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On Residues of Intertwining Operators in
Cases with Prehomogeneous Nilradical

Sandeep Varma

Abstract. Let P = MN be a Levi decomposition of a maximal parabolic subgroup of a connected
reductive group G over a p-adic ûeld F. Assume that there exists w0 ∈ G(F) that normalizes M and
conjugates P to an opposite parabolic subgroup. When N has a Zariski dense IntM-orbit, F. Shahidi
and X. Yu described a certain distribution D on M(F), such that, for irreducible unitary supercusp-
idal representations π ofM(F) with π ≅ π ○ Intw0 , Ind

G(F)
P(F) π is irreducible if and only if D( f ) /= 0

for some pseudocoeõcient f of π. Since this irreducibility is conjecturally related to π arising via
transfer from certain twisted endoscopic groups of M, it is of interest to realize D as endoscopic
transfer from a simpler distribution on a twisted endoscopic group H of M. _is has been done
in many situations where N is abelian. Here we handle the standard examples in cases where N is
nonabelian but admit a Zariski dense IntM-orbit.

1 Introduction

Let G be a quasi-split connected reductive group over a p-adic ûeld F, and P = MN
a Levi decomposition of a maximal parabolic subgroup of G. Given an irreducible
unitary supercuspidal representation π ofM(F) (in�ated in the obviousway to P(F)),
one o�en considers the question of when the parabolically induced representation
IndG(F)

P(F) π (induction normalized to preserve unitarity) is irreducible. _is question
is especially interesting when the following condition is satisûed.

● _ere exists w0 ∈ G(F) that normalizes M and takes P to a parabolic subgroup
opposed to it, such that, as representations ofM(F), π ≅ π ○ Intw0.

When this condition is not satisûed, one knows by purely harmonic analytic means
that IndG(F)

P(F) π is irreducible. What makes the above question interesting when the
condition is satisûed is that the answer is conjecturally related to L-functions thanks
to Langlands’ conjecture on normalization of intertwining operators [Sha90].

Let us explain this a bit more: when the above condition is satisûed, we know,
thanks to Harish-Chandra, that the irreducibility of IndG(F)

P(F) π is equivalent to a cer-
tain meromorphic family s ↦ A(sα̃, π,w0) of intertwining operators having a pole
at s = 0; and by Langlands’ conjecture on Plancherel measures, s ↦ A(sα̃, π,w0) is
expected to have a pole at s = 0 if and only if some member of a certain ûnite set of
(as yet conjectural) L-functions L(s, π, r i) has a pole at s = 0.
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In keeping with this is a program, pioneered by F. Shahidi [Sha92] and developed
further by him as well as D. Goldberg and S. Spallone, with contributions by L. Cai,
W.-W. Li, B. Xu, and X. Yu [GS98,Spa08,Li13,CX15] to:
(i) obtain a “formula” for the residue of the family s ↦ A(sα̃, π,w0) at 0,
(ii) endoscopically interpret the result therein.

Here by a formula for the residue, one roughlymeans a distribution D on M(F) such
that for all π satisfying the conditions above, s ↦ A(sα̃, π,w0) has a pole at s = 0 if
and only if D( f ) /= 0 for some f ∈ C∞c (M(F)) such that

m ↦ ∫
ZM(F)

f (zm)ωπ(z−1) dz,

ZM denoting the center of M and ωπ the central character of π, is a matrix coeõ-
cient for π. By endoscopically interpreting this result, one refers to ûnding a twisted
endoscopic groupH forM and interpreting the above distributionD in terms of endo-
scopic transfer from H (we are abusing notation here and con�ating H with a twisted
endoscopic datum).

Let us discuss (i) ûrst, restricting to situations that concern us. In the special case
where N is abelian, Shahidi [Sha00] came up with a simple and elegant expression
for a distribution D as above. _ere are two features that make this special case con-
siderably simpler than the general case. First, in these cases N has a Zariski-dense
IntM-orbit. Second, the connected stabilizer of a point in this Zariski-dense orbit is
also the connected twisted centralizer of a suitable point in M [Sha00, Lemma 2.1].
Together, these features make it easier to handle the intertwining operator involved
(roughly speaking, this is because its prescription contains an integral over N(F),
whose transfer to a twisted orbital integral for M(F) is facilitated by these features).

X. Yu [Yu09] observed that the ûrst of the two features above, namely, the fact that
N has a dense IntM-orbit, already forces the second, and that this allows for extend-
ing the formula for the distribution D in [Sha00] to cases where N is not necessarily
abelian but still has a dense IntM-orbit.

Work on (ii), in contrast, has been done on a case-by-case basis. More speciûcally,
it is easy to see that one canwriteG = (G′ ×ResE/F G1)/Z andP = (G′ ×ResE/F P1)/Z
whereG1 is absolutely simple, simply connected, and quasi-split, E/F is a ûnite exten-
sion, G′ is quasi-split, and Z is a central subgroup of G′ ×ResE/F G1. Corresponding
to the Levi decomposition P = MN in G is a Levi decomposition P1 = M1 N1 in G1;
N is abelian if and only if N1 is, and N has an open IntM-orbit if and only if N1 has
an open IntM1-orbit. For each possible (G1 ,M1) that is of interest, i.e., where M1 is
“self-associate”, Shahidi studied a speciûc, convenient, choice of (G,M) that relates
to it in the manner just stated. In particular, he takes E = F, and G′ to be trivial in
most cases. With these choices, Shahidi observed [Sha00] that for most of the cases
of concern, D is simply the endoscopic transfer from a twisted endoscopic group H
of the distribution f H ↦ f H(1) on H(F).

However, merely requiring N to have an open IntM-orbit, as in [Yu09], throws
additional possibilities into play as follows.
Case 1: (G1 ,M1) ≅ (Sp2n ,GL1 × Sp2n−2) (n ≥ 2).

Case 2: G1 ≅ Spin4N+1,M1 is a double cover of GL2N .
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Case 3: G1 ≅ Spin4N+3,M1 is a double cover of GL2N+1.

In fact, a computation of the distribution D in Cases 2 and 3, where one assumes
G = SO4N+1 or SO4N+3, was already done [Sha92]. However, an endoscopic interpre-
tation was discussed only in Case 2 with N = 1, i.e., for G = SO5. (See [Sha92, §10];
further, immediately following Remark 2 of that section, Case 2 has been mentioned
to bemuchmore complicated than the other cases considered there as it features non-
semisimple orbital integrals.) Similarly, while Yu derived an expression for D in all
three cases above, he avoided the use of endoscopy [Yu09].

_emain purpose of the present paper is to provide an endoscopic interpretation
for the residue in Cases 1–3, under the simplifying assumptions that E = F and that
G′ is trivial (so that G equals either G1 or its adjoint form).

More precisely, inCases 1 and 2 (resp., Case 3),we ûnd a twisted endoscopic group
(strictly speaking, a twisted endoscopic datum) H such that the distribution D is the
twisted endoscopic transfer of the distribution, say DH, on H(F), given by f H ↦
f H(1) (resp., f H ↦ f H(−1); this also explains why we are separating Case 3 from
Case 2).
Even in Cases 1 and 2, where the statement of the ûnal result bears resemblance to

analogous results in [Sha00], the proofs diòer, since, as mentioned above, the twisted
orbital integrals that contribute to the formula of [Sha92] and [Yu09] are no longer
semisimple, and the twisted endoscopic data are no longer basic in the sense of Shel-
stad’s appendix to [Sha00]. In particular, the transfer factors are not as simple as the
ones mentioned at the beginning of Section 3 of Shelstad’s appendix to [Sha00]. In-
stead one studies the endoscopic transfer ofDH usingWaldspurger’s descent for trans-
fer factors [Wal08], which tells us how transfer factors behave near matching conju-
gacy classes. With this done, the behavior of nilpotent orbital integrals under scaling
and what at least prima facie has the appearance of a fortuitous coincidence involv-
ing dimensions of minimal nilpotent orbits in symplectic groups (see Remark 3.5)
constrain the twisted endoscopic transfer of DH to be supported in a certain ûnite
union of twisted M(F)-conjugacy classes, in fact in a single orbit for action under a
closely related group. Certain equivariance properties of transfer factors then pin this
endoscopic transfer down up to a scalar, forcing it to equal (amultiple of) D.

