )t≥0, . . . , (N
N
t )t≥0

with intensity λ. Let (Ŷn)n∈N be a Markov chain with the state space {0, 1} and transition
probability matrix

P :=
(

1 − α α

β 1 − β

)
. (12)

Then, the subordinated Markov chain (Y l
t := ŶNl

t
)t≥0 describes the state of the lth ball at time

t , where Y l
t = 1 or 0 when the lth ball is in urn I or II, respectively. Let k balls be initially in

urn I and N − k balls in urn II. Hence,

(
Xt :=

N∑
l=1

Y l
t

)
t≥0

(13)

is a Markov process with the state space E := {0, 1, . . . , N}, denoting the number of balls
in urn I at time t . We call (Xt )t≥0 the (continuous-time) Ehrenfest process. A discrete-time
version of (13) with arbitrary α and β was studied by Krafft and Schaefer [11].

Remark 2. (a) A special case of (13) with α = β = 1, first suggested by Siegert [15] and also
studied by Bingham [2], where the transitions become ‘deterministic’ in the sense of switching
between states 0 and 1, will be important for us later on in Section 4. (Its discrete-time analogue
leads to the original Ehrenfest chain.)

(b) Karlin and McGregor [8] provided an alternative but equivalent definition of (13) as a
birth-and-death process with the state space E. Here, the time intervals between events are
independently exponentially distributed with intensity γ , and, for i ∈ E, the birth and death
rates are λi := γα(N − i)/N and µi = γβi/N , respectively, where α and β are given as
above. It can be verified that in the setting at hand γ = λN .

Before computing the transition semigroup of (Xt )t≥0 we need the following result.

Lemma 2. The transition semigroup of (Y l
t )t≥0 is given by

P(t) =
(

q + pe−λ(α+β)t p − pe−λ(α+β)t

q − qe−λ(α+β)t p + qe−λ(α+β)t

)
, (14)

where p := α/(α + β) and q := 1 − p.

Proof. Since (Y l
t )t≥0 is a Markov chain subordinated by a Poisson process with index λ, the

associated transition semigroup can be written as (see [3, p. 333])

P(t) = e−λteλtP := e−λt
∞∑

n=0

(λt)n

n! P n. (15)

We can avoid the computation of P n by writing P = µS + (1 − µ)I , where

S =
(

q p

q p

)
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698 A. KAPLUN

is a stochastic matrix with S2 = S, I is the identity matrix, and µ := α + β. Then, (15)
becomes

P(t) = e−λteλt (µS+(1−µ)I)

= e−λteλµtSeλ(1−µ)tI

= e−λµteλµtS

= e−λ(α+β)t
∞∑

n=0

(λ(α + β)t)n

n! Sn.

Since Sn = S for all n ∈ N, we can easily compute the above series, which completes the
proof.

Remark 3. Analogously to the proof above, we see that a variation of α and β in (14) can be
equivalently described as a suitable modification of p and λ. Thus, the distribution of (Yt )t≥0
depends only on the two parameters p and λ or, equivalently, α and β.

Theorem 1. (Properties of the Ehrenfest process.) Let (Xt )t≥0 be the Ehrenfest process given
by (13).

(a) The transition probabilities pij (t) := P(Xt+s = j | Xs = i) are given by

pij (t) =
(

N

j

)(
p

q

)j N∑
x=0

(
N

x

)
pxqN−xKi(x)Kj (x)e−λ(α+β)xt , (16)

where p := α/(α+β), q := 1−p, and Ki(·) := Ki(·; p; N)(i ∈ E) are the Krawtchouk
polynomials as given in Definition 2.

(b) The conditional mean and variance of (Xt )t≥0 are given by

E[Xt | X0 = i] = Np − (Np − i)e−λ(α+β)t , (17)

var[Xt | X0 = i] = Np(1 − p) + (Np − i)(2p − 1)e−λ(α+β)t

− (Np − i)2(2p − 1)e−2λ(α+β)t . (18)

(c) The limiting distribution of (Xt )t≥0 is a stationary distribution and is given by the
binomial distribution BN,p on E with parameter p.

Proof. (a) The proof here is similar to that in [2]. First, we compute the moment generating
function of (Y l

t )t≥0, given Y l
0. In the following we suppress the dependence of (Y l

t )t≥0 on l

when it is clear from the context. From Lemma 2 we have

E[zYt | Y0 = 1] = p10(t) + p11(t)z = q + pz − q(1 − z)e−λ(α+β)t ,

E[zYt | Y0 = 0] = p00(t) + p01(t)z = q + pz + p(1 − z)e−λ(α+β)t .

