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Many animals that swim or fly use their body to accelerate the fluid around them,
transferring momentum from their flexible bodies and appendages to the surrounding
fluid. The kinematics that emerge from this transfer result from the coupling between
the fluid and the active and passive material properties of the flexible body or
appendages. To elucidate the fundamental features of the elastohydrodynamics of
flexible appendages, recent physical experiments have quantified the propulsive
performance of flexible panels that are actuated on their leading edge. Here we present
a complementary computational study of a three-dimensional flexible panel that is
heaved sinusoidally at its leading edge in an incompressible, viscous fluid. These
high-fidelity numerical simulations enable us to examine how propulsive performance
depends on mechanical resonance, fluid forces, and the emergent panel deformations.
Moreover, the computational model does not require the tethering of the panel. We
therefore compare the thrust production of tethered panels to the forward swimming
speed of the same panels that can move forward freely. Varying both the passive
material properties and the heaving frequency of the panel, we find that local peaks
in trailing edge amplitude and forward swimming speed coincide and that they are
determined by a non-dimensional quantity, the effective flexibility, that arises naturally
in the Euler–Bernoulli beam equation. Modal decompositions of panel deflections
reveal that the amplitude of each mode is related to the effective flexibility. Panels
of different material properties that are actuated so that their effective flexibilities
are closely matched have modal contributions that evolve similarly over the phase of
the heaving cycle, leading to similar vortex structures in their wakes and comparable
thrust forces and swimming speeds. Moreover, local peaks in the swimming speed
and trailing edge amplitude correspond to peaks in the contributions of the different
modes. This computational study of freely swimming flexible panels gives further
insight into the role of resonance in swimming performance that is important in the
engineering and design of robotic propulsors. Moreover, we view this reduced model
and its comparison to laboratory experiments as a building block and validation
for a more comprehensive three-dimensional computational model of an undulatory
swimmer that will couple neural activation, muscle mechanics and body elasticity
with the surrounding viscous, incompressible fluid.
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1. Introduction
The impact of flexibility on propulsion has been the focus of research in many

different biological systems, such as swimming jellyfish (Demont & Gosline 1988;
Megill, Gosline & Blake 2005; Colin et al. 2012; Hoover & Miller 2015; Hoover,
Griffith & Miller 2017), swimming lamprey (Tytell et al. 2010; Tytell, Hsu & Fauci
2014; Hamlet, Fauci & Tytell 2015; Tytell et al. 2016) and flying insects (Miller &
Peskin 2009). In addition, Leftwich et al. (2012) examined the effect of a flexible
tail on the swimming performance of a robotic lamprey. Other studies use simplified
physical models, where a flexible hydrofoil or panel takes the place of an animal’s
flexible appendage (Alben et al. 2012; Dewey et al. 2013; Paraz, Eloy & Schouveiler
2014). Most of these studies analyse the propulsive performance of a tethered panel
whose leading edge is driven in a periodic motion in a flow tank (Dewey et al.
2013). In these studies, the experimental set-up is adjusted to examine the effects of
many different factors, such as the elastic properties of the panel (Quinn, Lauder &
Smits 2014b; Lucas et al. 2015), panel geometries (Buchholz & Smits 2006, 2008;
Green, Rowley & Smits 2011), the motion of the leading edge (Hover, Haugsdal
& Triantafyllou 2004; Licht et al. 2010; Lehn et al. 2017) and wall effects (Quinn,
Lauder & Smits 2014a, 2015). Other simplified models examine the hydrodynamics
of free-swimming panels with flexibility localized to a torsional spring present at
the leading edge (Alben & Shelley 2005; Vandenberghe, Childress & Zhang 2006;
Spagnolie et al. 2010; Ramananarivo, Godoy-Diana & Thiria 2011).

The motivation of many of these studies has been the potential benefits of
biomimetics in engineering. Recent advances in biologically inspired underwater
vehicles have given an impetus to understanding the role of flexibility in enhancing
their swimming performance (Colin et al. 2012; Raj & Thakur 2016). For vehicles
that are propelled with the actuation of flexible propulsors, understanding the role of
mechanical resonance can yield insight into design of the vehicle and an optimized
pattern of actuation (Chu et al. 2012). By examining these problems from a modelling
perspective, we can shed light on the limitations and constraints that have shaped
biological organisms and how these can inform future vehicle design (Fish & Beneski
2014).

In addition to physical models, computational models have been developed to
investigate the fluid mechanics of flapping propulsion. In many cases, the role of
flexibility in propulsion is not considered fully and the kinematics of the swimmer is
prescribed (Dong, Mittal & Najjar 2006; Borazjani & Sotiropoulos 2008, 2009). Other
studies account for the flexibility of the panels in the motion of the leading edge,
but not the body itself (Eldredge, Toomey & Medina 2010; Spagnolie et al. 2010;
Moore 2014, 2015). Models that employ inviscid fluid assumptions must take steps
to account for vorticity generated by the fluid–structure interface (Liu & Bose 1997;
Alben 2008; Michelin & Llewellyn Smith 2009; Alben et al. 2012; Moore 2017). A
model of lamprey locomotion that does capture the full elastohydrodynamic coupling
in a Navier–Stokes fluid (Tytell et al. 2010) actuated by detailed muscle mechanics
(Hamlet et al. 2015) has been used to explore the role of flexibility in swimming
performance, but only in a two-dimensional domain. While two-dimensional models
do capture many features of the three-dimensional system (de Sousa & Allen 2011;
Shoele & Zhu 2012; Zhu, He & Zhang 2014; Tytell et al. 2016; Andersen et al.
2017), the spatio-temporal evolution of the vortex structures in the wake of a
swimmer or a flapping panel are affected by the spanwise geometry of the panel
(Buchholz & Smits 2006, 2008; Green & Smits 2008; Green et al. 2011; Van Buren
et al. 2017).
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Several of these recent studies have focused on the role of the effective flexibility,
a quantity that describes the ratio of inertial added mass forces from the fluid to the
internal bending forces of the panel, derived from the Euler–Bernoulli beam equation.
The experiments of Quinn et al. (2014b) demonstrated that resonant peaks in thrust
production and trailing edge amplitude were realized at certain effective flexibilities.
It was also suggested that these correspond to peaks in the modal contributions
of different beam modes. Additionally Lucas et al. (2014) observed that flexible
appendages of different animals deform in a similar manner during swimming and
flying strokes, suggesting the presence of bending laws for enhanced thrust production
that transcend the fluid medium, animal size and phylogenetic background.

With these unifying principles in mind, we present a three-dimensional
computational elastohydrodynamic model of a flexible panel in a fluid described by
the Navier–Stokes equations. We investigate the connection between Euler–Bernoulli
beam modes, the evolving kinematics of the panel over the heaving cycle and the
vortex structures generated in the fluid. In our immersed boundary framework, the
leading edge of the panel is heaved in a sinusoidal manner and the resulting panel
deformation is a result of the interplay between the panel’s internal bending forces and
the inertial forces from the fluid. We compute the resulting thrust of tethered panels
due to a heaving actuation as well as the swimming speeds of untethered panels that
are free to move forward. For panels with different heaving frequencies and bending
moduli, we measure propulsive performance as a function of the non-dimensional
effective flexibility of the system. To understand the evolution of panel deformation,
beam mode analysis is performed. We find that panels of different material properties
that are actuated so that their effective flexibilities are closely matched have modal
contributions that evolve similarly over the phase of the heaving cycle, resulting in
similar thrust forces, amplitudes and swimming speeds. We also find that the wakes
behind panels in simulations where effective flexibilities are matched exhibit strong
agreement in dominant vortex structures generated by the panel deflections over the
heaving cycle.