We should also add that, at least in Case 1 when G = G1 (as opposed to its adjoint
form), and in Cases 2 and 3 when G is the adjoint form of G1, our conclusion con-
cerning irreducibility is not new as it follows from Arthur’s work [Art13, §6.6]. How-
ever, we have chosen to include these cases because Shahidi’s method of computing
residues of intertwining operators, which we follow, is of interest. For instance, we
hope that understanding this method in the simpler situations whereN has a Zariski
dense IntM-orbit (to which we are restricting ourselves) will inform approaches to
more diõcult situations where this is not the case; and some of these more diõcult
situations are expected to feature interesting L-functions such as the symmetric cube
L-function for GL2. Including the known cases mentioned above, also has the advan-
tage of serving to illustrate how the method functions across groups that are isoge-
nous.

While our proofs are not case-independent, we have attempted to separate the
parts where we rely on case-by-case computation from the rest. Our prescription
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for the endoscopic data, for instance, is uniform. We have identiûed [Sha90, Lemma
2.1 (b)] applied to the dual group of G in place of G, as the reason why L-function
considerations in our cases of interest are naturally related to certain endoscopic data
(see Remark 2.4).

Let us now discuss the contents of this paper. In Section 2, we set some notation
and deûne the twisted endoscopic data for M (and a certain automorphismof it com-
ing from conjugation by the elementw0 discussed earlier) thatwill concern us. _ese
data, in general, depend not only on G,P, and M, but also on the restriction of the
central character of the representation π of interest to A(F), A being the connected
center ofM. In Section 3,we assume certain lemmas about the behavior of the twisted
endoscopic transfer that concerns us and use these to interpret the residue formula of
Shahidi (due to [Yu09] in some of our cases) in terms of endoscopic transfer. Finally,
in Section 4, we prove the lemmas that are assumed in Section 3.

2 The Groups and Endoscopic Data

2.1 Some Notations

We begin by digressing to ûx notational conventions that will be in force throughout
this paper. For an algebraic group G′, ZG′ will denote its center. If G′ acts on a va-
riety X and x ∈ X, G′x will stand for the stabilizer of x in G′ and G′

x for the identity
component of G′x .

Recall [Wal08, §1.2] the notion of a twisted space G̃′ for a connected reductive
group G′. It is a bitorsor for G′. When we talk of G′ η̃ or G′

η̃ , where η̃ belongs to G′

or the twisted space G̃ ′, the reference will be understood to be to the action of G′ by
conjugation (on itself or on G̃ ′ as the casemay be).

Given η̃ ∈ G̃ ′, η will stand for the automorphism Int η̃ of G′ , i.e., η̃g = η(g) ⋅ η̃
for all g ∈ G ′. Given an automorphism η of G ′, G ′η will stand for its group of ûxed
points, and G′

η for the identity component of G′η . _us, we have

G′ η̃ = G′η = G′Int η̃ , G′
η̃ = G′

η = G′
Int η̃ .

For a diagonalizable groupT, X∗(T) and X∗(T)will denote, respectively, the char-
acter group and cocharacter group of the base change T×FF of T to F. Fraktur letters
will be used for Lie algebras according to standard conventions, e.g., g′ = LieG′. A
superscript of 0 will stand for identity component. For a reductive group G′, G′

sc and
G′
ad will denote the simply connected cover of the derived group of G′ and its ad-

joint form, respectively. However, we will override this convention in the context of
amaximal torus T of such a G′, by using Tsc and Tad to denote themaximal tori cor-
responding to T in G′

sc and G′
ad, respectively. If G′ is an algebraic group over C, we

will use G′ and G′(C) interchangeably. In Section 2.2 below, F will denote a ûeld of
characteristic zero, while from Section 2.3 onwards, F will denote a p-adic ûeld.

2.2 Some Useful Computations

Before we describe the groups in which we are interested, we recall a few well-known
computations of interest.
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For this subsection alone, we allow F to be any ûeld of characteristic zero; we will
use the computations below for groups over a p-adic ûeld (that we will later use F to
denote), and for groups over C.

Let G be a connected reductive group over F and P = MN a Levi decomposition
of a maximal parabolic subgroup of G. Let w0 ∈ G(F) be such that Pw0 P is of the
largest possible dimension (and hence is open in G). Further, we assume that w0 can
be chosen to normalize M (namely, the parabolic P is self-associate), which will be
satisûed in all the cases that we consider. Although w0 is not unique, the set Mw0 is.
_is makes M̃ ∶= w0 M = Mw0 = Mw−1

0 ⊂ G a twisted space for M; it has actions of
M coming from le� and right multiplication that make it a bitorsor for M.

Shahidi’s approach to computing the residues of intertwining operators involves
transferring integrals over N(F) to those over suitable subsets of M̃(F), by means of
amapN′ → M̃,N′ being an open subset ofN. Let us review thismap: N− ∶= w0 Nw−1

0
is the unipotent radical of the parabolic subgroup of G opposite to P and containing
M. Note that N′ ∶= N∩ M̃NN− = N∩MN−w0 N− is open in N and also nonempty,
as the intersection MN−N∩MN−w0 N− of nonempty open subsets of G is. Further
N′(F) is nonempty asN(F) isZariski dense inN(F). We have amapN′(F)→ M̃(F),
deûned by

(2.1) n ↦ m̃, where n ∈ m̃NN− .

We would like to discuss the above considerations more explicitly when G is the
connected isometry group of a nondegenerate quadratic or symplectic form ⟨ ⋅ , ⋅ ⟩
on a vector space V . Excluding the case where dimV is twice an odd number and
⟨ ⋅ , ⋅ ⟩ is quadratic (see [Sha92, Lemma 3.4]), a case that will not concern us in this
paper, it is well known that maximal parabolic subgroups of G are all self-associate
and in one-to-one correspondence with isotropic subspaces W ′ of (V , ⟨ ⋅ , ⋅ ⟩). _is
correspondence maps P to W ′, where P is the stabilizer ofW ′. Levi subgroups M of
such a P then correspond to orthogonal decompositions

(2.2) V =W ′ ⊕ X ⊕W ,

where X is a nondegenerate subspace of V , andW is an isotropic subspace in duality
with W ′ under ⟨ ⋅ , ⋅ ⟩.
FixV , ⟨ ⋅ , ⋅ ⟩,W , X ,W ′ ,G,P, andM as in the aboveparagraph. LetN be theunipo-

tent radical of P and N− that of the parabolic subgroup opposite to P and contain-
ing M. As in [MS16], any element n ∈ N(F) can be speciûed by a pair (ξ, η) with
ξ ∈ Hom(X ,W ′) and η ∈ Hom(W ,W ′) such that ξξ∗ = −(η + η∗) as elements of
Hom(W ,W ′) (where the ∗ is taken using ⟨ ⋅ , ⋅ ⟩). _is element, which we denote by
n(ξ, η), is pictorially represented on the le�-hand side of (2.3) below: it acts as the
identity on W ′, as x ↦ x + ξ(x) on X, and as w ↦ w − ξ∗(w) + η(w) on W .

_e map n ↦ m̃ is then easily read oò from the following assertion, which is
straightforward to verify (or see, e.g., [MS16]). An element n = n(ξ, η) ∈ N be-
longs to N′ if and only if η ∈ Isom(W ,W ′), in which case the unique decomposition
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n = m̃n′n−, with m̃ ∈ M̃, n′ ∈ N, and n− ∈ N−, takes the form

⎛
⎜
⎝

1 ξ η
1 −ξ∗

1

⎞
⎟
⎠
=
⎛
⎜
⎝

η
1 + ξ∗η−1ξ

η−∗

⎞
⎟
⎠

(2.3)

×
⎛
⎜
⎝

1 −η∗η−1ξ η∗
1 ξ∗η−∗η

1

⎞
⎟
⎠
×
⎛
⎜
⎝

1
−ξ∗η−∗ 1
η−1 η−1ξ 1

⎞
⎟
⎠

(with η−∗ = (η∗)−1 = (η−1)∗).
Note that M ≅ GL(W) × Aut0(X , ⟨ ⋅ , ⋅ ⟩) (the GL(W) factor identifying with

the bottom right, and not the top le�, entry). _en M̃ identiûes naturally with the
set of self-maps of V that takes W and W ′ into each other and preserve X (and lie
in Aut0(V , ⟨ ⋅ , ⋅ ⟩)), i.e., with Isom(W ,W ′) × Ãut(X , ⟨ ⋅ , ⋅ ⟩), as a twisted space for
GL(W) ×Aut0(X , ⟨ ⋅ , ⋅ ⟩). Here Ãut(X , ⟨ ⋅ , ⋅ ⟩) is a connected component of

Aut(X , ⟨ ⋅ , ⋅ ⟩) ∶
speciûcally, the identity component if either ⟨ ⋅ , ⋅ ⟩ is symplectic or dimW is even,
and the non-identity-component otherwise. Here, if g1 , g2 ∈ GL(W) ⊂ M and T ∈
Isom(W ,W ′), then g1T g2 = (g−1

1 )∗ ○ T ○ g2, where g∗1 ∈ GL(W ′) is such that
⟨g1w ,w′⟩ = ⟨w , g∗1 w′⟩ for all w ∈W ,w′ ∈W ′.