Since (Y l
t )t≥0 are independent for all l = 1, . . . , N , we obtain from (13) the moment generating
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function of (Xt )t≥0, given X0 = i, as follows:

N∑
j=0

pij (t)z
j = E

[
z
∑N

l=1 Y l
t

∣∣ X0 = i
]

= E

[ N∏
l=1

zY l
t

∣∣∣∣ X0 = i

]

= E[zYt | Y0 = 1]i E[zYt | Y0 = 0]N−i

= [q + pz − q(1 − z)e−λ(α+β)t ]i[q + pz + p(1 − z)e−λ(α+β)t ]N−i

= (q + pz)N
[

1 − q

p

p(1 − z)

q + pz
e−λ(α+β)t

]i[
1 + p(1 − z)

q + pz
e−λ(α+β)t

]N−i

.

Applying (a) and (d) of Lemma 1, we obtain

N∑
j=0

pij (t)z
j = (q + pz)N

N∑
x=0

(
N

x

)
Ki(x)

(
p(1 − z)

q + pz
e−λ(α+β)t

)x

=
N∑

x=0

(
N

x

)
Ki(x)(q + pz)N−xpx(1 − z)xe−λ(α+β)xt

=
N∑

x=0

(
N

x

)
pxqN−xKi(x)

(
1 − q

p

pz

q

)x(
1 + pz

q

)N−x

e−λ(α+β)xt .

Applying (8) once again, we obtain

N∑
j=0

pij (t)z
j =

N∑
x=0

(
N

x

)
pxqN−xKi(x)

[ N∑
j=0

(
N

j

)
Kj(x)

(
pz

q

)j]
e−λ(α+β)xt

=
N∑

j=0

[(
N

j

)(
p

q

)j N∑
x=0

(
N

x

)
pxqN−xKi(k)Kj (x)e−λ(α+β)xt

]
zj .

Equating coefficients of zj completes the proof of the claim.
(b) Combining (16) with results (a), (b), and (g) of Lemma 1, we obtain

E[Xt | X0 = i] =
N∑

j=0

jpij (t)

=
N∑

j=0

jω(j)

N∑
x=0

πxKi(x)Kj (x)e−λ(α+β)xt

=
N∑

x=0

πxKi(x)e−λ(α+β)xt
N∑

j=0

jKx(j)ω(j)

=
N∑

x=0

πxB0,xKi(x)e−λ(α+β)xt , (19)
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where B0,x �= 0 for x ∈ {0, 1} as given in (11), which implies (17). Moreover,

E[X2
t | X0 = i]

=
N∑

j=0

j2pij (t)

=
N∑

j=0

j2ω(j)

N∑
x=0

πxKi(x)Kj (x)e−λ(α+β)xt

=
N∑

x=0

πxKi(x)e−λ(α+β)xt
N∑

j=0

j2Kx(j)ω(j)

=
N∑

x=0

πxKi(x)e−λ(α+β)xt
N∑

j=0

jω(j)[−(N − x)pKx+1(j)

+ [(N − x)p + xq]Kx(j) − xqKx−1(j)]

=
N∑

x=0

πxKi(x)e−λ(α+β)xt [−(N − x)pB0,x+1 + [(N − x)p + xq]B0,x − xqB0,x−1],

where B0,x is given by (11). A straightforward computation of

var[Xt | X0 = i] = E[X2
t | X0 = i] − E[Xt | X0 = i]2

leads immediately to (18).
(c) The proof is clear.

4. Ehrenfest’s short-rate model

In this section we introduce a finite-state mean-reverting short-rate model associated with
the continuous-time Ehrenfest process (13) and give its basic properties. As a main result, we
exploit the algebraic-combinatorial roots of the Ehrenfest process and derive explicit pricing
formulae for ZCBs in the general and special cases of the process, both of which have their
advantages.

4.1. Definition and properties

Let [rm, rM ] ⊆ R be an interval on the real line. We decompose it into N equal pieces of
length h := (rM − rm)/N and consider the process

(R
(N)
t := hX

(N)
t + rm)t≥0 (20)

as a short-rate process with state space E := {rk := hk+rm, k = 0, . . . , N}, where (X
(N)
t )t≥0

is the Ehrenfest process given by (13) with α, β ∈ (0, 1]. Considering Remark 2(b), we
note that (R

(N)
t )t≥0 can be seen as an affine linearly transformed birth-and-death process on

{0, 1, . . . , N}. In the case at hand, N can be interpreted as the state space discretization
parameter. Clearly, (Rt := R

(N)
t )t≥0 also depends on N . We will suppress this dependence

when it is clear from the context. Bearing in mind Remark 3, we call this short-rate model the
E(p, λ) model.
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From Theorem 1 we immediately obtain the conditional mean and variance of (Rt )t≥0, given
R0 := rk ∈ E, as follows:

E[Rt | R0 = hk + rm] = h E[Xt | X0 = k] + rm

= (rM − rm)

(
p −

(
p − i

N

)
e−λ(α+β)t

)
+ rm,

var[Rt | R0 = hk + rm] = h2 var[Xt | X0 = k]

= (rM − rm)2

N2 (Np(1 − p) + (Np − i)(2p − 1)e−λ(α+β)t

− (Np − i)2(2p − 1)e−2λ(α+β)t ),

where p = α/(α + β). We also obtain the mean reversion of (Rt )t≥0:

lim
t→∞ E[Rt ] = prM + (1 − p)rm, (21)

lim
t→∞ var[Rt ] = (rM − rm)2

N
p(1 − p) < ∞.

Thus, we have a total of five parameters, rm, rM , p, λ, and N , to fit the model to the market
data. Here, p governs the skewness of the underlying distribution, rM − rm, N , and p have
an impact on its kurtosis, and λ influences the speed of reversion to the mean reverting value
prM + (1 − p)rm.

4.2. Zero-coupon bond

We assume that an equivalent martingale measure (or risk-neutral measure) exists (see [12,
Proposition 4.2]), and that the underlying probability measure P is this equivalent martingale
measure. Let (Ft )t≥0 be the natural filtration of (Rt )t≥0. Then, the arbitrage-free ZCB price
at time t with a face value of one monetary unit and maturity at T is given by (see [4, p. 51])

P (N)(t, T ) = E

[
exp

(
−

∫ T

t

Rs ds

) ∣∣∣∣ Ft

]
, r ∈ E. (22)

In the following we also omit explicitly writing out the dependence of P(t, T ) on N when
it is clear from the context.

The calculation of (22) within the E(p, λ) model with arbitrary α, β ∈ (0, 1] is inspired
by the proof of Theorem 3.1 of [6]. There, Delbaen and Shirakawa represented the transition
probabilities of the underlying short-rate process as a weighted series of Jacobi polynomials.
Using orthogonality relations of the Jacobi polynomials, they obtained a pricing formula
for ZCBs in the associated model. However, this formula is only semi-explicit, since it
contains multiple integrals that have to be calculated iteratively. We will avoid this problem by
representing such integrals in terms of 1F1 functions.

Theorem 2. (The ZCB price in the E(p, λ) model.) Let (Rt )t≥0 be given by definition (20)
with α, β ∈ (0, 1], p = α/(α + β), and λ > 0. The price at time t ≥ 0 of a ZCB with maturity
at T , conditional on Rt = r ∈ E, is given by

P(t, T ) = e−rm(T −t)P1(t, T )kP0(t, T )N−k,
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where k := (r − rm)/h ∈ {0, . . . , N} and, for m ∈ {0, 1},

Pm(t, T ) := 1 +
∞∑

n=1

(−1)n
(h(T − t))n

n!

×
1∑

i1=0

· · ·
1∑

in=0

Km(in)

[ n∏
j=1

(
p

q

)ij

Bij−1,ij

]
1F1(1; n + 1; z(n)). (23)

Here, Km is given according to (b) and (c) of Lemma 1, 1F1 is defined by (1), z(n) := −λ(α +
β)(T − t)(i1, . . . , in)

� ∈ R
n, i0 := 0, and

Bij−1,ij :=
{

p − 1 if |ij−1 − ij | = 1,

ij (1 − 2p) + p if ij−1 = ij .

Proof. Let rk = hk + rm, k ∈ {0, . . . , N}, be the state of (Rt )t≥0 at time t . Bearing in mind
the fact that (Rt )t≥0 is a Markov process, and using definitions (13) and (20), from (22), we
obtain

P(t, T ) = E

[
exp

(
−

∫ T

t

(
h

N∑
l=1

Y l
s + rm

)
ds

) ∣∣∣∣ Xt = k

]

= e−rm(T −t) E

[ N∏
l=1

exp

(
−

∫ T

t

hY l
s ds

) ∣∣∣∣ Xt = k

]

= e−rm(T −t) E1,t

[
exp

(
−

∫ T

t

hYs ds

)]k

E0,t

[
exp

(
−

∫ T

t

hYs ds

)]N−k

, (24)

where Em,t [·] := E[· | Yt = m] for m ∈ {0, 1}. The last equality holds because of the
independence of (Y l

t )t≥0 for all l = 1, . . . , N . In the following we omit writing out the
dependence on particular l, and set

Pm(t, T ) := Em,t

[
exp

(
−

∫ T

t

hYs ds

)]
, m ∈ {0, 1}. (25)