While quantifying the role of resonance in the swimming performance of flapping,
flexible panels is of intrinsic value, we also view the computational study presented
here and its comparison to previous laboratory experiments as a major step towards
a more comprehensive three-dimensional computational model of an undulatory
swimmer that will couple neural activation, muscle mechanics and body elasticity in
a Navier–Stokes fluid.

2. Materials and methods
2.1. Fluid–structure interaction

Fluid–structure interaction problems are common to biological systems and have been
examined with a variety of computational frameworks. The immersed boundary (IB)
method (Peskin 2002; Mittal & Iaccarino 2005) is an approach to fluid–structure
interaction introduced by Peskin to study blood flow in the heart (Peskin 1977).
The IB method has been used to model the fluid dynamics of animal locomotion
in the low to intermediate Reynolds number regime, including undulatory swimming
(Fauci & Peskin 1988; Bhalla et al. 2013), insect flight (Miller & Peskin 2004, 2005,
2009; Jones et al. 2015), lamprey swimming (Tytell et al. 2010; Hamlet et al. 2015;
Tytell et al. 2016), crustacean swimming (Zhang et al. 2014) and jellyfish swimming
(Hamlet, Santhanakrishnan & Miller 2011; Herschlag & Miller 2011; Hoover &
Miller 2015; Hoover et al. 2017).
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The IB formulation of fluid–structure interaction uses an Eulerian description of
the momentum and incompressibility equations of the coupled fluid–structure system,
and it uses a Lagrangian description of the structural deformations and stresses. Here
x = (x, y, z) ∈ Ω denotes physical Cartesian coordinates, where Ω is the physical
region occupied by the fluid–structure system. Let X= (X,Y,Z)∈U denote Lagrangian
material coordinates that are attached to the structure, with U denoting the Lagrangian
coordinate domain. The Lagrangian material coordinates are mapped to the physical
position of material point X at time t by χ(X, t)= (χx(X, t), χy(X, t), χz(X, t)) ∈Ω ,
so that the physical region occupied by the structure at time t is χ(U, t)⊂Ω .

The immersed boundary formulation of the coupled system is

ρ

(
∂u(x, t)
∂t

+ u(x, t) · ∇u(x, t)
)
=−∇p(x, t)+µ∇2u(x, t)+ f (x, t), (2.1)

∇ · u(x, t)= 0, (2.2)

f (x, t)=
∫

U
F(X, t) δ(x− χ(X, t)) dX, (2.3)∫

U
F(X, t) ·V(X) dX=−

∫
U

P(X, t) :∇XV(X) dX+
∫

U
G(X, t) ·V dX, (2.4)

∂χ(X, t)
∂t

=

∫
Ω

u(x, t) δ(x− χ(X, t)) dx. (2.5)

Here ρ is the fluid density of water (1000 kg m−3), µ is the dynamic viscosity of
water (0.001 N s m−2), u(x, t)= (ux, uy, uz) is the Eulerian material velocity field and
p(x, t) is the Eulerian pressure. Another quantity of interest is vorticity, ∇× u=ω=
(ωx, ωy, ωz). Here, f (x, t) and F(X, t) are Eulerian and Lagrangian force densities. F
is defined in terms of the first Piola–Kirchhoff solid stress tensor, P, in (2.4) and an
external force acting on the body, G(X, t), using a weak formulation, in which V(X)
is an arbitrary Lagrangian test function. In this study, the panel is neutrally buoyant.
The Eulerian and Lagrangian frames are connected using the Dirac delta function δ(x)
as the kernel of the integral transforms of (2.3) and (2.5).

A hybrid finite difference/finite element version of the immersed boundary method
is used to approximate equations (2.1)–(2.5). This IB/FE method uses a finite
difference formulation for the Eulerian equations and a finite element formulation to
describe the flexible panel body. More details on the IB/FE method can be found in
Griffith & Luo (2016).

2.2. Material model
The structural model of the panel accounts for its passive elastic properties as well
as a body force that heaves the panel at its leading edge. Throughout this study, the
panel geometry will maintain a fixed span (s), chord length (c) and thickness (w). The
structural stresses due to the passive elastic properties of the panel are calculated using
the first Piola–Kirchhoff stress tensor of a neo-Hookean material model

P = ηF+ (λ log(J)− η)F−T, (2.6)

where F = ∂χ/∂X is the deformation gradient of the mesh, J is the Jacobian of F,
η is the shear modulus and λ is the bulk modulus. The shear and bulk moduli are
defined respectively as

η=
E

2(1+ ν)
(2.7)
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Chord length c 0.05 m
Span length s 0.03 m
Panel thickness w 0.001 m
Heaving amplitude a 0.005 m
Poisson ratio ν 0.3
Bending modulus EI 1× 10−6, 5× 10−7, 1× 10−7, 5× 10−8 and 1× 10−8 N m2

Target point strength κ 1× 1010 N m−1

TABLE 1. Table of model parameters.

and

λ=
Eν

(1+ ν)(1− 2ν)
, (2.8)

where E is Young’s modulus (N m−2) and ν is the Poisson ratio. The bending modulus
of a rectangular panel is defined as

EI =
Esw3

12(1− ν2)
, (2.9)

where I is the second moment of area of the panel. Note that the neo-Hookean
material model of (2.6) has a nonlinear stress–strain relationship, although it is
approximately linear for small deformations (Bonet & Wood 1997). Here EI is set
as an input for our material model. Over the following set of simulations, five panel
rigidities (see table 1) are selected.

The heaving motion of the panel is actuated with an external force G(X, t) on the
leading edge of the panel. This time-dependent external force may be thought of as
arising from stiff tether springs between material points on the panel’s leading edge
and virtual points that follow a prescribed motion:

G(X, t)=

{
κ(χT(X, t)− χ(X, t)) if X ∈ULE,

0 if X /∈ULE,
(2.10)

where κ is a spring constant and χT(X, t) is the desired position of X at time t. Here
ULE⊂U represents the portion of the panel where the external force is applied, which
is the leading edge of the panel and is 2 % of the panel length. The desired position
of the leading edge of tethered panels is

χT(X, t)=
(
χx(X, 0), χy(X, 0), χz(X, 0)+

a
2

sin(2πφt)
)
, (2.11)

so that the leading edge is constrained in all three dimensions to move only along
the z-direction. The untethered panels are unconstrained in the swimming direction,
so for this case we modify the first component of χT to be χx(X, t), which effectively
eliminates any external force in the x-direction. We point out that the elastic
forces from the material model are fully three-dimensional. In both the tethered
and untethered cases, no background flow is imposed.
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2.3. Beam mode analysis
The one-dimensional Euler–Bernoulli beam equation that approximates the deflections
H of a flexible panel due to an external force is

ρpsw
∂2H
∂T2
+ EI

∂4H
∂X4
= Fext, (2.12)

where ρp is the density of the panel and Fext is the external force per unit length.
While the elastohydrodynamic system of the flapping flexible panel in a viscous,
incompressible fluid is not fully captured by this equation, its analysis does allow
one to identify an important non-dimensional parameter that governs the dynamics
and gives insight into the evolving panel kinematics (Paraz et al. 2014; Quinn et al.
2014b, 2015).