We choose the identiûcation of Isom(W ,W ′) with the twisted space G̃L(W) of
nondegenerate bilinear forms on W that takes T ∈ Isom(W ,W ′) to

(w1 ,w2)↦ ⟨w1 , Tw2⟩.
_is lets us view M̃ as the product twisted space G̃L(W)×Ãut(X , ⟨ ⋅ , ⋅ ⟩) for the group
M = GL(W)×Aut0(X , ⟨ ⋅ , ⋅ ⟩),where G̃L(W) is viewed as a twisted space forGL(W)
via the action (g1Bg2)(w1 ,w2) = B(g−1

1 w1 , g2w2). To realize the twisted space in this
form, we followed [Li13] in choosing P to be the stabilizer ofW ′, rather than ofW .

2.3 The Description of G and P

Wewill dealwith a connected reductive groupG over F,with a self-associatemaximal
parabolic subgroup having Levi decomposition P = MN. We assume that

(G,P,M,N)
equals either (G1 ,P1 ,M1 ,N1) or (G2 ,P2 ,M2 ,N2)where the (Gi ,Pi ,Mi ,Ni) are as in
one of three cases that we denote by Cases 1–3 below.
● Case 1. Let n ∈ N, n ≥ 2. Let (V , ⟨ ⋅ , ⋅ ⟩) be a 2n-dimensional symplectic space over
F. Set G1 = Sp(V , ⟨ ⋅ , ⋅ ⟩) ≅ Sp2n /F ,G2 = PSp(V , ⟨ ⋅ , ⋅ ⟩) ≅ PSp2n /F. We have
an obvious isogeny G1 → G2. Fix a decomposition V = W ′ ⊕ X ⊕W as in (2.2),
such that dimW = 1. For i = 1, 2, this deûnes a Levi decomposition Pi = Mi Ni
of a maximal parabolic subgroup of Gi such that M1 ≅ GL1 × Sp2n−2 /F and M2 =
GSp2n−2 /F as per a usual identiûcation.

● Cases 2 and 3. Let n ∈ N. Let (V , ⟨ ⋅ , ⋅ ⟩) be a quadratic space over F of dimension
2n + 1 such that the associated groups G1 = Spin(V , ⟨ ⋅ , ⋅ ⟩) ≅ Spin2n+1 /F and
G2 = SO(V , ⟨ ⋅ , ⋅ ⟩) ≅ SO2n+1 /F are split. If n is even, we set n = 2N and say
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that we are in Case 2. Else we set n = 2N + 1 and say that we are in Case 3. We
have an obvious isogeny G1 → G2. Fix a decomposition V = W ′ ⊕ X ⊕W as in
(2.2), such that dimW = n. _is decomposition deûnes, for i = 1, 2, parabolic
subgroups Pi = Mi Ni of Gi , together with an identiûcation M2 = GL(W)/F. It
is easy to check, e.g., by ûrst computing the Langlands dual M̂1, that we have an
obvious identiûcation of algebraic groups over F:

(2.4) M1 = {(x , g) ∣ x ∈ Gm , g ∈ GL(W), x2 = det g}.

Note that the unipotent radical N of P can be identiûed naturally with either ofN1
or N2.

Let Ai (i = 1, 2) denote the identity component of the center ofMi , and A that of
M.

Remark 2.1 In both Case 1 and Case 2, the obvious isogeny M1 → M2 induces an
isomorphism A1 → A2, so that we have obvious identiûcations A = A1 = A2 = Gm .
In Case 3, however, A1 → A2 is an isogeny with kernel of order two. In this case, A1 is
realized via (2.4) as the set of all (an , a2), which identiûes with Gm since (n, 2) = 1.

2.4 An Endoscopic Datum for M

We can identify Ĝi , where i equals 1 (in Case 1) or 2 (in Cases 2 and 3) with the
connected isometry group of a nondegenerate symplectic or quadratic space (V̂ , q̂)
over C. _us, as in Section 2.2, we may choose a decomposition V̂ = Ŵ ′ ⊕ X̂ ⊕
Ŵ corresponding to a Levi decomposition of a parabolic subgroup of Ĝi featuring
M̂i = GL(Ŵ) × Aut0(X̂ , q̂∣X̂) as the underlying Levi subgroup. Dual to the chain of
isogenies M1 →M→M2, we get a chain of isogenies:

(2.5) M̂2 → M̂→ M̂1 .

Note that we have:

M̂2 =
⎧⎪⎪⎨⎪⎪⎩

GSpin(X̂ , q̂)(C) ≅ GSpin2n−1(C) in Case 1,
GL(Ŵ)(C) ≅ GLn(C) in Cases 2 and 3,

while

M̂1 =
⎧⎪⎪⎨⎪⎪⎩

GL(Ŵ)(C) × SO(X̂)(C) ≅ GL1(C) × SO2n−1(C) in Case 1,
GL(Ŵ)(C)/{±1} ≅ GLn(C)/{±1} in Cases 2 and 3.

Further, for i = 1, 2,WF acts trivially on M̂i so that LMi = M̂i ×WF .

2.5 Twisted Space and Endoscopic Data of Interest

Recall the central subgroup Gm ≅ A ⊂ M ofM. Fix a quadratic character ω∶A(F) ≅
F× → C×. If we are in Case 3 and additionally M = M1, we require ω to be trivial.
Now we wish to deûne an endoscopic datum (H = Hω ,H, s, ξ̂), depending on ω, for
(M̃,1), as in [KS99,Wal08] (our notationswill be closer to the latter),wherewewrite
1 to denote the trivial character, in this case ofM(F).
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2.5.1 Defining Ĥ, s, and θ̂

Before explicating (H,H, s, ξ̂), we brie�y describe the general construction of the
dual group Ĥ ofH. Exactly the same prescription as with w0 allows us to consider an
element ŵ0 ∈ Ĝ, and a twisted space ̃̂M for M̂. Set ̃̂θ ∶= ŵ−1

0 ∈ ̃̂M(F). We choose ŵ0

such that θ̂ = Int ŵ−1
0 preserves a splitting of M̂. _en the outer automorphism deûned

by θ̂ is dual to that deûned by Int m̃ for any m̃ ∈ M̃(F). Recall that for a suitable open
subset N̂

′ ⊂ N̂, we have a map N̂
′ → ̃̂M as in (2.1). In all our cases, M̂ has a unique

open orbit in N̂, which is contained in N̂
′
. Fix n̂ belonging to this open orbit. Write

the image of n̂ under the abovemap as s̃̂θ with s ∈ M̂. _en Ĥ is simply the connected
centralizer of Int s○ θ̂ in M̂, i.e., Ĥ = M̂

s̃̂θ
. _is does not yet deûneH = Hω , aswe have

not speciûed the action ofWF on Ĥ (which is not in general the obvious one).
Wewish to describe Ĥ explicitly and specify Borel pairs (B̂, T̂) in M̂ and (B̂H , T̂H)

in Ĥ, such that s ∈ T̂ and T̂H = T̂. _is will also involve ûxing choices and notation to
work with later in computations. Using (2.3), it is easy to check that we may choose
things as follows.

Case 1: We have (since dim Ŵ = 1 is odd and q̂ is orthogonal)

M̂1
̃̂θ = G̃L(Ŵ) × (O(X̂) ∖ SO(X̂)).