Using (25), we rewrite (24) as

P(t, T ) = e−rm(T −t)P1(t, T )kP0(t, T )N−k. (26)

From the power series representation of the exponential function, we obtain

Pm(t, T ) = Em,t

[
1 +

∞∑
n=1

1

n!
(

−
∫ T

t

hYs ds

)n]

= 1 +
∞∑

n=1

(−1)nhn

∫ T

t

∫ T

s1

· · ·
∫ T

sn−1

Em,t [Ysn · · · Ys1 ] dsn · · · ds2 ds1, (27)

where t =: s0 < s1 < · · · < sn < T . The last equality follows from(∫ T

t

Ys ds

)n

= n!
∫ T

t

∫ T

s1

· · ·
∫ T

sn−1

Ysn · · · Ys1 dsn · · · ds2 ds1

and the dominated convergence theorem.
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For the given t < s1 < · · · < sn < T and tj := sj − sj−1, we have

Em,t [Ysn · · · Ys1 ] =
1∑

m1=0

· · ·
1∑

mn=0

n∏
j=1

mjpmj−1,mj
(tj ),

where m0 := m. Using the symmetry relation (7), we write the transition probabilities
pmj−1,mj

(tj ) given in Theorem 1 as

pmj−1,mj
(tj ) = w(mj )

1∑
ij =0

πij Kmj−1(ij )Kmj
(ij )e

−λij
tj ,

where λij := λ(α + β)ij . Analogously to the calculation of the expected value (19) in the
proof of Theorem 1, we obtain

Emn−1,sn−1 [Ysn ] =
1∑

i1=0

πi1Bi0,i1Kmn−1(i1)e
−λi1 tn ,

where Bi0,i1 is defined by (11) and i0 := 0. Iteratively, we obtain

Em,t [Ysn · · · Ys1 ] =
1∑

i1=0

· · ·
1∑

in=0

Km(in)

[ n∏
j=1

πij Bij−1,ij e−λij
tn−j+1

]
.

Hence, (27) becomes

Pm(t, T ) = 1 +
∞∑

n=1

(−1)nhn
1∑

i1=0

· · ·
1∑

in=0

Km(in)

[ n∏
j=1

πij Bij−1,ij

]

×
∫ T

t

∫ T

s1

· · ·
∫ T

sn−1

exp

(
−

n∑
k=1

λn−k+1(sk − sk−1)

)
dsn · · · ds2 ds1. (28)

In order to evaluate the multiple integrals above, we transform the integration domain to the
standard simplex �n defined by (2) via the following mapping:

J : R
n → R

n,

⎛
⎜⎜⎜⎝

s1
s2
...

sn

⎞
⎟⎟⎟⎠ 
→

⎛
⎜⎜⎜⎝

(T − t)s1 + t

(T − t)(s1 + s2) + t
...

(T − t)(s1 + · · · + sn) + t

⎞
⎟⎟⎟⎠ . (29)

Using (28), we rewrite (29) as

Pm(t, T ) = 1 +
∞∑

n=1

(−1)nhn
1∑

i1=0

· · ·
1∑

in=0

Km(in)

[ n∏
j=1

πij Bij−1,ij

]

× (T − t)n
∫

�n

e〈z(n),x〉 dx, (30)

where z(n) := −(T − t)(λi1 , . . . , λin)
� ∈ R

n and 〈·, ·〉 denotes the standard inner product.
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Applying (3) with a = 1, we express the integrals in (30) as 1F1 functions as follows:

n!
∫

�n

e〈z(n),x〉 dx = 1F1(1; n + 1; z(n)) (31)

for all z(n) ∈ R
n(n ∈ N0), setting 1F1(1; 1; z(0)) := 1. If we combine (26) and (30) with (31)

and the fact that πij = (p/q)ij , ij ∈ {0, 1}, the theorem follows.

Now we consider the E( 1
2 , λ) model with α = β = 1. On the one hand, we lose one of

the fitting parameters, although the model is still well suited to model the term structure, and
it yields the famous Vasicek model in the limit (see Section 5). On the other hand, we obtain
a more tractable pricing formula for ZCBs, where, in contrast to the general case, no multiple
sums need calculation, which improves the computational speed.

The calculation of the arbitrage-free ZCB price (22) in this setting is very intuitive and
requires no knowledge of the transition probabilities of (Rt )t≥0, since the only stochastic
parameters are the arrival times of the underlying Poisson process.

