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BOOLEAN ALGEBRAS AND RAISING MAPS TO 
ZERO-DIMENSIONAL SPACES 

BY 

J A N VAN M I L L 

ABSTRACT. Let X be a separable metric space and let f be a 
family of countably many self-maps of X. Then there is a countable 
subalgebra 2ft of the Boolean algebra of regular open subsets of X 
which is a base for X such that for each fe& the function <ï>f:£$ —» 
38 defined by <&f(B) = (f~x(B))~° is a homomorphism. 

0. Definitions. All spaces under discussion are separable metric. If X is a 
space and A c X, then A 0 (A~ or Â) denotes the interior (the closure) of A in 
X A subset A <=X is called regular open provided that A =A~°. The collec
tion of all regular open subsets of X is denoted by RO(X). If U, VeRO(X) 

p u t UAV=unv, 

uvv = (uuvy°, 
and 

U' = (X-U)°. 

It is well-known, and easy to prove, that (RO(X), A, V, 0 , 1 , ') with 0 = 0 and 
1 =X is a complete Boolean algebra, see e.g. [5, §2]. 

1. Introduction. Let X be a space and let / :X—»X be continuous. The 
function $ f : RO(X) -» RO(X) defined by 

is a very natural operator from RO(X) into RO(X). Unfortunately, simple 
examples show that <&f need not be a homomorphism. This suggests the 
question whether one can always find a subalgebra £fc <= RO(X) such that 
<ï>f | £$:£$—>RO(X) is a homomorphism. Of course, this question has a very 
simple answer. If <38 = { 0 , X}, then 38 is as required. Therefore one should ask 
the question whether one can always find a large subalgebra 38 c RO(X) such 
that Of |38:33-^RO(X) is a homomorphism. A large subalgebra of RO(X) 
should be dense in RO(X) (dense as a subset of RO(X)) and therefore we are 
interested in subalgebras ^ c R O ( X ) which are a 77-base, or even a base, for 
the topology of X 
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If 38cz RO(X) is a subalgebra such that Of | 33:08->RO(X) is a homomorph
ism, then <ï>f | <ï>f (SB) need not be a homomorphism. If a large subalgebra 
£&<= RO(X) exists such that $ f | ̂  is a homomorphism, then one could ask the 
question whether one can find a subalgebra g'czRO(X) such that 
4>f | <£, $ f | <t>f (<§), O/1 $ /(<E> /(^)),..., are all homomorphisms. The aim of this 
paper is to construct such subalgebras. 

1.1 THEOREM. Let X be a space and let & be a collection of countably many 
self-maps of X. Then there is a countable subalgebra SSciRO(X) which is a base 
for X such that 

(1) <&f | ffl is a homomorphism for all fe&; 
(2) $ f ^ ) c ^ / o r a H / e ^ ; 
(3) if fe& is onto then <&f:38—>$& is a (Boolean algebra) embedding; 
(4) if fe& is a homeomorphism then <&f:@l-^2& is an isomorphism. 

To prove this Theorem we construct a countable open basis °U for X such that 
(1) °ti c RO(X), (2) °U is closed under finite unions and finite intersections, (3) 
if ^ c % is finite then D E ^ J B = (fl #)", (4) if Ue<U and fe& then r\0) = 
(r\U)y, and (5) if fe& and Ue°U then f-\U)e<U. We then let & be the 
smallest subalgebra of RO(X) containing °U. The properties of % are used to 
prove that $ft is as required. 

Countable bases are usually constructed by induction using at each step of 
the induction that only finitely many basis elements have been constructed so 
far. However, in our situation, if we want to define a certain element of % say 
U, we must define it in such a way that we are allowed to add f~n(U) to °U for 
each neN and fe&. Consequently, already after the first step of the induction 
we have a countably infinite collection. This causes some technical problems. 