Assuming ρp/ρ=O(1) and w/s� 1, the inertia from the panel is dominated by the
added mass forces from the fluid, and ρpws is replaced by an effective mass per unit
length, ρsc. Defining the dimensionless small parameter ε2

= ρpw/ρc and using the
scalings X∗ = X/c, H∗ = H/a, T∗ = Tφ/ε and F∗ext = (c

4/aEI)Fext, the beam equation
becomes

Π 2 ∂
2H∗

∂T∗2
+
∂4H∗

∂X∗4
= F∗ext, (2.13)

where

Π =

√
ρsc5φ2

EI
. (2.14)

Here Π is a non-dimensional parameter known as the effective flexibility, and F∗ext ≡

Fextc4/(EIa). The effective flexibility is the ratio of added mass forces from the fluid
to the internal bending forces of the elastic panel.

For the boundary conditions H∗(0,T∗)=0 and H∗
′

(0,T∗)=0 and H∗
′′

(1,T∗)=0 and
H∗

′′′

(1, T∗)= 0 one can compute the orthonormal eigenfunctions Ψi of (2.13) (Weaver,
Timoshenko & Young 1990). This is a natural basis to expand the evolving panel
shapes from the computational model. By choosing a cross-section down the middle
of the panel and averaging over its thickness, we can describe the panel deflections by
H∗sim(X

∗,T∗). For each time T∗, we can write H∗sim(X
∗,T∗)=

∑
∞

i=1Ψi(X∗)Θi(T∗), where
Ψi are orthonormal eigenfunctions and the Θi are their modal contributions. The modal
contributions of each eigenfunction are found by taking the inner product of H∗sim with
each eigenfunction,

Θi(T∗)=
∫ 1

0
H∗sim(X

∗, T∗)Ψi(X∗) dX∗ (2.15)

over the length of the panel. Again, H∗sim represents the vertical deflection of the
panel resulting from the fluid–structure system. This modal decomposition allows
us to separate the deflections of our panel into the sum of the modal contributions
of each eigenfunction. At every time step, the panel’s first five modal contributions
(Θi, i= 1, 2, 3, 4, 5) are recorded.

To understand whether two panels had a similar evolution over the phase of
the heaving cycle, we treated the modal contributions of each panel as signals for
which we could measure the correlation between pairs. Here the modal contribution
correlation of two panels of differing effective flexibilities, panel p and panel q, is
defined as

Cpq
i =

1
N − 1

N∑
n=1

Θ
p
i (ξn)−µ

p
i

σ
p
i

Θ
q
i (ξn)−µ

q
i

σ
q
i

, (2.16)
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where Θ
p
i and Θ

q
i are the ith modal contributions of panel p and panel q, µp

i
and σ

p
i are the mean and standard deviation of Θp

i , µq
i and σ

q
i are the mean and

standard deviation of Θq
i , ξn represents the time points of the phase collected over N

observations. Here Cpq
i represents the pq entry of the correlation matrix, C i ∈R120×120.

Due to differences in the length of the heaving cycle, the modal contributions are
interpolated so as to be compared at the same time points of the phase.

Modal contributions do not significantly contribute to the deflection of the panel
if their amplitudes are small. Therefore, we weighted the correlations by the mode
amplitudes and normalized by the maximum modal contribution of all panels, as
follows:

Qpq
=

5∑
n=1

β
p
i β

q
i

(maxp β
p
i )

2
|Cpq

i |, (2.17)

where
β

p
i =max

n
(Θ

p
i (ξn)), β

q
i =max

n
(Θ

q
i (ξn)). (2.18a,b)

2.4. Circulation analysis
To quantify how the fluid is affected by variations in the effective flexibility, an
analysis of the circulation around specific contours was performed. Following the
methods of Colin et al. (2012) and Hoover et al. (2017), we computed the circulation,
Γ , as the integral of the vorticity component normal to a planar region R bounded
by a rectangular contour as

Γ =

∫
R
ωy dx dz, (2.19)

or
Γ =

∫
R
ωz dx dy, (2.20)

depending on the orientation of interest.

2.5. Non-dimensional parameters
In this study, the panels’ swimming performance is examined using a number of
non-dimensional metrics (table 2). Throughout a simulation, the average forward
swimming speed V of material points of the panel is recorded. This is
non-dimensionalized as

V̄(t)= V(t)/cφ, (2.21)

which corresponds to body lengths per heaving cycle. The total force integrated over
the panel, F = (Fx,Fy,Fz), is also recorded and we define the non-dimensional thrust
as

T̄(t)=Fx(t)/(ρφ2c4). (2.22)

Here we choose φc as a characteristic velocity, due to the absence of a background
flow. Non-dimensional input power is also calculated,

P̄=FzVLE/ρa4φ, (2.23)

using the heaving amplitude as the characteristic length and VLE as the leading
edge velocity. The Eulerian variables have non-dimensional analogues for flow
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Effective flexibility Π
√
ρsc5φ2/EI

Panel velocity V̄ V/cφ
Input power P̄ P/ρa4φ

Thrust T̄ Fx/ρφ
2c4

Vorticity ω̄ ω/φ
Flow velocity ū u/cφ
Pressure p̄ p/ρc2φ2

Time t̄ tφ
Swimming economy ε V̄avg/P̄avg

Inverse Strouhal number St−1 Vavg/aφ
Input Reynolds number Rein ρφac/µ
Circulation Γ̄ Γ /c2φ

TABLE 2. Table of non-dimensional parameters.

velocity (ū = u/cφ), vorticity (ω̄ = ω/φ) and pressure (p̄ = p/ρc2φ2). Time is
non-dimensionalized with respect to the heaving frequency (t̄ = tφ). The circulation,
Γ , is non-dimensionalized with respect to the chord length, c, and heaving frequency,
φ,

Γ̄ =
Γ

c2φ
. (2.24)

See table 2.
Other metrics are used to quantify a panel’s performance. The swimming economy,

which is the energy cost per unit of distance travelled, is defined here as

ε= V̄avg/P̄avg, (2.25)

where V̄avg and P̄avg are, respectively, the non-dimensional speed and input power
averaged over the duration of a panel’s heaving cycle. We also consider the Strouhal
number,

St=
aφ

Vavg
(2.26)

as another performance metric. Swimming and flying animals have been characterized
as achieving peak propulsive efficiencies for 0.2< St< 0.4 (Taylor, Nudds & Thomas
2003).

The Reynolds number is a non-dimensional parameter that characterizes the ratio of
inertial force to viscous forces. In this study, we report the Reynolds number using a
frequency-based definition,

Rein =
ρaφc
µ

, (2.27)

where aφ is the characteristic velocity. Note that we use a frequency-based
characteristic velocity rather than the resulting swimming speed so that Rein is
an input value known at the start of a simulation. In this simulations presented
in this study, the maximum value of Rein is 750. Alternatively, using the resulting
average swimming speed of an untethered panel as a characteristic velocity would
yield Reynolds numbers that are at most 1500.
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FIGURE 1. (Colour online) Plot displaying the domain discretization using adaptive mesh
refinement from IBAMR, where the most refined discretization is reserved for portions of
the domain where the structure is present and the vorticity magnitude is above a certain
threshold, here plotted for |ω̄|> 4.

2.6. Computational implementation

The numerical model was implemented using IBAMR, which is a distributed-memory
parallel implementation of the IB method that includes Cartesian grid adaptive mesh
refinement (AMR) (IBAMR 2014). IBAMR relies on several open-source libraries,
including SAMRAI (Hornung, Wissink & Kohn 2006; SAMRAI 2007), PETSc (Balay
et al. 1997, 2009), hypre (Falgout & Yang 2002; HYPRE 2011) and libMesh (Kirk
et al. 2006).