Theorem 3. (The ZCB price in the E( 1
2 , λ) model.) Let (Rt )t≥0 be given by definition (20)

with λ > 0 and α = β = 1. The price at time t ≥ 0 of a ZCB with maturity at T is given by

P(t, T ) = e−(rm+λN)(T −t)P1(t, T )kP0(t, T )N−k, (32)

where k := (Rt − rm)/h ∈ {0, . . . , N},

P1(t, T ) :=
∞∑

n=0

(λ(T − t))2n

(2n)!
{

e−h(T −t)
1F1(1; 2n + 1; z(2n))

+ λ(T − t)

2n + 1
1F1(1; 2n + 2; −z(2n+1))

}
, (33)

P0(t, T ) :=
∞∑

n=0

(λ(T − t))2n

(2n)!
{

1F1(1; 2n + 1; −z(2n))

+ λ(T − t)

2n + 1
e−h(T −t)

1F1(1; 2n + 2; z(2n+1))

}
, (34)

z(2n) := h(T − t)(0, 1, . . . , 0, 1)� ∈ R
2n, z(2n+1) := h(T − t)(1, 0, 1, . . . , 0, 1)� ∈ R

2n+1,
and 1F1 is defined by (1).

Proof. Let rk = hk + rm, k ∈ {0, . . . , N}, be the state of (Rt )t≥0 at time t . Analogously to
the derivation of expression (26) in the proof of Theorem 2, we obtain

P(t, T ) = e−rm(T −t)P̃1(t, T )kP̃0(t, T )N−k, (35)

where

P̃y(t, T ) := Ey,t

[
exp

(
−

∫ T

t

hYs ds

)]
, y ∈ {0, 1}. (36)

In order to evaluate P̃y(t, T ), we count the number of jumps in the underlying Poisson process
(Nt )t≥0 within the time interval (t, T ], and, denoting the jump times by (τi)i∈N and setting
τ0 := t , we split the integral on the right-hand side of (36), obtaining

P̃y(t, T ) = Ey,t

[ ∞∑
n=0

1{NT −t=n} exp

(
−

n−1∑
i=0

∫ τi+1

τi

hŶi ds −
∫ T

τn

hŶn ds

)]
.
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At this point, we have to distinguish between even and odd numbers of jumps, since (Ŷn)n∈N

switches between 0 and 1 P-almost surely according to its transition probability matrix (12).
Thus, conditional on {Ŷ0 = 1}, the Markov chain (Ŷn)n∈N stays at 1 after an even jump, whereas
it stays at 0 after an odd jump. This consideration yields

P̃1(t, T ) =
∞∑

n=0

{
E

[
1{NT −t=2n} exp

(
−

n−1∑
i=0

∫ τ2i+1

τ2i

h ds −
∫ T

τ2n

h ds

)]

+ E

[
1{NT −t=2n+1} exp

(
−

n∑
i=0

∫ τ2i+1

τ2i

h ds

)]}

=
∞∑

n=0

{
E

[
exp

(
h

2n∑
i=1

(−1)iτi + t − T

) ∣∣∣∣ NT −t = 2n

]
P(NT −t = 2n)

+ E

[
exp

(
h

2n+1∑
i=1

(−1)iτi + t

) ∣∣∣∣ NT −t = 2n + 1

]
P(NT −t = 2n + 1)

}
.

Furthermore, from the order statistics property of the Poisson process (see, for example, [9,
pp. 101–102]), we know that the joint density of the arrival times τ1, . . . , τk(k ∈ N) of (Nt )t≥0
in (t, T ], conditional on {NT −t = k}, is given by

P(t < τ1 ≤ τ2 ≤ · · · ≤ τk ≤ T | NT −t = k) = n!
(T − t)k

∫ T

t

∫ T

t1

· · ·
∫ T

tk−1

dtk · · · dt2 dt1.

Hence, for P̃1(t, T ), we obtain

P̃1(t, T ) =
∞∑

n=0

{[
e−h(T −t) (2n)!

(T − t)2n

∫ T

t

· · ·
∫ T

t2n−1

exp

(
h

2n∑
i=1

(−1)i ti

)
dt2n · · · dt1

]

× e−λ(T −t) (λ(T − t))2n

(2n)!

+
[

e−ht (2n + 1)!
(T − t)2n+1

∫ T

t

· · ·
∫ T

t2n

exp

(
h

2n+1∑
i=1

(−1)i ti

)
dt2n+1 · · · dt1

]

× e−λ(T −t) (λ(T − t))2n+1

(2n + 1)!
}
. (37)

Analogously to the proof of Theorem 2, we consider the mapping J given in (29) and integrate
(37) by substitution, which yields

P̃
(N)
1 (t, T ) = e−λ(T −t)