Let X, Y be spaces and let / :X—>X be continuous. The mapping / can be 
raised to Y provided that there exists a continuous surjection r:Y^ X and a 
map f'.Y^Y such that foT = r°f. Anderson [2], showed that any map 
defined on a compact space X can be raised to a map defined on a compact 
zero-dimensional space. There is a clever proof of this fact which is due to de 
Groot and which is simpler than Anderson's argument and which can easily be 
generalized to the effect that countably many mappings can always be simul
taneously raised to a zero-dimensional space, Baayen [3, 3.4.19]. The reason I 
became interested in Theorem 1.1 is that I tried to understand why Anderson's 
result is true. Obviously, Theorem 1.1 implies Anderson's result. For if Y is 
the Stone space of 38, then Y maps onto X by a natural map r (X is compact) 
and the functions f:Y-*Y can be defined by 

/(p) = {BeaB:* /(B)€p}. 

For details see Section 3. This gives not only a new proof of Anderson's 
Theorem but shows also that Y can be chosen in such a way that RO(X) and 
RO(Y) are isomorphic. 
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2. Boolean algebras. In this section we will give the proof of Theorem 1.1. 
Our results rely on an interesting technique due to Berney [4]. 

2.1 LEMMA. Let Xbe a space and let A <= X be uncountable. If < is any total 
ordering on A then there is a point aeA such that 

ae{xeA: x<a}~C\{xeA: a<x}~. 

Proof. If not, then without loss of generality a£{xeA: x<a}~ for each 
aeA. Let °U be a countable open basis for X and for each aeA take Uae°lL 
such that aeUa and Uan{xeA: x<a} = 0 . 

Since A is uncountable, there have to be distinct a, be A such that Ua = Ub, 
but this is impossible, since if, e.g. a<b then a£Ub. • 

2.2 REMARK. This Lemma is well-known and the proof is only included for 
completeness sake. The fact that this Lemma is very useful in constructing 
special bases, was first observed by Berney [4]. 

2.3 LEMMA. Let Xbe a space and let & be a countable collection of maps from 
X into [0,1]. In addition, let B<^X be open. If ^ c : ^ is finite, then 
{8e(0,l):nf^(f-\0,8))-nB^(nf^r\0,8)nB)-} is countable. 

Proof. We induct on the cardinality of cê. If \ê\ = 0, then there is nothing to 
prove. Therefore assume the lemma to be true for all ^ c : ^ of cardinality n 
and let ^ <= & have cardinality n + 1 . Assume that the set 

A=(8 6(0,1): n(r1[o,s)rnB^(nr1[o,s)nB) ] 
is uncountable and for each de A take a point 

a(s)G(n (no,8)rnfî)-(nno,ô)nB). 

Claim. Take / 0 e ^ . Then {8eA: f0(a(8))j=8} is countable. 
Suppose, to the contrary, that {8 e A: f0(a(8))^8} = A 0 is uncountable. 

Clearly f0(a(8))<8 for each 8e A0. Consequently, a(8)efô1[0, 8). If for some 
8eA0, 

a(8)e( H rl[0,8)nB) , 

then, since /^ [O, 8) is open and contains a(6), 

a(8)e( n rl[0,8)nBnf0
1[0,8)) = ( f] / ^ [O , 5 ) n f l ) , 

which is impossible. We therefore conclude that 

a(8)e( n ( r ^ f i r n s W n T ^ ^ H B ) 

for each ô e A0. But this contradicts our inductive assumptions. 
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Put Â={8eA: f(a(8)) = 8 for each fe<&}. By the claim A is uncountable. 
Let F = {a(8): 8eA} and define an order < on F by putting 

a(ô0)<a(Ô!) iff 80<81. 

Notice that a(80) ^ (1(8^ iff 80 ^ 8X so that this order is well-defined. By Lemma 
2.1 we can find a(80)eF such that 

a(80)e{a(8)eF: 8<80}~. 

Let V be any neighborhood of a(80) and take a(81)eF with 81<80 such that 
aCS^e V. Since /(a(ô1)) = ô 1 < ô 0 for each fe^, we have that 

a ^ E V n n / I O ^ o ) 

and consequently, since aCô^eB, 

vnn/"1[o,ôo)nB^0. 

We conclude that a (o o )e ( rV e ^/ - 1 [0 , 80)nB)~, which is a contradiction. • 

2.4 LEMMA. Let Xbe a space and let & be a countable collection of maps from 
X into [0,1]. In addition, let B^X be regular open. If G c f is finite, then 
{ 8 G ( 0 , 1 ) : Ufevf'KO, S)U B^RO(X)} is countable. 