The computational domain was taken to be a rectangular box of length 8c× 4c× 4c
with periodic boundary conditions in the axial direction and no-slip boundary
conditions otherwise. The domain was discretized using an adaptively refined
grid for which the finest Cartesian grid domain discretization would result in a
1024 × 512 × 512 patch (figure 1), where the finest spatial grid size is h = 4c/512.
The time step was taken to be 1t = 1 × 10−4 s and 5 × 10−5 s, where the latter,
more refined step size was used for panels with bending moduli of 1 × 10−6

and 5 × 10−7 N m2. Comparing the simulations with domain discretizations of
512 × 256 × 256, 2048 × 1024 × 1024 and 4096 × 2048 × 2048 patches, we found
better than linear convergence of the resulting panel swimming speed (O(h1.3)).
Further convergence studies of the IBAMR method and framework can be found in
Griffith & Luo (2016) and Tytell et al. (2016). We note that for all simulations the
computational domain has been chosen large enough so that there is no discernible
interaction between the panel and the boundaries of the computational domain.

3. Results

In this study, model panels with varying rigidity (see table 1) were heaved
sinusoidally at an amplitude of a = 0.1c, with heaving frequencies that ranged from
0.125 to 3.0 s−1 in 0.125 s−1 increments. The panel begins at rest in a domain of
quiescent flow and is then heaved with the body force described in (2.10) and (2.11).
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FIGURE 2. (Colour online) Plots of (a) dimensionless swimming speed (V̄) and (b) input
power (P̄) for an untethered panel with a bending modulus of EI = 1× 10−7 N m2 being
heaved sinusoidally with a frequency of φ= 0.5 s−1. Here Rein= 125. Note that the panel
stabilizes after the third cycle.

Figure 2 shows the time evolution of non-dimensional panel speed (V̄) and
input power (P̄) as a function of heaving cycles for a representative panel (EI =
1 × 10−7 N m2, φ = 0.5 s−1). After approximately two heaving cycles the velocity
of the panel reaches a steady periodic state. Input power also reaches a steady-state
cycle (figure 2b).

We also compared the cycle-to-cycle swimming performance of panels with
different bending moduli or actuated at different frequencies (figure 3). In all of
the simulations, the panel quickly reaches a steady-state behaviour following the
initial heaving cycles, where cycle-to-cycle variations of the swimming speed are
minimal. In figure 3(a) the swimming speed is plotted as a function of cycle number
for the same panel actuated at different frequencies. Note that the swimming speed
of this panel does not increase monotonically as frequency increases. This is because
the resulting waveform of the panel is different for different heaving frequencies.
This will be more closely examined below. In figure 3(b), swimming speed is plotted
for three different panels of varying bending moduli that were actuated at the same
frequency. There is not a monotonic change in swimming speed with respect to
bending modulus. Clearly there is an interplay between the elastic properties of
the panel and the fluid forces that it experiences at different frequencies. In the
following sections, we analyse the swimming performance as a function of the
effective flexibility Π of the heaving panel, which is the non-dimensional parameter
that characterizes this interplay.

3.1. Propulsive performance
We performed computational experiments on five panels that differed in bending
moduli and were actuated at a range of frequencies. In each of these simulations, the
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FIGURE 3. (Colour online) Comparison plots of the dimensionless swimming speed (V̄)
as a function of the cycle for three panels where (a) the bending modulus (EI) is fixed
and the heaving frequency (φ) is varied, and (b) the heaving frequency is fixed and the
bending modulus is varied.

shape of the untethered panel and its swimming progression emerge from the full
coupled system. For each of the five panels, figure 4(a) shows the normalized trailing
edge amplitude achieved by the panel as a function of the effective flexibility as it is
actuated at different frequencies. We see that peaks in trailing edge amplitude occur
near certain effective flexibilities, and these basically coincide for each of the panels.
Moreover, the trailing edge amplitude varied little for panels actuated with similar
effective flexibilities even when their bending moduli differed. Following the classic
definition (Den Hartog 1985) and more recently that by Quinn et al. (2014b), we
refer to the system as operating in resonance when the trailing edge amplitude reaches
a local maximum at certain values of the effective flexibility Π (or, equivalently, the
oscillation frequency φ). Figure 4(a) shows that there are at least four such resonant
peaks in the range of effective flexibilities that we studied.

The peaks in trailing edge amplitude correspond to peaks in average swimming
speed. Figure 4(b) shows the average (dimensional) swimming speed Vavg as a
function of effective flexibility. Although the peaks in Vavg and trailing edge amplitude
occur at similar effective flexibilities, the resulting swimming speeds depend on the
bending moduli of the panel. Stiffer panels had higher Vavg compared to the more
flexible panels heaved at similar effective flexibilities. Of course, different material
panels must be actuated at different frequencies in order to achieve the same effective
flexibility. Figure 4(c) shows the swimming speed divided by cφ, which corresponds
to body lengths per heaving cycle (V̄avg). We see that this non-dimensional velocity
is better matched for panels actuated at similar effective flexibilities, but the most
flexible panels still move more slowly.

In figure 5(a), we plot the average input power P̄avg, and we note that local peaks of
input power coincide with local peaks in velocity (figure 4b) – the highest swimming
speeds require the most power input. Figure 5(b) plots the swimming economy as a
function of effective flexibility. While the peaks of average velocity and power occur
at the same value of effective flexibility, the swimming economy, which is the ratio of
these values, need not achieve a local maximum there. In fact, we find that the peak

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

30
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.305


Performance, resonance and shape evolution of flexible panels 397

1

2

3

4

5

0.02

0.01

0

0.03

 –0.01
10010–1 102101

10010–1 102101

10010–1 102101

0

0.2

0.4

(a)

(b)

(c)

FIGURE 4. (Colour online) Plots of (a) trailing edge amplitude, (b) forward swimming
speed (Vavg) and (c) dimensionless forward swimming speed (V̄avg) as a function of the
effective flexibility (Π ) of a panel. Here the different coloured lines represent the differing
bending moduli (EI) of the panels. The range of effective flexibility values were spanned
by varying the heaving frequency (φ) of a panel from 0.125 s−1 to 3.0 s−1.

in economy occurs at slightly higher values of Π because the amplitude tapers off
more slowly than power as Π increases. Similar shifts in efficiency peaks were noted
in the model of Michelin & Llewellyn Smith (2009). We also see that input power is
higher for stiffer panels than more flexible panels near the same effective flexibility.
This in turn leads stiffer panels to have peaks in swimming economy at lower effective
flexibilities than more flexible panels and to have a lower swimming economy overall
compared to more flexible panels, even at the same effective flexibility. Note that to
achieve a fixed effective flexibility, a stiff panel must be heaved at a higher frequency
than a more flexible panel. This would increase the power required to complete the
heaving motion. However, stiffer panels have a higher inverse Strouhal number than
more flexible ones figure 5(c). While each tailbeat results in greater forward motion
when compared to the tailbeat of a more flexible panel, more energy is expended for
the motion. We plot inverse Strouhal numbers rather than Strouhal numbers, because
at very low swimming speeds, the Strouhal number approaches infinity. The stiffest
panels actuated so that their effective flexibilities are near the first two resonant peaks
reach Strouhal numbers in the range associated with peak propulsive efficiency, 0.2<
St< 0.4 (Taylor et al. 2003).
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FIGURE 5. (Colour online) Plots of the panels’ (a) average power consumption (P̄avg),
(b) swimming economy (ε), and (c) inverse Strouhal number (St−1) as a function of the
effective flexibility (Π ) of the panels. We find that for fixed Π value, the more flexible
panel has a higher swimming economy. The inverse Strouhal number reveals that the two
stiffest panels actuated at effective flexibilities near the first two resonant peaks correspond
to the range of Strouhal numbers (in grey) associated with high efficiency swimming and
flying (Taylor et al. 2003).