If G = G1, the image of s̃̂θ in M̂1
̃̂θ is of the form (a, s0), where s0 acts as the identity

on a nondegenerate 2n−2-dimensional subspace X̂1 of X̂, and as −1 on its orthogonal
complement. _erefore we conclude that Ĥ identiûes with SO(X̂1)(C) ≅ SO2n−2(C)
if G = G1, and with Spin(X̂1)(C) ≅ Spin2n−2(C) if G = G2. Choose an ordered basis
ê1 , . . . , ê2n−1 of X̂ such that q̂(ê i , ê j) = (−1)iδ i ,(2n− j) for 1 ≤ i ≤ 2n − 1, and such that
ên is the orthogonal complement of X̂1 (here, δ i , j equals 1 if i = j and 0 otherwise). We
choose (B̂, T̂) to be the Borel pair determined by the ordered basis ê1 , . . . , ê2n−1 of X̂,
and (B̂H , T̂H) to be that determined by the ordered basis ê1 , . . . , ên−1 , ên+1 , . . . , ê2n−1

of X̂1. We take ̃̂θ to have image (a,−1) ∈ M̂1, forcing s ∈ T̂.

Case 2: Assume ûrst that G = G2. Write M̂2 as GL(Ŵ), so one has a natural iden-
tiûcation M̂2

̃̂θ = G̃L(Ŵ). _us, the elements ̃̂θ = ŵ−1
0 , s

̃̂θ ∈ G̃L(Ŵ) are now bilin-
ear forms on Ŵ (see §2.2). We choose ̃̂θ so that ̃̂θ(ê i , ê j) = (−1)iδ i ,(2N+1− j) for a

basis ê1 , . . . , ê2N of Ŵ (thus, ̃̂θ is a symplectic form): this choice is consistent with
the requirement that θ̂ preserve a splitting of M̂, see, e.g., [Art13, (1.2.1)]. Since M̂
is a Siegel–Levi subgroup of Ĝ = Sp(V̂), (2.3) gives us that s̃̂θ is a nondegener-
ate quadratic form on W . Hence, we can assume that s̃̂θ(ê i , ê j) = δ i ,(2N+1− j) (af-
ter changing it within the orbit for GL(Ŵ)(C)-conjugation on G̃L(Ŵ)(C), which
identiûes with the obvious action of GL(Ŵ)(C) on the space of nondegenerate bi-
linear forms on Ŵ). When G = G1, we choose s and ̃̂θ to be the images of the corre-
sponding choices for G2. Note that Ĥ = SO(Ŵ , s̃̂θ)(C) ≅ SO2N(C) if G = G2, and
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Ĥ = PSO(Ŵ , s̃̂θ)(C) ≅ PSO2N(C) ifG = G1. We choose the Borel pairs (B̂, T̂) for M̂
and (B̂H , T̂H) for Ĥ determined by the ordered basis ê1 , . . . , ê2N of Ŵ . Clearly s ∈ T̂.

Case 3: _is is similar to Case 2, except that here we assume that s̃̂θ = ̃̂θ and that
̃̂θ(ê i , ê j) = (−1)iδ i ,(2N+2− j) for all i , j. _en Ĥ = SO(Ŵ , s̃̂θ)(C) ≅ SO2N+1(C), both
when G = G1 and when G = G2. _e Borel pairs (B̂, T̂) for M̂ and (B̂H , T̂H) for Ĥ are
deûned using the ordered basis ê1 , . . . , ê2N+1, and we again have s ∈ T̂.

2.5.2 The Endoscopic Datum

Now we deûne a subgroup H′ ⊂ LG = Ĝ ⋊WF that will be the image of H under
ξ̂. We have a surjection M̂ → Â ≅ C× dual to Gm ≅ A ↪ M. In Case 1, this map is
obtained by precomposing themap M̂→ M̂1 (cf. (2.5)) with themap M̂1 → C× that is
a projection onto the GL(Ŵ)(C)(≅ C×)-factor. In Cases 2 and 3, when G = G2, this
map is the determinant. In Case 2 when G = G1, this map is induced by the determi-
nant. In Case 3, when G = G1, this map is induced by the square of the determinant
on GL2N+1(C). Both θ̂ (which equals Int ̃̂θ) and Int(s̃̂θ) induce the automorphism

x ↦ x−1 of Â. Using θ̂ to also denote this automorphism of Â, we have Â
θ̂ ≅ {±1}.

We ûxed an element n̂ in Section 2.5.1. Let M̂
n̂
denote the stabilizer of n̂ in M̂. _us,

we have M̂
n̂ ⊂ M̂

s̃̂θ
[Sha00, Lemma 2.1(a)]. Moreover, using [Sha00, Lemma 2.1(b)],

we have that M̂
n̂
has the same identity component as M̂

s̃̂θ
, i.e., M̂n̂ = M̂

s̃̂θ
= Ĥ.

_e following lemma is crucial for pinning down our endoscopic datum com-
pletely.

Lemma 2.2 (i) _e restriction of themap M̂→ Â induces an injection

Λ∶ M̂n̂/M̂
s̃̂θ
↪ Â

θ̂
,

which is an isomorphism except in Case 3 when M = M1.
(ii) _e homomorphism M̂

n̂ → M̂
n̂/M̂

s̃̂θ
has a group theoretic section, whose image

can be chosen to ûx a given splitting of Ĥ = M̂
s̃̂θ
.

Proof (i) is immediately veriûed when either G = G1 and we are in Case 1, or
when G = G2 and we are in Cases 2 or 3. For the rest of Cases 1 and 2 (i) fol-
lows from the easily veriûed fact that in these cases the obvious maps A1 → A2 and
M̂

n̂
2 /M̂2,s̃̂θ

→ M̂
n̂
1 /M̂1,s̃̂θ

are isomorphisms (for Case 1 when G = G2, use the fact that

M̂
n̂
2 → M̂

n̂
1 is necessarily surjective and the fact that the group of ûxed points of the

semisimple automorphism Int(s̃̂θ) on the simply connected group Spin(X̂) is nec-
essarily connected [Ste68, _eorem 8.1]). When we are in Case 3 and G = G1, (i) is
trivial as M̂

n̂
1 being necessarily the image of M̂

n̂
2 is easily veriûed to be connected.

Now let us prove (ii). In Case 3, ifG = G1, the result is trivial, so let us assume that
this is not the case. Inwhat followswewill assume notation from Section 2.5.1without
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further comment. Note that M̂
n̂/M̂

s̃̂θ
has order two, so it is enough to produce an

element m̂0 of M̂
n̂ ∖M̂

s̃̂θ
preserving a ûxed splitting of M̂

s̃̂θ
and having order two. We

ûrst focus on Case 2 and Case 3. Wemay and do assume that G = G2. In Case 2, m̂0
may be taken to be the element of M̂2 = GL(Ŵ)(C) that swaps êN and êN+1 and ûxes
every other ê i . In Case 3, it suõces instead to take m̂0 = −1 ∈ GL(Ŵ)(C).

InCase 1,we ûrst consider the casewhereG = G1. In this casewe take m̂0 to be the
element that acts on Ŵ and on ên by multiplication by −1, swaps ên−1 and ên+1, and
acts on every other ê i by ûxing it. It is easy to see that m̂0 ûxes a splitting of M̂

s̃̂θ
that

may be in an obvious way associated to the ordered basis ê1 , . . . , ên−1 , ên+1 , . . . , ê2n−1
of X̂1.

If G = G2, take m̂0 to be a li� of the corresponding element considered when
G = G1. _is is easily seen to work, provided we verify that m̂2

0 = 1. View M̂2 =
GSpin(X̂)(C) as a quotient GL1(C) × Spin(X̂)(C)/{(1, 1), (−1, c)}, where c is the
unique nontrivial element in the kernel of the map Spin(X̂)(C) → SO(X̂)(C) (see
[Asg02]). It suõces to show that any preimage (a, h) of m̂0 in GL1(C)×Spin(X̂)(C)
satisûes a2 = −1, h2 = c. _e image of (a, h) in M̂1 = GL(Ŵ)(C)×SO(X̂)(C) equals
(a2 , h), where h is the image of h in SO(X̂)(C). _at (a, h) maps to m̂0, which
acts on Ŵ by −1, shows that a2 = −1. It is clear that h2 maps to the identity element
of SO(X̂)(C), so it suõces to show that h2 is nontrivial in Spin(X̂)(C). Note that
h2 depends only on the image h of h in SO(X̂)(C), and in fact (thanks to h2 being
central) only on the conjugacy class of the image of h in SO(X̂)(C). _is is the unique
conjugacy class of SO(X̂)(C) deûned by the condition of having a −1-eigenspace of
dimension two and a 1-eigenspace of the complementary dimension. A member of
this class may be written as α∨(

√
−1) for some square root

√
−1 of −1, where α is a

short root of SO(X̂) (note that we have written α∨(
√
−1) and not α∨(−1) because

α∨(t) has a t2-eigenspace of dimension 1, a t−2-eigenspace of dimension 1, and a 1-
eigenspace of dimension 2n − 3). _us, the condition h2 /= 1 is equivalent to the
condition α∨(−1) /= 1 in Spin(X̂)(C), which follows as Spin(X̂) is simply connected.