∞∑
n=0

(λ(T − t))2n

(2n)!
{

e−h(T −t)(2n)!
∫

�2n

e〈z(2n),x〉 dx

+ (2n + 1)!
∫

�2n+1

e〈−z(2n+1),x〉 dx

}
, (38)

where

z(2n) := h(T − t)(0, 1, . . . , 0, 1)� ∈ R
2n, z(2n+1) := h(T − t)(1, 0, 1, . . . , 0, 1)� ∈ R

2n+1,
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and 〈·, ·〉 denotes the standard inner product. Applying relation (31), we rewrite (38) as

P̃1(t, T ) = e−λ(T −t)
∞∑

n=0

(λ(T − t))2n

(2n)!
{

e−h(T −t)
1F1(1; 2n + 1; z(2n))

+ λ(T − t)

2n + 1
1F1(1; 2n + 2; −z(2n+1))

}
=: e−λ(T −t)P1(t, T ). (39)

In similar fashion, we obtain

P̃0(t, T ) = e−λ(T −t)
∞∑

n=0

(λ(T − t))2n

(2n)!
{

1F1(1; 2n + 1; −z(2n))

+ λ(T − t)

2n + 1
e−h(T −t)

1F1(1; 2n + 2; z(2n+1))

}
=: e−λ(T −t)P0(t, T ). (40)

If we combine (39) and (40) with (35), the theorem follows.

Remark 4. Note that Theorems 2 and 3 are based on two completely different approaches and
yield different representations of the ZCB prices. However, both formulae involve the confluent
hypergeometric function 1F1 defined by (1).

4.3. Practical implementation

From Theorems 2 and 3, the ZCB prices can be computed approximately by truncating the
series in the according formulae. We also use the truncated 1F

H
1 function defined by (4) as an

approximation for the 1F1 function.
In the setting of Theorem 2, we truncate the sum of series (23), obtaining

P(t, T ; M, H) := e−rm(T −t)P1(t, T ; M, H)kP0(t, T ; M, H)N−k, (41)

Py(t, T ; M, H) := 1 +
M∑

n=1

(−1)n
(h(T − t))n

n!

×
1∑

i1=0

· · ·
1∑

in=0

Ky(in)

[ n∏
j=1

(
p

q

)ij

Bij−1,ij

]
1F

H
1 (1; n + 1; z(n))

for y ∈ {0, 1}.
In the setting of Theorem 3, we truncate series (33) and (34), obtaining

P(t, T ; M, H) := e−(rm+a)(T −t)P1(t, T , M, H)kP0(t, T , M, H)N−k, (42)

P1(t, T ; M, H) :=
M∑

n=0

(λ(T − t))2n

(2n)!
{

e−h(T −t)
1F

H
1 (1; 2n + 1; h(T − t)z(2n))

+ λ(T − t)

2n + 1 1F
H
1 (1; 2n + 2; −h(T − t)z(2n+1))

}
,
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P0(t, T ; M, H) :=
M∑

n=0

(λ(T − t))2n

(2n)!
×

{
1F

H
1 (1; 2n + 1; −h(T − t)z(2n))

+ λ(T − t)

2n + 1
e−h(T −t)

1F
H
1 (1; 2n + 2; h(T − t)z(2n+1))

}
.

The choice of the truncation parameters M and H is left to the practitioner and should be made
with a view to maintaining a balance between the accuracy of the results and the computational
speed. Some numerical examples, which provide numerical accuracy and computational speed
for (41) and (42), will be given at the end of the next sections. In the following we omit
explicitly writing out the dependence on M and H when it is clear from the context.

5. Connection to the Vasicek model

The Vasicek model [19] is one of the most popular short-rate models. Closed-form
expressions of ZCB prices and European options thereof make the model highly appealing
to practitioners. However, it also has some shortcomings.

In this section we give a short description of the Vasicek model. We point out its advantages
and disadvantages. Here we follow Section 3.2.1 of [4]. We provide a convergence result, which
shows that after a linear rescaling the E( 1

2 , λ) model converges weakly to the Vasicek model.
We show the convergence of the respective ZCB prices and provide some numerical examples.

5.1. Vasicek model

The formulation of the Vasicek model under the risk-neutral measure P is

dr(t) = k[θ − r(t)] dt + σ dWt, r(0) = r0, (43)

where k, θ , σ , and r0 are positive constants, and (Wt )t≥0 is the standard Wiener process on
the probability space (�, F , (Ft )t≥0, P) with the natural filtration (Ft )t≥0. Integration of (43)
yields, for t ≥ s,

r(t) = r(s)e−k(t−s) + θ(1 − e−k(t−s)) + σ

∫ t

s

e−k(t−u) dWu. (44)

Thus, conditional on Fs(t ≥ s), r(t) is normally distributed with mean and variance

E[r(t) | Fs] = r(s)e−k(t−s) + θ(1 − e−k(t−s)), var[r(t) | Fs] = σ 2

2k
(1 − e−2k(t−s)).