3.2. Modal contributions
By choosing a cross-section down the middle of the panel and averaging over
its thickness, we can represent its emergent, time-periodic oscillations by a one-
dimensional curve. This curve can be decomposed into the eigenfunctions of the beam
equation as discussed in § 2.3. For each simulation, the first five modal contributions
of the heaving panel (Θi(t), i = 1, 2, 3, 4, 5) were calculated at every time step.
Figure 6(a) shows the time-dependent modal contributions of a representative panel
simulation (EI = 1 × 10−7 N m2, φ = 0.5 s−1) as it moves through eight heaving
cycles. Each Θi represents the weight of the eigenfunction, Ψi, with respect to the
deflection of the panel. Following the initial heaving cycles, all of the panel’s modal
contributions tend toward steady cycles. Although each of the modal contributions
have the same frequency as the heaving frequency, they differ in both amplitude and
phase.

The amplitude and phase of each mode depends on the effective flexibility.
Figure 6(b) shows the shape of the panel when approximated only by the contribution
of the first mode, Θ1 (in red), over the phase ξ ∈ [0, 1), for three panels of
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FIGURE 6. (Colour online) (a) Plot of the modal contribution of the first five modes with
respect to the heaving cycles of a panel (EI= 1× 10−7 N m2, φ= 0.5 s−1). Starting from
rest initially, the modal contributions of the panel deflection quickly follow a sinusoidal
pattern, with each modal contribution varying in amplitude and peak point in the phase.
(b) Plots of the modal contributions of the first (red) and second (magenta) mode for three
different panels. (c) Plot of the maximum modal contribution of each mode with respect
to the heaving panels’ effective flexibility. Higher mode contributions increase as effective
flexibility increases.

differing effective flexibilities (EI = 1 × 10−6 N m2, φ = 0.125 s−1; Π = 0.3827,
EI = 1× 10−7 N m2, φ = 0.5 s−1; Π = 4.8412 and EI = 1× 10−8 N m2, φ = 1.5 s−1;
Π = 45.9279). For the two most flexible panels, Θ1 has a similar amplitude and
phase, while that for the third one is shifted and has a larger amplitude. Figure 6(b)
also shows the contribution of the second mode to the panel’s shape, Θ2 (in magenta).
We see that the similarities between the more flexible panels are absent in the second
mode, with significant differences in amplitude and phase in Θ2 for all three panels.

As the effective flexibility increases, each of the higher-order modes emerge
sequentially, and each new mode contributes to a resonant peak in amplitude
and performance. Figure 6(c) shows the maximum contribution of each mode,
maxξ (Θi(ξ)), for all panels. At lower effective flexibilities, the modal contribution
from the first mode dominates, indicating that the higher modes contribute little to
the shape of the panel. As effective flexibility increases, the modal contributions of
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FIGURE 7. (Colour online) Q value from (2.17) associated with two panels, ordered by
the two panels’ effective flexibility. Note that higher Q values indicated that the modes of
two panels are correlated and that the amplitude of modal contributions associated with
both panels are substantial.

higher modes emerge sequentially. Their emergence is followed by a peak in the
maximum modal contribution of that mode. The effective flexibilities at which a peak
modal contribution occurs coincide with the effective flexibilities where peak trailing
edge amplitudes and velocities occur (compare to figure 4).

3.3. Phase evolution
Not only are the amplitudes of the modal contributions similar when the effective
flexibility is the same, but the evolution of the mode over the cycle is also similar.
In figure 6(b), the maximum modal contributions of the first mode of two panels
(EI = 1 × 10−7 N m2, φ = 0.5 s−1 and EI = 1 × 10−8 N m2, φ = 1.5 s−1) occurred
at similar phase, while the maximum modal contributions for the third panel (EI =
1× 10−6 N m2, φ = 0.125 s−1) occurs at a different phase. To quantify the similarity
or difference in the evolution of the mode shapes for different panels, we used (2.17)
to compute a normalized correlation Qpq between panels p and q. This value is high
when the phase evolution of the ith mode is correlated in the phase between the two
panels and has a large amplitude.

Figure 7 shows the value of Q for all pairs of heaving panels arranged by
effective flexibility. The high Q values along the diagonal show that panels with
good swimming performance and high amplitude modal contributions have a similar
shape evolution over the phase as panels with similar effective flexibilities. These
correspond to the peaks in trailing edge amplitude (figure 4a) and swimming speed
(figure 4c). This suggests that panels with high V̄avg and similar Π also have similar
shape evolutions over the phase of the heaving cycle. The exact locations of the
resonant peaks vary slightly as a function of the panel’s bending rigidity, accounting
for relatively high Q values off the diagonal at Π ≈ 8.

3.4. Flow patterns
The fluid flow resulting from the panels’ heaving motion is examined via dimensionless
vorticity, ω̄. Figure 8 shows an example of the development of the flow in the first
four heaving cycles. Although the vortex structures present in the wake grow after
each heaving cycle, the shape of the panel at the start of the cycle and the vortex
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FIGURE 8. (Colour online) Isocontour plots of the dimensionless y-component of vorticity,
ω̄y, at the start of the first through fourth heaving cycles (from left to right). The panel
is of Π = 19.3649 (EI = 1 × 10−7 N m2, φ = 2.0 s−1) and Rein = 500. Note that after
the first heaving cycle, the deflection of the panel is nearly identical at the start of each
heaving cycle, although the resulting vorticity field varies in time.
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FIGURE 9. (Colour online) Isocontour plots, cut out along the centre plane, of the
(a) dimensionless y-component of vorticity (ω̄y), (b) dimensionless x-component of flow
velocity (ūx) and (c) dimensionless pressure (p̄) during the start of the third heaving cycle
of a panel with Π = 6.0515 (EI = 1× 10−7 N m2, φ = 0.625 s−1).

structures in the immediate wake remain fairly constant following the initial heaving
cycle.

In figure 9, we compare the isocontours along the centre plane for the spanwise
(y) vorticity (ω̄y), axial (x) velocity (ūx) and pressure (p̄) at the start of the third
heaving cycle for a panel with a substantial swimming speed (EI = 1 × 10−7 N m2,
φ = 0.625 s−1). The trailing edge generates alternating vortex structures (figure 9a).
These vortices then generate a region of positive axial flow (ūx) near the trailing edge
of the panel (grey region in figure 9b). This zone of positive axial velocity corresponds
to the presence of positive pressure near the trailing edge of the panel and negative
pressure on the opposite side (figure 9c), which combine to give the thrust force. We
also find zones of positive and negative pressure on opposite sides of the panel due
to the deflections of the panel.