Since ω is a quadratic character of A(F) ≅ F× and since θ̂ acts on Â by x ↦ x−1,
the Langlands parameter φω of ω is an element ofHom(WF , Âθ̂). _us, using Lemma
2.2 (i), ω deûnes an element aω of Hom(WF ,Out(Ĥ)) (recall that we have required
ω to be trivial if we are in Case 3 andM = M1). We take H = Hω to be the quasi-split
reductive group, which exists and is unique up to an isomorphism, such that we can
identifyH ∶= L H = Ĥ ⋊WF , whereWF acts on Ĥ through themap WF → Out(Ĥ) ⊂
Aut(Ĥ). Here, this last inclusion is deûned using the chosen splitting on Ĥ, and the
former map is aω . Lemma 2.2 (ii) allows us to li� φω to a map b ∈ Hom(WF , M̂n̂).
_en the prescription (h,w)↦ (hb(w),w) deûnes an embedding ξ̂∶ LH↪ LM. _en
(H, LH, s, ξ̂) is an endoscopic datum for (M̃,1) (indeed, Conditions (2.1.1) and (2.1.2)
of [KS99] hold by construction, Condition (2.1.3) because we have checked in each
case that s̃̂θ is semisimple as an element of ̃̂M, and Condition (2.1.4) because Ĥ = M̂

s̃̂θ

and because each hb(w), h ∈ Ĥ,w ∈ WF , is contained in M̂
n̂ ⊂ M̂

s̃̂θ
). _e notion of

https://doi.org/10.4153/CJM-2016-032-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2016-032-3


On Residues of Intertwining Operators 1179

equivalence between endoscopic data (cf. [KS99, p. 18]) is such that changing the
choice of the splitting of Ĥ that we ûxed does not change the equivalence class of our
endoscopic datum.

Remark 2.3 We conclude that if d∶ M̂→ Â is the obviousmap and (gw ,w) ∈ ξ̂( L H)
with w ∈WF and gw ∈ Mn̂ , then d(gw) = φω(w).

Remark 2.4 Let us brie�y discuss the motivation behind the construction of the
above endoscopic datum. If π is an irreducible unitary supercuspidal representation
ofM(F) with π ○ Intw0 ≅ π, then it is expected that IndG(F)

P(F) π is irreducible precisely
when the (conjectural) L-function L(s, Ad ○φ) has a pole at s = 0, where φ∶WF →
M̂ represents the (conjectural) Langlands parameter of π and Ad ○φ stands for the
representation w ↦ Adφ(w) of WF on Lie N̂. _is condition is equivalent to Adφ
having a ûxed vector on Lie N̂. One can check that the stabilizer in M̂ of any point
of Lie N̂ outside its unique Zariski open M̂-orbit is contained in a proper parabolic
subgroup of M̂, through which φ, being a discrete parameter, cannot factor. _us,
IndG(F)

P(F) π is irreducible if and only if φ has a representative that factors through M̂
n̂
,

explaining our choice of Ĥ. _is does not in general determine our choice of H or
the rest of the endoscopic datum, which, however, is forced by the expected behavior
of the local Langlands correspondencewith respect to central characters (in our case,
restricted to A(F)).

Write SO2n ,ω for the quasi-split form of SO2n that is split if ω is trivial, and is
non-split but split over the quadratic extension of F deûned by ω otherwise. We can
similarly talk of PSO2n ,ω etc. _us, we conclude that H sits in a chain of isogenies (as
one of the extremal elements):

(2.6)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

SO2n−2,ω → H→ PSO2n−2,ω in Case 1,
Spin2N ,ω → H→ SO2N ,ω in Case 2,
Sp2N → H→ Sp2N in Case 3.

Here, Spin2,ω and PSO2,ω are one-dimensional tori isomorphic to SO2,ω .

3 Endoscopic Interpretation of Shahidi’s Residue Formula

3.1 Semisimple Elements of Interest in M̃(F)

Let є ∈ H(F) be the identity element in Cases 1 and 2 and let it equal −1 ∈ H(F) =
Sp2N(F) in Case 3 (see (2.6)). Let π be an irreducible unitary supercuspidal repre-
sentation ofM(F) such that we have an isomorphism Θ∶ π ≅ π ○ Intw−1

0 . Let ω be the
restriction toA(F) ≅ F× of the central character of π. Since Intw0 acts onAaccording
to x ↦ x−1, ω is quadratic. We extend π to a representation of the twisted space M̃(F)
by setting π(w−1

0 ) = Θ (for the notion of a representation of a twisted space and other
aspects of twisted harmonic analysis thatwewill use in this paper, see [Li13, §3]). _is
extension is well deûned up to the choice of Θ, which is well deûned up to a nonzero
scalar. Unless we are in Case 3 with G = G1 and ω /= 1, let (H = Hω ,H, s, ξ̂) denote
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the endoscopic datum attached to M̃ and ω in Section 2.5. Associated to π is a certain
family s ↦ A(sα̃, π,w0) of intertwining operators.

_e notation introduced in the above paragraph will hold throughout the rest of
this paper.
A distribution D that essentially describes the residue of the family s ↦

A(sα̃, π,w0) at s = 0 was computed in [Sha92, Sha00,Yu09]. _e main purpose of
this paper is to relate D to the endoscopic transfer of the distribution f H ↦ f H(є) on
H(F) (for the datum (H,H, s, ξ̂), when it is deûned; otherwise, i.e., in Case 3 with
G = G1 and ω /= 1, we will see that D = 0).
For thiswewill need to study the behaviour of endoscopic transfernear semisimple

conjugacy classes in M̃(F) that are associated with є ∈ H(F). Shahidi’s approach of
computing residues picks out a few of these that we now discuss.

Henceforth, N′ will denote the open orbit of M in N. It is in general a proper
subset of what was denoted by N′ in Section 2.2 . Recall that, as in (2.1), we have a
map n ↦ m̃ deûned on N′, where n = m̃n′n−, with m̃ ∈ M̃ = w−1

0 M, n′ ∈ N and
n− ∈ N−. Write t∶N′ → M̃ for this map. Let ts ∶N′(F) → M̃(F) be the map that
takes n to the semisimple part of t(n). Here, by semisimple part, we are referring to
the Jordan decomposition in the normalizer of M in G, whose unipotent subvariety
is contained in its identity component M (so that this Jordan decomposition restricts
to a Jordan decomposition, in an obvious sense, for the twisted space M̃). Both t and
ts are equivariant for the conjugation action ofM, and ts takes N′(F) to M̃(F).

Remark 3.1 Note that the conjugation action ofM1 on M̃ factors through themap
M1 → M2, because its kernel is central in G (and not just in M). Henceforth, we
will be interested in the action of A×M2 on M̃, where the ûrst factor acts by le�
multiplication and the second factor by conjugation. Since Intw−1

0 acts as x ↦ x−1

on A and since A ≅ Gm is central in M, this action preserves each stable conjugacy
class in M̃(F) (recall that η̃, η̃′ ∈ M̃(F) are said to be stably conjugate if Intm(η̃) = η̃′
for some m ∈ M(F) such that, for all σ ∈ Gal(F/F), the element σ(m)−1m ∈ Mη̃(F)
actually belongs to Mη̃(F)Zη̃M(F)).

3.2 Three Crucial Lemmas

In this subsection we state Lemmas 3.3, 3.6, and 3.7, whose proofs are postponed to
Section 4. _ese are themain inputs that,while seeming to admit analogues in greater
generality, i.e., whenever M has a Zariski-dense orbit in N, have thus far resisted our
attempts at a classiûcation-free approach.