Proof. The proof is similar to the proof of Lemma 2.3. We induct on |^|. 
Assume the Lemma to be true for all ^ c ^ of cardinality n and let ^ c ^ have 
cardinality n + 1. Assume that the set 

A = f s e ( 0 , l ) : (J / _ 1 [0 , 8 ) U B ^ R O ( X ) ] 

is uncountable and for each ô G A take a point 

(*) a(8)G ( U /"'CO, 8)Uf l ) - ( U /_ 1 [0, 8)UB). 

Claim. Take / 0 G ^ . Then A 0 = { 8 G A : f0(a(8))^8} is countable. 
Suppose that A0 is uncountable. Clearly /0(a(ô))>ô for each 6 G A 0 . Conse

quently, 

a(8 )e (u r l [ 0 ,« )UB) - / ô ^ ^ c f (J /^[O, 8)UB) °. 

Since obviously a(8)^ Ufe»-tf0}/_1[0> 8)UB, we conclude that 

a(S)e( U r [ 0 , 8 ) U f l ) 0 - ( U r1[0,8)UB) 

for each 8 G A0 . But this contradicts our inductive assumptions. 
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Put A = {8e A: /(a(S)) = S for each / e » } . By the claim A is uncountable. 
Let F = {a(8): 8eÂ} and define an order < on F by putting 

a(80)<a(81) iff 80<81. 

By Lemma 2.1 we can find a(80)eF such that 

a(80)e{a(8)eF: 80<8}~. 

By (*) we can choose a(81)e^ with 80<8X and 

a W G ( u / 1 0 , « U f î ) ° 

and since f(a(81)) = 81 for each fe<e this implies that 

a(81)e([j f ^ ^ U f i ) ° - U / "^O, 80]c=B-° = £ , 

since B is regular open. But this contradicts (*). • 

2.5 LEMMA. Let Xbe a space and let & be a countable collection of maps from 
X into [0,1]. Then {8 e (0,1): 3fe& such that (/ - 1[0, 8))~ ^ / ^ [ O , 8]} is count
able. 

Proof. If not, then we can find an uncountable subset A <= (0,1) and an fe 2F 
such that for any 8eA there is a point 

a(8)ef-1[0,8]-(rl[0,8))-. 

Clearly f(a(8)) = 8 for each 8 e A, so, by Lemma 2.1, we can find 80eA such 
that 

a(80)e{a(8): 8eA andS<S 0 }" . 

Let V be any neighborhood of a(80) and take 8 < 80 such that a(8) e V. Then 

a (8)GVn/ - 1 [0 ,8o) 

and since V was arbitrary, this implies that a(80)e( / - 1[0,80))~. 
Contradiction. • 

If ^ is a collection of sets, then v . A .^ denotes the ring generated by %, i.e. 
the collection of all finite unions of finite intersections of elements of g\ 

2.6 THEOREM. Let X be a space and let ^ be a collection of countably many 
self-maps of X. Then there is a countable open basis °U for X such that 

(1) % c R O ( X ) ; 
(2) °U is closed under finite unions and finite intersections ; 
(3) if %^°U is finite then r\E^E = (C\ %)~; 
(4) if Ue°U and fe9 then r\Û) = (r\U))~; 
(5) if Ue<U and fe& then rKlfieQl. 
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Proof. Without loss of generality assume that f°ge& for all f,ge& and 
that idx e&. Enumerate & as {fn: neN}. Let 08 be a countable open basis for 
X and for any B0, B1e$ft with B0<^B1 choose a Urhsohn function g:X-^I 
such that g(Eo) = 0 and g t X - B ^ l . Let {gk: fcef^J} denote the set of func
tions chosen in this way 

For each k, n e N let gk,nX -> I be defined by 

gk,n 6k in* 

By induction on k we will construct a point 8k G (0,1) such that if % = 
v . A .{gg[0,_fr): 1<K n G N} and 9 = v . A .{g^JX), 8k): n G N} then 