Differences in the panel shape evolution yield differences in the resulting flow
structures. Figure 10 compares the ω̄y isocontours at the start of the third heaving
cycle for three panels, with differing passive material properties and identical heaving
frequencies. The differences in the observed flow structures in turn account for
differences in panel performance. Similar observations can be made when examining
ω̄y isocontours of three panels with identical passive material properties but differing
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FIGURE 10. (Colour online) Isocontour plots of the dimensionless y-component of
vorticity, ω̄y, at the start of the third heaving cycle for three panels heaved at the same
frequency, φ = 1.5 s−1, but with EI equal to (a) 1× 10−6 N m2 (Π = 4.5928), (b) 1×
10−7 N m2 (Π = 14.5237), (c) 1× 10−8 N m2 (Π = 45.9279).

heaving frequencies. Movies of both comparisons can be found in the supplementary
material available at https://doi.org/10.1017/jfm.2018.305.

Above we have shown that panels with similar effective flexibility Π have similar
performance. This is because they produce similar flow patterns. Figure 11 shows
phase-matched snapshots of the isocontours of ω̄y for three panels with similar
effective flexibilities (Π ≈ 6). Although of similar effective flexibility, the three panels
all differ with respect to their heaving frequency and bending modulus. Because
the deflections of the panels are similar throughout the phase of the heaving cycle,
the dominant vortex structures found in the wake of each of the three panels are
also similar. Minor variations in vortex structures of the wakes of the three panels
correspond to differences in Rein, with the presence of more vortex structures in the
higher Rein case (figure 11a). Movies of these comparisons, as well as a comparison
of other panels of similar effective flexibilities and high dimensionless swimming
speeds, can be found in the supplementary material.

The structure of the wake changes for panels at values of Π that correspond to
peaks in swimming speed. Figure 12 plots the ω̄y isocontours and figure 13 shows
slices through the central plane, each for three swimmers with Π values associated
with three different peaks in V̄avg. The three panels each have high dimensionless
forward swimming speeds but substantially differing deflections. The more flexible
panels (figure 13b,c) shed two pairs of vortices per cycle (a 2P wake structure;
Williamson & Roshko 1988), while the stiffer panel (figure 13a) sheds two single
vortices per cycle (a 2S wake).

To further explore how fluid effects allow for differences in swimming performance
even when panels are of a similar Π value, we examined the differences in circulation
for the panels of figure 11 (Π ≈ 6). We found that the panels reached peak swimming
speeds near phase ξ =0.25 during the heaving cycle. We also examined |ω̄| (figure 14)
and found the presence of a vortex column at the trailing edge of the panel as well
as tip vortices near the halfway point of the panels’ chordwise dimension.

The presence and sign of ω̄z in the tip vortices (figure 15) indicate a source of
additional drag on the panel as the flow generated by ω̄z is against the swimming
direction of the panel. We computed the circulation (figure 16a) around a contour
enclosing the trailing edge vortex and lying on the centre plane y= 0 as well as the
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FIGURE 11. (Colour online) Isocontour plots of the dimensionless y-component of
vorticity, ω̄y, during the heaving cycle for three panels of similar effective flexibility, with
Π equal to (a) 5.7410 (EI = 1 × 10−6 N m2, φ = 1.625 s−1, Rein = 406.25), (b) 5.4127
(EI = 5 × 10−7 N m2, φ = 1.250 s−1, Rein = 312.5), (c) 6.0515 (EI = 1 × 10−7 N m2,
φ= 0.625 s−1, Rein= 156.25). Snapshots are taken at t̄ (from top to down) 3.0, 3.25, 3.50
and 3.75.

circulation of the tip vortices around a contour lying on the xy-plane enclosing the
tip vortices. Plotting Γ̄ of the trailing edge vortex as a function of Re at ξ = 0.25
(figure 16b), we found that this circulation was approximately equal for the three
panels. However, the circulation of the tip vortices was larger for panels with larger Re
(figure 16b). This suggests that the tip vortices play a role in the observed differences
in the swimming economy, where stiffer panels that move faster (higher Re) are less
efficient than slower, more flexible panels of a similar Π .

3.5. Spanwise variation
In order to gain insight into the effects of tip vortices on swimming performance, we
chose a reference panel and varied its span length. From (2.9) and (2.14), we note
that Π is not dependent on the span of the panel,

Π =

√
12ρc4φ2(1− ν2)

Ew3
. (3.1)
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FIGURE 12. (Colour online) Isocontour plots of the dimensionless y-component of
vorticity, ω̄y, at the start of the third heaving cycle for three panels that swim rapidly
but have different effective flexibilities, Π equal to (a) 0.5413 (EI= 5× 10−7 N m2, φ=
0.125 s−1, Rein = 31.25), (b) 6.0515 (EI = 1× 10−7 N m2, φ = 0.625 s−1, Rein = 156.25),
(c) 17.116 (EI = 5× 10−8 N m2, φ = 1.250 s−1, Rein = 312.5).

A high performing panel with a Π value associated with the second mode resonance
was chosen as the reference case (EI = 1× 10−7 N m2, φ = 0.625 s−1). We compare
the performance of the reference panel with aspect ratio s/c = 0.6, and two others
of aspect ratios 0.2 and 1.0, each with the same effective flexibility. Additionally, a
simulation of a heaving filament in a two-dimensional fluid domain was performed,
corresponding to the case free of tip vortices and infinite aspect ratio.

As the span of the panel increases, the swimming performance increases. In
figure 17(a) the swimming speed was found be highest for the two-dimensional panel,
with swimming speed for the three-dimensional cases approaching this level as the
span length increased. Measuring the circulation of the tips for the three-dimensional
cases (figure 17b), we found the circulation measured increases slightly as the span
decreases, where the panel with an aspect ratio of 0.2 has an 8 % increase circulation
relative to the reference panel. This suggests that the additional drag generated from
the tip vortices plays a relatively larger role as the span decreases.

3.6. Comparison between tethered and free-swimming panels
Do the peaks in the swimming speeds of an actuated, untethered panel correspond to
the peaks in the thrust generated by the same actuated panel that is tethered and not
free to swim? To examine this, we performed a set of simulations of tethered panels
at the same heaving frequencies and five bending moduli as in untethered simulations.
In this set of simulations, a tethered body force was applied to the leading edge and
the panel was heaved until its motion reached a steady state. Figure 18(a) shows the
maximum modal contributions of the first five modes computed from the emergent
geometries of the tethered panels. We find that the peaks in these modal contributions
correspond to the peaks observed for the freely swimming panels shown in figure 6(c).
In addition, for these tethered panels the resulting forces F from the heaving motion
were recorded and used to compute the resulting non-dimensional forward thrust T̄ .
This thrust was then averaged over a heaving cycle (T̄avg). Figure 18(b) shows the
thrust developed by each of the five tethered panels as a function of the effective
flexibility. We find that peaks in T̄avg occur near the same values of effective flexibility
that displayed peaks in forward swimming speed for the corresponding untethered
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FIGURE 13. (Colour online) Plots of the dimensionless y-component of vorticity along the
central plane at the end of the fourth heaving cycle for panels with Π equal to (a) 0.5143
(EI= 5× 10−7 N m2, φ= 0.125 s−1), (b) 6.0515 (EI= 1× 10−7 N m2, φ= 0.625 s−1) and
(c) 17.116 (EI= 5× 10−8 N m2, φ= 1.25 s−1). The three panels are representative of the
panels with Π values associated with the first three resonant peaks. In (a) we note the
presence of a 2S vortex shedding pattern, while in (b,c) the 2P vortex shedding pattern
is present.

simulations (see figure 4c). These peaks in turn correspond to local peaks in the modal
contributions.