Remark 3.2 Suppose we have a symplectic space V ′ over F. Using [CM93, Propo-
sition 4.3.3], one sees that a linear transformation T in Sp(V ′)(F) lies in a minimal
(nonzero) unipotent orbit of Sp(V ′)(F) if and only T−1 has a one-dimensional image
(this makes T automatically unipotent and ensures that T − 1 has amatrix represen-
tation with the upper right entry as the unique nonzero one). Now one can check
that theminimal (nonzero) unipotent orbits in Sp(V ′)(F) form a single orbit under
PSp(V ′)(F); denote by OSp(V ′) their union.

https://doi.org/10.4153/CJM-2016-032-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2016-032-3


On Residues of Intertwining Operators 1181

Recall from Section 2.1 that, for η̃ ∈ M̃(F), we are writing η = Int η̃ andMη = Mη̃ .

Lemma 3.3 (i) In all of our three cases, M2(F) acts transitively on N′(F), and
ts(N′(F)) is contained in a unique stable conjugacy class Os of M̃(F).

(ii) Write any given m̃ = t(n) ∈ t(N′(F)) as η̃ ⋅ m̃u , with η̃ = ts(n).
(1) In Case 1, we have a unique identiûcation Mη = Sp(X), induced by either of

the chains Sp(X) ↪ M1 → M or M → M2 ⊃ Sp(X). Moreover, m̃u ∈ OMη =
OSp(X).

(2) InCase 2, η̃ deûnes a symplectic formonW and, using η̃ to denote this form as
well, the compositeM → M2 = GL(W) identiûes Mη = Sp(W , η̃). Further,
m̃u ∈ OSp(W , η̃) = OMη .

(3) In Case 3, m̃u = 1, and m̃ = η̃ deûnes a decomposition ofW into a 2N-dimen-
sional symplectic space and a one-dimensional quadratic space. In particular,
Mη ≅ Sp2N .

(iii) _e action of A(F) ×M2(F) on Os (see Remark 3.1) is transitive.

Remark 3.4 In Cases 1 and 2, setOη̃ = OMη ⊂ Mη(F); wemay do this for all η̃ ∈ Os
by Lemma 3.3 (iii). In Case 3, set Oη̃ = {1} ⊂ Mη(F), for all η̃ ∈ Os . It is straightfor-
ward to see, using Lemma 3.3 (ii) and the fact that GSp(X)(F) and GSp(W , η̃)(F)
surject to PSp(X)(F) and PSp(W , η̃)(F), respectively, that the union O of the Oη̃ , η̃
varying over Os , is an A(F) ×M2(F)-orbit.

Remark 3.5 _e notations Os ,O, and Oη̃ (η̃ ∈ Os) will be used throughout the
rest of this paper. A coincidence crucial to making our arguments work is that for all
η̃ ∈ Os , Oη̃ is the unique unipotent Mη ,ad(F)-orbit in Mη(F) with

dimOη̃ = dimMη −dimH = dimMη −dimHє

uniformly across our cases. _is follows easily from [CM93,_eorem 4.3.5] together
with Lemma 3.3.

Henceforth until Section 3.4, assume that (H,H, s, ξ̂) is deûned, i.e., the combi-
nation Case 3, G = G1, ω /= 1 is excluded.

3.2.1 A Very Brief Review of Some Facts Concerning Endoscopy

Recall that strongly regular elements of M̃(F) (resp., H(F)) are those semisimple el-
ements whose centralizers in M(F) (resp., H(F)) are abelian. Kottwitz and Shelstad
[KS99, Lemma 3.3.A] deûned a map AH /M̃ from the set of semisimple H(F)-con-
jugacy classes in H(F) to the set of semisimpleM(F)-conjugacy classes in M̃(F). A
semisimple element ofH(F) is called strongly M̃-regular if the image of itsH(F)-con-
jugacy class under AH /M̃ consists of strongly regular elements in M̃(F). For each
γ ∈ H(F) that is strongly M̃-regular and each δ ∈ M̃(F) that is strongly regular,
[KS99, Chapter 4] deûnes a complex number ∆(γ, δ) that is nonzero if and only if the
H(F)-conjugacy class of γ maps to theM(F)-conjugacy class of δ under AH /M̃. We
say that γ and δmatch if this condition is satisûed. _e function∆, deûned on a subset
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ofH(F)×M̃(F), is known as a transfer factor. In fact, its deûnition [KS99, Chapter 4]
is only well deûned up to multiplication by a complex number of absolute value 1. We
now ûx such a (noncanonical) choice.
Functions f ∈ C∞c (M̃(F)) and f H ∈ C∞c (H(F)) are said to havematching orbital

integrals (sometimeswemay say instead that f H is an endoscopic transfer of f ) if and
only if for all strongly M̃-regular γ ∈ H(F), we have an equality

(3.1) ∑
γ′

O(γ′ , f H , dh/dtγ′) =∑
δ
∆(γ, δ)O(δ, f , dm/dtδ),

whose meaning we now proceed to explain. Here γ′ runs over a set of representa-
tives for theH(F)-conjugacy classes in H(F) ∩ IntH(F)(γ), and δ runs over a set of
representatives in M̃(F) for the M(F)-conjugacy classes in M̃(F) consisting of ele-
ments thatmatch γ. Our notation concerning the orbital integrals O(γ′ , f H , dh/dtγ′)
and O(δ, f , dm/dtδ) is as follows. Suppose G is a unimodular locally compact totally
disconnected topological group acting continuously on a locally compact totally dis-
connected topological space Y . Let F ∈ C∞c (Y) and y ∈ Y . Suppose the stabilizer Gy
of y in G is unimodular, and dg and dty areHaar measures on G and Gy , respectively.
_en we set

O(y, F , dg/dty) = ∫
Gy/G

F(g−1 ⋅ y) dg
dty

,

provided this orbital integral is convergent. In our situation, the convergence of or-
bital integrals (which presupposes unimodularity) is assured thanks to [RR72]. _ere
are also some compatibilities required of the centralizermeasures dtγ′ and dtδ in (3.1);
we refer the reader to [KS99, Section 5.5] for more details.

_anks to thework ofWaldspurger andNgô, for every f ∈ C∞c (M̃(F)), there exists
f H ∈ C∞c (H(F)) such that f and f H have matching orbital integrals. _us, we get a
well deûnedmap C∞c (M̃(F)) → C∞c (H(F))/∼, where C∞c (H(F))/∼ is the quotient
of C∞c (H(F)) by its subspace consisting of those f H such that the le�-hand side of
(3.1) vanishes for all strongly M̃-regular γ ∈ H(F). Dually, i.e., pulling back under
f ↦ f H, we get amap at the level of distributions

endM̃
H ∶ (C∞c (H(F))/ ∼)∗ → C∞c (M̃(F))∗ .

_e space (C∞c (H(F))/ ∼)∗ is known as the space of stable distributions on H(F).
It is awell-known consequence of themain result of [Rog80] that (since є is central)

δє ∶ f H ↦ f H(є) is a stable distribution onH(F), so itspull back endM̃
H (δє)∶ f ↦ f H(є)

under f ↦ f H is well deûned as a distribution on M̃(F).

Lemma 3.6 (i) Suppose γ ∈ H(F) is strongly M̃-regular, δ ∈ M̃(F) is strongly
regular, and z ∈ A(F). _en ∆(γ, zδ) = ω(z)∆(γ, δ).

(ii) For m ∈ M2(F), γ ∈ H(F), and δ ∈ M̃(F), ∆(γ, Intm−1(δ)) = ∆(γ, δ).

Lemma 3.7 endM̃
H (δє) is supported on O, so the support of endM̃

H (δє) is a single
A(F) ×M2(F)-orbit (with the action as in Remark 3.1).

Lemmas 3.6 and 3.7 have the following immediate corollary.
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Corollary 3.8 endM̃
H (δє) is an (A(F) ×M2(F),ω × 1)-invariant distribution sup-

ported on O.

3.3 Nonvanishing of the Endoscopic Transfer of a Distribution

Lemma 3.9 endM̃
H (δє) /= 0.

Proof Essentially this proof will only use that є is central in H, that it is ûxed by all
the automorphisms ofH, and that H is an endoscopic group to M̃.
First, we would like to get rid of the cases where M2 ≅ GL2 and ω = 1. In these

cases the lemma can be proved using a semisimple descent argument as in the proof of
Lemma 4.7, togetherwith [LS87,_eorem 5.5.A]. Alternatively, with only theweaker
assumption that ω is unramiûed, the endoscopic datum (H,H, s, ξ̂) is unramiûed,
so that the twisted fundamental lemma applies (it is now fully proved in arbitrary
residual characteristic [LMW15,LW15]), which trivially yields the lemma.