(10 EnF = EnFfor all Ee%U& and F G ^ ; 
(20 E U F G R O ( X ) for all Ee% and F e f ; 

(30 (gkjiO, 8k))~ = g ^ O , 8k] for each neN. 
Assume that we have completed the construction for all l<k so that (1')—(3') 
hold. Let 2£ be the set of all functions {gk,n: n e AT}, along with all finite sups of 
such functions. Choose 8k=8 by 2.3-2.5 so that for all Be%, for all finite 
G U { g } c | f the following conditions hold: 

(a) Hf.G (/"'CO, 8))-fï B = (H f 6 G / _ 1 [0 , 8) HB)~, 
(b) U f e G r 1 [ 0 , ô ) U B G R O ( X ) , 

(c) (g-1[0,«))- = g-1[0,S]. 
Now if G is a finite subset of 2£, then it is easy to check that 
( n g e G g - 1 [ 0 , Sk))~ = f\GG g -1[0, 8k]. Now (10-(30 are easily checked, using 
finite sups for (20. Put 

» = {gfc1j;0,Sk): KneN}. 

If gk,n[0, 8k)e<$ and if fp e& then 

/P V „ [ 0 , W =/P"Vn1gfc1[0, 8k) =/"1gfc1[0, 8k) = gj£[0, 8k) 

for certain q e N. This implies that / ^ ( S ) <= « for all n G N. If we put % = V.A.% 
then % is as required. The only thing we have to check is (4). To this end, take 
fc1?..., kn G N and for each 1 < i < n let F* c py be finite. Put 

^ n n g^f ik , ) . 
i = l j e F , 

Take p e N . Then 

= / P " 1 (n n g i$0 , S,,,]) (by (1') and (3')) 

= n n^giwCo.Sk,] 
i = l j e F i 
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= n rKWprwo.Sfc,] 

= 0 n(0Wp)-W[0,8O)-) (by (3') 

i = l jGFt 

\i = l ieFi / 

= (n n/pVr'g^o^oV 
\i = ljGFi / 

= (^1(n/n/rV[o,skl)))" 
= (/;{nng-joA)))" 
= ( / P 1 ( U ) ) - . 

This easily implies that % satisfies (1), (2), (3), (4) and (5). • 

That each space has a basis which satisfies (3) was first shown by Aarts [1] and 
Steiner and Steiner [6]. We are now prepared to give the proof of Theorem 
1.1. 

2.7 Proof of Theorem 1.1. We may assume that <p _ 1 e^ for all 
homeomorphisms <pe&. Let % be as in Theorem 2.6 and let £ft = ((%)), the 
smallest Boolean subalgebra of RO(X) containing °U. We claim that £ft is as 
required. Take fe& and define F : % ^ % by F(U) = f-\U). Take 
Uu U29...,Une<U and Vu V2,..., Vk e %. Then 

(*) A F(U;)A A (F(v;.))'= n / - ' ( ^ n n ( x - r ^ v , ) ) 
l<i<n l<j<k l<i<n l<j<k 

= n rl(ut)n n (x-rx(v,)) (by (4) of 2.6) 

= n r^t/jn n (r'ix-v,)) 
l < i < n l < j < k 

=r1( n u,n n (x-v^UW A C/,A A VA. 
\ l < i < n l < j < k / \ l < i < n l < j < k / 

Consequently, if A i ^ n ^ A A ^ - ^ V [ = 0 then A I ^ ^ H ^ ) A A I ^ ( C 

(F(V,))' = 0. This implies that there is a unique homomorphism P̂:Ô8—>£$ that 
extends F, [5, 2.15]. We claim that '9(B) = ̂ f(B) = f~1(B)~0 for each B e l 
First observe that since % is closed under finite unions, 

V 1 4 = 1 1 ut 
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for all [ / i € * ( l < i < n ) . This implies that if 