We also use the tethered panel framework to validate our simulation results by
comparing predictions of peaks in thrust with analytical approximations from a
linearized theory. Van Eysden & Sader (2006, 2007, 2009) developed a theory for
the frequency response of a cantilever beam with rectangular cross-section immersed
in a viscous fluid. In that study the fundamental frequencies are a function of panel
geometry, EI and Reynolds number, and are based on the exact solution of the
linearized Navier–Stokes equations produced by a zero-thickness, infinitely long
oscillating blade. It is noted in Van Eysden & Sader (2007) that these approximations
to harmonic response frequencies become less accurate as the mode increases due
to the heightened three-dimensional aspects of the cantilever–fluid system. As a way
of validating our method, we compare the frequencies at which the tethered panels
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FIGURE 14. (Colour online) Plot of the dimensionless vorticity magnitude, |ω̄|, near the
point of peak panel swimming speed for a panel with Π = 5.7410 (EI = 1× 10−6 N m2,
φ = 1.625 s−1, Rein = 312.5). The tip vortices and trailing edge vortex are highlighted.
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FIGURE 15. (Colour online) Isocontour plots of the dimensionless z-component of
vorticity, ω̄z, near the point of peak panel swimming speed during the heaving cycle for
three panels with similar effective flexibilities, Π equal to (a) 5.7410 (EI= 1× 10−6 N m2,
φ= 1.625 s−1, Rein= 406.25), (b) 5.4127 (EI= 5× 10−7 N m2, φ= 1.25 s−1, Rein= 312.5),
(c) 6.0515 (EI = 1× 10−7 N m2, φ = 0.625 s−1, Rein = 156.25).

of our simulations achieve local peaks in thrust to the values of harmonic response
frequencies corresponding to different modes predicted by Van Eysden & Sader
(2007). For each of our five panels with fixed geometry and different bending moduli
EI, we compute the harmonic response frequencies ωn associated with mode n using
the linear theory. For that ωn and EI, we associate an effective flexibility Π of that
panel waved at the harmonic response frequency. These effective flexibilities (for five
panels and the first five modes) are indicated on the horizontal axis of figure 18(b),
and vertical lines are drawn emanating from these values. For each mode n, the
theoretical values of effective flexibility are essentially equal for the different bending
moduli. For the smallest values of Π that correspond to stiff panels or panels heaved
at low frequencies, restrictive computational costs do not allow simulations that
resolve the first mode, so we focus on modes 2–5. However, the effective flexibility
corresponding to the theoretical harmonic response frequency of the second mode
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FIGURE 16. (Colour online) (a) Diagram of the planes from which the circulation of the
trailing vortex (blue) and the tip vortices (red) were calculated. (b) Plot of the circulation,
Γ̄ , of the trailing edge vortices (blue) and the tip vortices (red) for the panels of figures 11
and 15 as a function of Re.
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FIGURE 17. (Colour online) Plots of (a) the dimensionless swimming speed (V̄avg) and
(b) the dimensionless circulation of the tip vortices (Γ̄ ) for panels of differing aspect ratio.
Here an aspect ratio of ∞ represents a two-dimensional panel. As the panel aspect ratio
increases, the swimming speed increases although the strength of the tip vortices remains
relatively constant.

for EI = 1 × 10−7 and 5 × 10−8 N m2 differs from the simulation value of Π at
which peaks occur by less than 0.3 %, and for the third mode by less than 10 %.
Larger differences are associated with higher modes, as expected. For stiffer panels,
EI = 1× 10−6 and 5× 107 N m2, the computed effective flexibilities for mode 2 are
approximately 22 % lower than those predicted by the analytic model of Van Eysden
& Sader (2007). The least stiff panel, EI = 1× 10−8 N m2, corresponds to a relative
difference of 30 % in effective flexibilities for mode 2. The agreement between the
harmonic response frequencies for modes 2 and 3 estimated by two-dimensional linear
theory and those computed using the full three-dimensional Navier–Stokes system
serves as a validation of the simulations.

Figure 19 show scatter plots of the thrust of a tethered heaving panel and the speed
of its untethered counterpart (T̄avg, V̄avg), for the five panels. We find that for tethered
panels that produce positive thrust, T̄avg, increasing thrust generally corresponds to
increasing free-swimming speed V̄avg. To further examine the differences between
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FIGURE 18. (Colour online) (a) Plot of the maximum modal contribution of each mode as
a function of the tethered, heaving panels’ effective flexibility. Higher mode contributions
increase as effective flexibility increases. (b) Plot of the dimensionless thrust, T̄avg, as
a function of the effective flexibility, Π . The effective flexibilities corresponding to the
analytic prediction of the first five harmonic response frequencies (Van Eysden & Sader
2007) for the five panels are indicated by symbols on the horizontal axis, from which
emanate dashed vertical lines whose colour corresponds to the five modes in panel (a).

–0.1

0.1

0.2

0.3

0.4

0

0.5

0–0.005 0.005 0.010 0.015 0.020 0.025

FIGURE 19. (Colour online) Plot of the maximum modal contribution of each mode with
respect to the heaving panels’ effective flexibility. Higher mode contributions increase as
effective flexibility increases.

tethered and untethered panels, we examined the modal contributions of the tethered
panels (figure 18a). We find that the amplitude of modal contributions of the panels
have peaks at the same Π value, although the amplitude of the modal contribution
varies.
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4. Discussion

In this study, we developed a model of a three-dimensional, flexible panel that
is heaved sinusoidally at its leading edge in a viscous fluid and used numerical
simulations to study the role of resonance, fluid forces and shape evolution in the
propulsive performance of the panels. As in previous experimental work on tethered
panels (Quinn et al. 2014b), we found that the effective flexibility captures the main
features of the elastohydrodynamic system. Even when the material properties differ
substantially, panels flapping at different frequencies can have the same effective
flexibility. In this case, they exhibit similar deformation patterns, both in shape
and phase. This leads to similar flow patterns, which in turn result in similar
non-dimensional swimming speeds.

However, there are important differences that correspond to the material properties.
At the same effective flexibility, more flexible panels (lower EI) are more economical:
they require less input power to swim at about the same dimensionless speed, even
when the effective flexibility is approximately the same. Conversely, stiffer panels
(higher EI) swim at Strouhal numbers closer to the range associated with high
propulsive efficiency (Triantafyllou, Triantafyllou & Grosenbaugh 1993; Taylor et al.
2003). These differences may correspond to the Reynolds number Rein, which is
higher for stiffer panels at the same effective flexibility. This corresponds to a more
complex wake, with higher forces on the panel, which leads to a greater forward
speed for a given actuation, but also takes more input power and thus results in
a lower economy. Similarly, our observations on how flexibility can increase the
swimming economy of the panel (figure 5b) coincide with the observations by Dewey
et al. (2013) that found an increase in propulsive efficiency with the addition of
flexibility.

As effective flexibility Π increases, there are multiple resonant peaks in performance
parameters, including tailbeat amplitude (figure 4a), swimming speed (figure 4c),
thrust (figure 18b), along with measures of swimming energetics, including economy
(figure 5b) and inverse Strouhal number (figure 5c). By decomposing the deformation
into the fundamental beam bending modes, we found that each successive peak as
Π increases corresponds to a peak in amplitude of a higher-order bending mode
(figure 6c). This confirms the observations of de Sousa & Allen (2011), that higher
mode contributions have a larger amplitude as the bending rigidity of the panel
decreases and heaving frequency remains constant. For a fixed effective flexibility,
varying the heaving frequency requires that we proportionally adjust the bending
rigidity to the order 1/2. This aligns with the findings of Michelin & Llewellyn
Smith (2009), who detailed how the resonant frequency associated with each mode
evolves as a function of bending rigidity.