Now assume that either M2 /≅ GL2 or ω /= 1. In this case it is easily seen that
(H,H, s, ξ̂) is elliptic, i.e., ξ̂(H) is not contained in any proper parabolic subgroup of
LM. Let I(M̃) (resp., SI(H)) denote the quotient of C∞c (M̃(F)) (resp., C∞c (H(F)))
by the equivalence relation under which two functions having the same orbital inte-
grals (resp., stable orbital integrals) at strongly regular semisimple elements are de-
clared equivalent. We have a subspace Icusp(M̃) obtained as the image of those func-
tions inC∞c (M̃(F))whose constant termswith respect toproperLevi subspaces M̃1 of
M̃ are zero as elements of I(M̃1) [Wal14, §3.1]. Similarlywe have a subspace SIcusp(H)
of SI(H), as deûned in [Wal14, §3.1].

We hasten to remark that, strictly speaking, the deûnition of SI(H) in [Wal14] (on
account of its handling a much more general situation) uses a z-extension [Wal14,
§2.5]. However, we take the character λ1 therein to be trivial, which lets us identify
the SI(H) from [Wal14] with what we are denoting by SI(H).
By [Wal14, Proposition 4.11(i)], which applies since (H,H, s, ξ̂) is elliptic, the en-

doscopic transfer map I(M̃) → SI(H) restricts to a well-deûned surjection from
Icusp(M̃) to the subspace of SIcusp(H) ûxed by a certain ûnite outer automorphism
group (we assume ûxed invariant measures on M̃(F) and H(F)). Since δє (being a
stable distribution) factors through C∞c (H(F)) → SI(H), and since the automor-
phism group of H ûxes є and hence δє , we are now reduced to showing that themap
SIcusp(H) → C induced by δє is nonzero. In other words, it is now enough to show
that C∞c (H(F)) contains at least one function f H whose constant terms with respect
to proper parabolic subgroups vanish, and which satisûes that f H(є) /= 0.

Since the space of such functions is invariant under right translation by є (є be-
ing central), we are reduced to showing that there exists a function φ ∈ C∞c (H(F))
whose constant terms with respect to proper parabolic subgroups vanish, and such
that φ(1) /= 0. Now note that in all our cases H is either semisimple or a torus (2.6). If
H is a torus, it has no proper parabolic subgroup, so our assertion is clear. If, on the
other hand,H is semisimple, then it has at least one supercuspidal representation, and
any suitable matrix coeõcient not vanishing at the identity (such clearly exist) does
the job (alternatively, see [Beu16,_eorem 4]).
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3.4 Relating endM̃
H (δє) to the Residue

Remark 3.10 _e space of (A(F)×M2(F),ω×1)-invariant distributions supported
on the A(F)×M2(F)-orbit O has dimension at most one. To see this, follow the rea-
soning of [Ber84, Section 1.5, Remark 2]; namely, apply the lemma of [Ber84, Section
1.5] with A(F) ×M2(F) in place of G there, taking themap p∶X → Z there to be the
identitymapO→ O, χ to be the character ω×1, ν to be trivial, and z0 to be any point
in O; since O is a ûnite union ofM(F)-orbits, the µ of that reference can be taken to
be a suitable positive ûnite linear combination ofM(F)-orbital integrals.

Moreover, the notion of orbital integrals provides away towrite down an (A(F)×
M2(F),ω × 1)-invariant distribution on O.

(3.2) f ↦ ∫
(A(F)×M2(F))m̃0 /A(F)×M2(F)

f (z−1m−1m̃0m)(ω × 1)(z,m) dmdz

= [(A(F) ×M2(F))m̃0 ∶ A(F)2 ×M2(F)m̃0]−1

∫
A(F)2/A(F)

∫
M2(F)m̃0 /M2(F)

f (z−1m−1m̃0m)ω(z) dṁd ż,

where m̃0 is a choice of a point onO, (A(F)×M2(F))m̃0 is the stabilizer of m̃0 under
A(F) ×M2(F), M2(F)m̃0 that of m̃0 under conjugation by M2(F), and dmdz, dṁ,
and d ż are choices of appropriately invariant measures. _e convergence of the above
integral is as a well-known and easy consequence of the convergence of usual orbital
integrals [RR72], togetherwith the fact that the images ofM1(F) inM2(F) andA(F)2

in A(F) have ûnite index. Note that by convention, the integral in (3.2) makes sense
evenwhen ω×1 is nontrivial on the stabilizer of some m̃0 ∈ O, since the integral is by
convention deûned to be zero in that case. If this is not the case, then the distribution
(3.2) isnonzero and gives a basis for the one-dimensional space of (A(F)×M2(F),ω×
1)-invariant distributions on O.

Remark 3.11 Let us recall Shahidi’s expression for D (this is due to [Sha92,Yu09]
for Cases 2 and 3, and [Yu09] for Case 1). Write π○ for the representation of M(F)
underlying the representation π of M̃(F). By Lemma 3.3(i) and [Sha00,_eorem 2.5]
(extended by [Yu09] to cover all our cases), s ↦ A(sα̃, π,w0) has a pole at s = 0 if and
only if for some f○ ∈ C∞c (M(F)) such that

(3.3) m ↦ ∫
A(F)

ω(z) f○(z−1m) dz

is amatrix coeõcient for π○, we have

(3.4) ∫
A(F)2/A(F)

∫
M2(F)w−1

0 m0
/M2(F)

f○(z−1 ⋅w0m−1w−1
0 ⋅m0 ⋅m)ω(z) dṁd ż /= 0,

where m0 ∈ M(F) is some element such that w−1
0 m0 lies in the image of the map

n ↦ m̃ considered in (2.3), M2(F)w−1
0 m0

is the stabilizer of w−1
0 m0 ∈ M̃(F) under

conjugation byM2(F) (or equivalently, the stabilizer ofm0 under Intw0-twisted con-
jugation by M2(F)), dṁ is a choice of an M2(F)-invariant measure on

M2(F)w−1
0 m0

/M2(F),
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and d ż may in our case be taken to be the counting measure on A(F)2/A(F). We
shouldmention that the formula in _eorem 2.5 of [Sha00] features ZM(F) in place
of A(F) in both (3.3) and (3.4), but these changes cancel each other out (A(F) has
ûnite index in ZM(F)).
For f○ ∈ C∞c (M(F)), deûne f ∈ C∞c (M̃(F)) by f (m̃) = f○(w0m̃) (note that

w0m̃ ∈ M(F)). _en it is easy to see that the expression (3.3) is thematrix coeõcient
for π○ attached to vectors ṽ , v if and only if

(3.5) m̃ ↦ ∫
A(F)

ω(z) f (z−1m̃) dz

is the matrix coeõcient for π attached to w−1
0 ṽ and v (use that ω = ω−1). Moreover,

we have:

∫
A(F)2/A(F)

∫
M2,w−1

0 m0
(F)/M2(F)

f○(z−1(w0m−1w−1
0 )m0m)ω(z) dṁd ż

= ∫
A(F)2/A(F)

∫
M2,m̃0 (F)/M2(F)

f (z−1m−1m̃0m)ω(z) dṁd ż,

where m̃0 = w−1
0 m0 lies in the image of themap n → m̃ (recall that ω = ω−1).

Using in particular (3.2), we conclude the following theorem from Remark 3.10.

_eorem 3.12 Let D be a nonzero (A(F) ×M2(F),ω ⊗ 1)-invariant distribution
supported on O, if it exists, and let D = 0 otherwise (see Remark 3.10). _en s ↦
A(sα̃, π,w0) has a pole at s = 0 if and only if D( f ) /= 0 for some f ∈ C∞c (M̃(F)) such
that the expression (3.5) is amatrix coeõcient of π.