<& = {UAV: U, V e % } , 

then for each B e£& there are finitely many Gu G 2 , . . . , Gn e » such that 

B = V G, 
l < i < n 

Claim. If neN and Ç i E » for all l < i < n then /_1(Ui<i<n Gt) is dense in 

If n = 1, then there is nothing to prove since by formula (*) it is true that 

nG)=r\G) 

for all G e » (observe that ^ extends F). So assume the Claim to be true for n 
and take Gl9 G 2 , . . . , Gn+1 e ». Since ^ ( V i ^ n + i G4) = W i ^ n G,) v 
*(G n + 1 ) and since ^ ( V / i ^ n G ()U^(G n + 1) is clearly dense in ^ ( V i ^ n G ^ v 
^ (G n + 1 ) , by induction hypothesis, 

H u Gi)ur1(Gn+1)=r1( u G) 

is dense in W i * i * » G , ) v ¥ ( G B + 1 ) = ¥ ( V i s r t » + i G ) . 
Now take B s 38. We claim that 

¥(B) = *,(B). 

Assume this is not the case. Find Gu ..., Gn €& such that B = Vision G. By 
the Claim, f~\\Jlsisn G ) is dense in ¥(B) . 

Since rHL)!- .*» Q O c r H V i * . * » G ) , 

* (B) = / - X ( U G,)"0 = ( / - ' ( V G,))"°, 

and consequently, 

B-(r,(,v-<»)r-(r,CiL<*))"''0-
Then / ( E ) c = ( U i « i - B G , r - ( U i - l - » G , ) . If A c X , let Bd(A) denote the 
boundary of A. For each 1 < i < n find I/(, V, G "U such that 

G, = i/,nv,'. 
Observe that Bd(G,)cBd(C/j)UBd(V,') = Bd(Ul)UBd(V,). Since 

( U G,V-( U Gf)c (J Bd(Gf)c U (Bd(l7,)UBd(V,)) 
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it follows that 

£ ^ r 1 ( U i . ^ n ( B d ( ^ ) U B d ( V 0 ) ) = U i . ^ n ( r 1 ( B d ( ( 7 i ) ) u r 1 ( B d ( V i ) ) ) . 

Since, by (1) and (4) of Theorem 2.6, 

r\Bd(u))=Bd(r\u)) 
for all Ue% it follows that U i ^ n (/" '(BdCL^^ur^BdCV,))) is nowhere 
dense, which contradicts E being open and nonempty (observe that the union 
of finitely many nowhere dense sets is nowhere dense). Therefore, ^ = Of. Now 
suppose that / is onto. Take distinct E0, Ea e38. Then, without loss of general
ity, EQ£Ë1. Hence, since / is onto, f~l(E0 — Ë1) / 0 and open. This obviously 
implies that ^ ( E o ) ^ * / ^ ) . 

Now let <pe& be a homeomorphism. If Ue^U then also <p(U)e°U since 

<p(U) = (<p-')-\U), 

and cp~1e&. This easily implies that O^ is an isomorphism. D 

3. Raising maps to zero-dimensional spaces. In this section we show that the 
results of Anderson, de Groot and Baayen previously cited, easily follow from 
Theorem 1.1. 

3.1 THEOREM. Let X be a compact space and let & be a family of 
countably many self-maps of X. Then there is a zero-dimensional compact space 
Y and a continuous surjection r: Y—»X such that for any feSP there is a map 
/ : Y -> Y such that 

(1) T ° / = / ° T ; 

(2) if f is onto then f is onto ; 
(3) if f is a homeomorphism then f is a homeomorphism. 

Moreover, the function r # : RO(Y) -> RO(X) defined by T#(U) = X-T(Y- U) is 
an isomorphism. 

Proof. Let £ft be as in Theorem 1.1 and let Y be the Stone space of 38, i.e. 
the space of all ultrafilters of 38 and observe that Y is a compact zero-
dimensional metric space (since 38 is countable). Define T: Y - ^ X by 

{T(P)}= n B. 
B e p 

As is well-known, since 38 is a basis for X, r is well-defined, continuous and 
onto. In addition, since 38 is a subalgebra of RO(X), the function r # : RO( Y) —» 
RO(X) defined by r#((7) = X — r(Y— LO is an isomorphism. It is now clear 
how to define the functions f(fe&), simply put 

f(p)={Be®:<S>j(B)ep}. 

An easy check shows that T ° / = / ° T. • 
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