The effective flexibility captures the presence of these resonant interactions, but
the exact value differs for panels with different bending modulus. For instance, the
curves in figure 4(c) do not collapse exactly. It is important to point out that although
panels have similar effective flexibilities, the resulting dimensional swimming speed
varies and can in turn adjust the location of the observed resonant peak (Quinn et al.
2014b). Another possibility for this discrepancy is that the approximation does not
fully account for additional fluid drag terms when considering the solution to the
Euler–Bernoulli beam equation (2.14) (Paraz et al. 2014; Richards & Oshkai 2015).
We also note that the panels in this study are neutrally buoyant and that additional
inertial terms due to mass of the panel could lower the observed performance gain
due to resonance, as was observed in Yeh & Alexeev (2014).
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The locations of the resonant peaks match well with those in the experimental study
by Quinn et al. (2014b). Because their study and ours differ in substantial ways,
this correspondence in effective flexibility supports it as a good non-dimensional
parameter for the fluid–panel system. In their study, the panel was tethered and a
steady-state background flow was present, with Re ranging from 7800 to 46 800, with
the characteristic velocity chosen to be the steady-state background flow velocity. Our
study focused on the propulsive performance of an untethered panel in quiescent flow,
with the maximum Re of 1500, using the highest observed swimming speed as the
characteristic velocity. Although the range of Π values was similar to that of Quinn
et al. (2014b), the bending moduli of their panels were orders of magnitude higher
than in our study.

We also find that for tethered panels that produce positive thrust T̄avg, increasing
swimming speeds V̄avg in untethered panels corresponds to increasing thrusts in the
tethered panels. For the tethered panels in our study, there is no oncoming flow, while
in most experimental studies (e.g. Quinn et al. (2014b)) there usually is a flow. This
difference should not affect the overall pattern of thrust as a function of flexibility
(figure 18b). Quinn et al. (2014b) compared thrust for panels with the same effective
flexibility at different oncoming flow speeds. While the bending mode shapes changed,
the amplitude and thrust did not. Recently, Van Buren et al. (2018) studied this effect
specifically, and showed that the oncoming flow speed does not affect the way thrust
changes as a function of frequency. They measured thrust production for tethered
panels as they varied the oncoming flow speed over a wide range and found only
small differences at different speeds, differences that were much smaller than the
effect of changing foil stiffness or pitching frequency. In our simulations, we find
that the positive thrust of the tethered panels corresponds linearly with the swimming
speeds of the untethered panels. There were differences in the maximum modal
contributions between the tethered and untethered panels, but the point in the phase
where the peak modal contribution occurs is relatively unchanged. This is potentially
due to the vortex structures generated during the heaving cycle that, in the tethered
case, do not advect away from the panel, as would be the case with the presence of
background flow, or when the panel is free to swim. This effect can be seen for the
untethered panel depicted in figure 9, which shows the presence of pressure generated
by the shed vortex structures near the panel’s trailing edge. This pressure contributes
to positive axial flow near the panel, as was observed by Green & Smits (2008). In
the tethered case, the same vortex structures would have a stronger influence on the
panel’s deflection at the trailing edge.

We demonstrated that the effective flexibilities at which the tethered panels achieve
peaks in thrust compare very well with the analytical predictions of Van Eysden &
Sader (2009) for modes 2 and 3. It was noted that the harmonic response frequencies,
which are derived using a linear approximation of the Navier–Stokes equations, do not
necessarily correspond with the mechanical resonance exhibited by the trailing edge
when a force is acting on the panels. We also note a small shift in the Π values
where peak trailing edge amplitudes occur, but these values from our simulations
agree closely with those of the experimental study of Quinn et al. (2014b) could
affect the added mass associated with the heaving panel. The panels in our study
had bending moduli EI that were generally a few orders of magnitude less than
those used by Quinn et al. (2014b) and also differ in aspect ratio. A recent study by
Piñeirua, Thiria & Godoy-Diana (2017) found differences in aspect ratio also yield
shifts in the optimal frequencies for peak swimming speed and thrust.
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The study by Alben et al. (2012), where two-dimensional, rectangular panels were
heaved at their leading edge in an inviscid fluid, found panel swimming speed to
be proportional to panel length to −1/3 power and bending rigidity to the 2/15
power. Although Alben et al. did not directly examine the effective flexibility of
their panels, they indirectly do so by adjusting the added mass and internal bending
forces by varying the length and rigidity of the panel respectively. By increasing the
length of the panel they increase its effective flexibility, and their observed decline in
swimming speed corresponds to our observed decline in the peak swimming speeds
associated with the resonant peaks at higher effective flexibilities. Similarly, increasing
the bending rigidity of the panel corresponds to an decrease of the effective flexibility
of the panel. Alben et al. (2012) also found that increasing the length of the panel or
decreasing the rigidity also increased the wavenumber of the panel deflection, which
corresponds to the addition of higher modal contributions as effective flexibility
decreases.

Our results may help to explain some of the characteristics of biological propulsors.
Lucas et al. (2014) found that many flexible biological propulsors tend to have the
most bending approximately 0.6 of the way down their length and tended to bend at
an angle of 30◦. If we treat our panels as propulsors like those analysed by Lucas
et al. (2014), with a flexion ratio of 0.6, and compute the angle formed by the trailing
edge of the panel with respect to the point of inflection, ϑ = tan−1

[(0.5atrail)/(0.6c)],
we find that panels of high swimming speeds had ϑ between 26◦ and 40◦, which
are within the flexion angle ranges observed by Lucas et al. (2014). Qualitatively,
the panels that had the most similar kinematics to those observed by Lucas et al.
(2014) were panels near the second resonant peak (Π from 3 to 6) with substantial
contributions from the first two bending modes (see figure 20a,b). We found that
panels near this peak also had the highest dimensional speed (Vavg) compared to
panels of differing effective flexibilities (figure 20c). These results could also explain
the inverse relationship between the body size and tail beat frequency that was
observed in fish swimming by Bainbridge (1958). Our results also coincide with
Root & Courtland (1999), who found that pitching rubber fish models tended to
have more higher-order modes at high frequencies, where fish tend to damp out the
higher-order modes to improve their swimming economy.

5. Conclusion

In conclusion, the development of this three-dimensional elastohydrodynamic model
of a flexible panel allows for future investigations relating to flapping propulsion, such
as the propulsive benefits to non-uniform flexibility (Liu & Bose 1997; Lucas et al.
2014), non-sinusoidal heaving (Lehn et al. 2017) and variations in panel geometry
(Buchholz & Smits 2006; Van Buren et al. 2017). The numerical investigation
reaffirms the validity of tethered panel experimental studies in studying the propulsive
of performance of free-swimming bodies. This reduced model of a flexible flapping
panel serves as major step towards a more comprehensive computational model of
an undulatory swimmer that will couple neural activation, muscle mechanics and
body elasticity to fluid dynamics. Such a comprehensive model will be capable
of determining how the resulting kinematics measured from observational studies
of swimming and flying organisms are a consequence of the interplay of muscle
contractions and passive elastic properties of a body.
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FIGURE 20. (Colour online) (a) Plots of the flexible propulsors of free-swimming animals,
with red arrows pointing to the point of inflection, from Lucas et al. (2014). (b) The
profile of a panel, with ω̄y contours, whose effective flexibility is near the resonant peak
associated with first and second modal contributions, circled in (c).
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