Hence, the short-rate process (rt )t≥0 tends to the mean-reverting value θ for t → ∞. The
drawbacks of the model are the possible negativity of the interest rates, implied by the Gaussian
distribution, and the fact that it is driven by only three parameters, which makes the calibration
an ill-posed problem and often yields poor results.

The price at time t ≥ 0 of a ZCB with maturity at T , conditional on r(t) = r , is given by

P(t, T ) = A(t, T )e−B(t,T )r , (45)

where

A(t, T ) = exp

((
θ − σ 2

2k2

)
[B(t, T ) − T + t] − σ 2

4k
B(t, T )2

)
,

B(t, T ) = 1

k
(1 − e−k(T −t)).
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5.2. Convergence results

It is well known that the Ehrenfest process converges weakly to the Ornstein–Uhlenbeck
process (see, for instance, [9, pp. 168–173] or [16]). The following theorem shows that the
E( 1

2 , λ) model also converges weakly to the Vasicek model.

Theorem 4. Let (r(t))t≥0 be given as in (43). Consider (R
(N)
t )t≥0 as defined in (20) with

α = β ∈ (0, 1], λ := α/(α + β), rm := θ − σ
√

N/2k, and rM := θ + σ
√

N/2k. Then,

(R
(N)
t )t∈[0,T ] ⇒ (r(t))t∈[0,T ] as N → ∞,

where ‘⇒’ denotes weak convergence.

Proof. The proof follows analogously to [9, pp. 168–173], when we compute the conditional
moments of �Rt := Rt+�t − Rt .

Remark 5. Karlin and McGregor showed in a rigorous way (see [8, pp. 371–373]) that the
transition probability function (16) of the Ehrenfest process converges locally uniformly to the
transition probability function of the Ornstein–Uhlenbeck process as N → ∞, which sharpens
the above result after a linear transformation of the underlying processes.

A direct consequence of Theorem 4 is the convergence of the respective ZCB prices.

Corollary 1. Consider (r(t))t∈[0,T ] and (R
(N)
t )t∈[0,T ] as in Theorem 4, and let P(t, T ) and

P (N)(t, T ) denote the associated ZCB prices at time t with maturity at T given by (45) and
(32), respectively. Then, P (N)(t, T ) → P(t, T ) as N → ∞.

Proof. Without loss of generality, let t = 0. We denote by D := D[0, T ] the space of real-
valued functions on [0, T ] that are right continuous and have left-hand limits. From [1] (see
page 123), we know that a metric exists that makes D a Polish space, i.e. a metric, separable,
and complete space. Clearly, RN := (R

(N)
t )t∈[0,T ] and r := (r(t))t∈[0,T ] both lie in D. With

Theorem 4, it follows that RN ⇒ r in D.
Consider a linear operator S̃ on D, defined by

(S̃f )(t) :=
∫ t

0
f (s) ds for f ∈ D and t ∈ [0, T ].

Clearly, S̃ is a continuous operator on D. Then, the operator S, defined by

(Sf )(t) := exp(−(S̃RN)(t)) = exp

(
−

∫ t

0
f (s) ds

)
for f ∈ D and t ∈ [0, T ],

is a continuous operator on D. Let YN := (SR(N)(t))t∈[0,T ] and Y := (Sr(t))t∈[0,T ]. Then,
Theorem 5.1 of [1] yields YN ⇒ Y . Since YN is uniformly integrable, it follows from
Theorem 5.4 of [1] that E[YN ] → E[Y ] as N → ∞, which completes the proof.

Figure 1 illustrates the convergence result of Corollary 1. All computations were made on
an INTEL� CoreTM 2 Duo 2400MHz machine. We consider two scenarios: (a) we have a
favourable set of parameters for the ZCB valuation; and (b) we choose an unrealistic high of
20% for the interest rate market volatility and a time to maturity of 10 years. Within the Vasicek
model the valuation is done according to the pricing formula (45). The approximate values
P(0, T ; M, H) of the ZCB prices in the E( 1

2 , λ) model are computed according to Corollary 1
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Figure 1: Relative price errors against N , approximating ZCB prices P(0, T ) in the Vasicek model by
P (N)(0, T ; 10, 30) in the E( 1

2 , λ) model via (42) in two scenarios: (a) Vasicek model with k = 0.2,
σ = 0.05, T = 1 year, θ = 8%, and r0 = 5%; (b) Vasicek model with k = 0.2, σ = 0.2, T = 10 years,

θ = 8%, and r0 = 5%.

via (42) with M = 10 and H = 30. In both cases we observe fast convergence of the respective
prices.

Furthermore, we see that the choice of the truncating parameters M = 10 and H = 30 is
satisfactory for our purpose. The computation time of one ZCB price via (42) is less than 0.1
seconds. Similar computation in the E(p, λ) model according to (41) takes 2.67 seconds.

6. Discussion

In this section we discuss the advantages of the E(p, λ) model with respect to the positivity
of the interest rates. We use the case study of a ZCB valuation, showing that the E(p, λ) model
can still be used when the Vasicek model reaches its limits.

The main shortcoming of all models with Gaussian distribution, including theVasicek model,
is the positive probability of the interest rates becoming negative. Although this probability is
rather small, some problems may appear while valuing ZCBs with long residual maturity. For
instance, Rogers [14] illustrated how an attempt to keep the probability of negative interest rates
negligible by choosing suitable parameters of the Vasicek model in the limiting case t → ∞
leads to an exponential growth in t of the ZCB prices. Conversely, the E(p, λ) model allows
the choice of the lower and upper bounds, rm and rM , for the interest rate, and excludes the
possibility of negative as well as unrealistically high positive interest rates.

Times of financial crisis are often accompanied by interest rates near 0%, as we see at present.
The following example of pricing ZCBs in a respective scenario illustrates the advantage of the
E(p, λ) model over the Vasicek model. First, we assume the Vasicek model given according to
(43) with θ = 4%, σ = 0.05, k = 0.1, and r(0) = 1%. Figure 2(a) shows three sample paths
of the underlying process (rt )t≥0 over a period of 30 years simulated according to (44). We see
that every path of the simulated process spends some time below the zero mark. Figure 2(b)
demonstrates the weakness of the model in the case at hand, as we observe that the ZCB prices
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Figure 2: (a) Three sample paths of the short-rate process (43) in the Vasicek model with k = 0.1,

θ = 4%, σ = 0.05, and r(0) = 1%. (b) ZCB prices in the Vasicek model with the given parameters and
residual maturities from 1 to 30 years.
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Figure 3: (a) A sample path of the short-rate process (20) in the E(p, λ) model with α = 0.1, β = 0.3,
λ = 1, rm = 0%, rM = 16%, N = 160, and R0 = 1%. (b) ZCB prices in the E(p, λ) model with the

given parameters and residual maturities from 1 to 30 years.

are not monotone falling in the time to maturity and even exceed the upper bound of one
monetary unit, which is contradictory to no-arbitrage principles.

Now we consider the E(p, λ) model in a similar hypothetical setting. We set the lower
and upper bounds at rm = 0% and rM = 16%, and the state space discretization parameter
N = 160. We choose λ = 1, α = 0.1, and β = 0.3, in that we have, with (21), a mean-reverting
value of 4% as in the case above. Here, we set R0 = 1% as well. Figure 3(a) demonstrates a
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possible trajectory for the short-rate process (Rt )t≥0 over 30 years, simulated on the basis of
the underlying distribution. In Figure 3(b) we see the strictly monotone decreasing character
of the respective ZCB prices as a function of the time to maturity, which is highly plausible.

7. Conclusions

In this paper we explored a finite-state mean-reverting short-rate model based on the Ehren-
fest process. The respective short-rate process can be seen as an affine linearly transformed birth-
and-death process on {0, 1, . . . , N}, N ∈ N. The model provides a certain degree of analytical
tractability, since it allows explicit pricing of ZCBs and solves the problem of negative interest
rates characteristic of Gaussian models. The pricing formulae for ZCBs have been derived for
both the general case and the special case, in which the underlying distribution is symmetric
with respect to the mean-reverting value. The key to both approaches has turned out to be the
representation of the underlying Ehrenfest process as a sum of independent binary processes,
which has been possible only in continuous time. We also used the hypergeometric functions
of a matrix argument and the Krawtchouk polynomials. The special case also benefits from a
more tractable pricing formula for ZCBs.

We have seen that the Ehrenfest short-rate model is a good approximation to the Vasicek
model under normal conditions and a better alternative to it in extreme cases, where the interest
rates are low and the volatility is high, providing solely positive interest rates. A further
advantage of the model is the availability of five fitting parameters in the general case.

Our conclusion is that especially the general case of the Ehrenfest short-rate model is an
interesting enrichment in the field of term structure modelling, combining analytical tractability
with the desired property of interest rates remaining positive.

Problems that remain open for the short-rate model that we have examined here are the
derivation of an explicit pricing formula for European options on ZCBs, parameter estimates
for the model under the objective measure. An extension of the model according to the three
urn Ehrenfest model (see [8, pp. 363–368]) and a generalisation of the short-rate model, where
the interest rate is allowed to jump more then one unit, are interesting open problems.
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