Remark 3.13 In Case 3 when G = G1 and ω /= 1, it is easy to check that ω × 1 is
nontrivial on the stabilizer of some (and hence any) point of O in A(F) × A2(F) ⊂
A(F) × M2(F). _us, the space of (A(F) × M2(F),ω × 1)-invariant distributions
on O vanishes in this case. On the other hand, in all the other cases, Corollary 3.8
furnishes an element of this space, namely endM̃

H (δє),which is nonzero by Lemma 3.9.
_erefore, except when we are in Case 3 with G = G1 and ω /= 1, the distribution of
(3.2) is nonzero, so that for a nonzero scalar c,

endM̃
H (δє) = c ⋅ ∫

A(F)2/A(F)
∫

M2(F)m̃0 /M2(F)
f (z−1m−1m̃0m)ω(z) dṁd ż.

We now get the following corollary.

Corollary 3.14 If we are in Case 3 with G = G1 and ω /= 1, then D = 0. In all other
situations, up to a nonzero scalar, endM̃

H (δє) = D, where D is as in _eorem 3.12.

Now, as in [Sha00], we state a plausible deûnition for endoscopic transfer of rep-
resentations so as to state the above corollary in a manner that better illustrates the
expectations from endoscopy (see, however, the clariûcation in Section 3.5).
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Deûnition 3.15 Suppose thatwe are not inCase 3withG = G1 andω /= 1, so that the
endoscopic datum (H = Hω ,H, s, ξ̂) is deûned. _en π is said to arise by endoscopic
transfer from (H,H, s, ξ̂) if for some f ∈ C∞c (M̃(F)) such that the prescription of
(3.5) deûnes amatrix coeõcient of π, some (and hence, equivalently, any) endoscopic
transfer f H of f (with respect to the datum (H,H, s, ξ̂)) satisûes f H(є) /= 0.

According to the above deûnition, one can rephrase Corollary 3.14.

Corollary 3.16 Ifwe are not inCase 3withG = G1 and ω /= 1, then s ↦ A(sα̃, π,w0)
has a pole at s = 0 (or equivalently, IndG(F)

P(F) π is irreducible) if and only if π arises by
endoscopic transfer from (H,H, s, ξ̂). If we are in Case 3 with G = G1 and ω /= 1,
s ↦ A(sα̃, π,w0) is holomorphic at s = 0 (equivalently, IndG(F)

P(F) π is reducible).

3.5 Clarification on Definition 3.15

In Cases 2 and 3 when M = M2, andmore or less in Case 1 when M = M1, we already
have an alternate deûnition ofwhat it means for π to come from (H = Hω ,H, s, ξ̂) by
endoscopic transfer [Art13]). _erefore, we need to relate Deûnition 3.15 to Arthur’s
deûnition in these situations (in fact even when M = M2 in Case 1, something similar
should be possible using the work of [Xu15], but we skip this for now).

One approach to doing this would involve plugging f H into the Plancherel for-
mula for H, using the constancy of the Plancherel measure on L-packets (which fol-
lows from Arthur’s normalization of intertwining operators [Art13, Chapter 2 ]), and
appealing to endoscopic character identities. Instead, we will show how the equiva-
lence of the two deûnitions follows from results of [Mœg14]. However, for simplicity,
we will skip the cases where M2 ≅ GL2 and ω = 1, and assume that our endoscopic
datum (H,H, s, ξ̂) is elliptic.

3.5.1 Cases 2 and 3, G = G2

Suppose we are in Case 2 or Case 3, with M = M2. Let f ∈ C∞c (M̃(F)) be such that
(3.5) gives amatrix coeõcient ḟ of π (we emphasize that π is viewed as a representa-
tion of M̃(F), not one of M(F)). Assume that tr π( ḟ ) /= 0 (we will later justify this
assumption). In order to apply results from [Mœg14], we need to ûrst make sure that
f may be chosen to be a pseudo-coeõcient of π, i.e., tr π( f ) /= 0 and tr π′( f ) = 0 for
all irreducible representations π′ of M̃(F) such that the representations ofM(F) un-
derlying π and π′, which we henceforth denote for clarity as π○ and π′○, respectively,
are not isomorphic.

It follows from Lemma 3.6 that the dependence of f H on f is only through ḟ ,
which allows us to change f without changing ḟ . In particular, we can assume that
ḟ is obtained from f as in (3.5) but with A(F) replaced by A(F)2, on which ω is
trivial (and with measures adjusted accordingly). _is choice ensures that for all irre-
ducible tempered representations π′ of M̃(F), π′( f ) = c ⋅ π′( ḟ ) for a nonzero scalar
c, where π′( f ) is interpreted using an integral over M̃(F) and π′( ḟ ) using one over
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M̃(F)/A(F)2. We will use this to prove that f , as we have just chosen, is necessarily
a pseudo-coeõcient of π.
First, tr π( f ) = c tr π( ḟ ) /= 0. As regards proving that tr π′( f ) /= 0 if π○ /≅ π′○, note

that the extension π′ of π′○ to M̃(F) determines an isomorphism between the spaces of
matrix coeõcients of π′ and π′○, taking m̃ ↦ ⟨u, π′(m̃)v⟩ to m ↦ ⟨u, π′○(m)v⟩. From
this, we see that it suõces to prove that π′( ḟ○) = 0 (as opposed to just tr π′( ḟ○) = 0),
whenever π′ /≅ π○ is an irreducible representation of M(F) whose central character
restricts trivially to A(F)2, and where ḟ○ is any matrix coeõcient of π○. _is follows
from the usual proof of the Schur orthogonality relations: to show that π′( ḟ○)(v′) =
0 for any given v′ in the space of π′, assuming without loss of generality that ḟ○ is
given by m ↦ ⟨u, π○(m−1)v⟩ (recall that π○ is self-contragredient!), note that the
prescription:

w ↦ ∫
A(F)2/M(F)

⟨u, π○(m−1)w⟩ ⋅ π′(m)v′ dm

is well deûned (thanks to the central characters of π○ and π′ restricting trivially to
A(F)2 and the fact that m ↦ ⟨u, π○(m−1)w⟩ is compactly supportedmoduloA(F)2),
and now clearly intertwines π○ with π′. It is forced to be nonzero unless π′( ḟ○)(v′) =
0, as we wanted.

Now that f is a pseudocoeõcient for π, it follows that the image I( f ) of f in I(M̃)
(see the proof of Lemma 3.9 for the notation) necessarily belongs to Icusp(M̃) [Wal12,
§7.1 ]. Using [Li13, Proposition 3.3.2], I( f ), viewed as a function on the strongly reg-
ular semisimple set of M̃(F) and up to a nonzero scalar, is the (twisted) trace of π
multiplied by the characteristic function of the elliptic subset. _is makes I( f ) the
projection of the twisted trace of π on Icusp(M̃), up to a nonzero scalar, in the sense
of [Mœg14]. _us, the image SI( f H) of f H in SIcusp(H) is uniquely determined up
to a nonzero scalar. _e considerations so far also show that if tr π( ḟ ) = 0, then the
image of f (chosen as above) in Icusp(M̃) vanishes, so that SI( f H) = 0, justifying our
assumption that tr π( ḟ ) /= 0.

We have a stabilization that is a decomposition deûned by endoscopic transfer
[Mœg14, §2.3(1)].

(3.6) Icusp(M̃) =⊕
H′
(SIcusp(H′)Aut(H′ ,M̃)),

where H′ runs over elliptic endoscopic data for M̃, we have written H′ for the endo-
scopic group underlying H′, and Aut(H′ , M̃) is a certain ûnite group of outer auto-
morphisms of H′. _at (3.6) is deûned by endoscopic transfer means that the pro-
jection of I( f ) along the (SIcusp(H)Aut(H,M̃))-factor in (3.6), corresponding to our
endoscopic datum (H,H, s, ξ̂), is simply SI( f H). Note, in particular, that by the ana-
logue of (3.6) forH, SIcusp(H) can be viewed as a subspace of Icusp(H) (this is needed
to interpret the results from [Mœg14] that we are going to use now). By [Mœg14,
Corollary 4.11], wemay write

(3.7) SI( f H) =∑
σ

∑
ι∈Aut(H,M̃)

SI( fσ ○ ι),
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where σ runs over a set of representatives for equivalence classes of discrete series
representations for the relation of equivalence generated by L-indistinguishability and
“being in the same Aut(H, M̃)-orbit,” and fσ is a pseudo-coeõcient for σ . Here we
have identiûed Aut(H, M̃) ⊂ Out(H) with a ûnite subgroup of AutH via a splitting
(in fact, for us Aut(H, M̃) = Out(H)). By [Mœg14, _eorems 4.9 and 4.14], every
σ such that SI( fσ) /= 0 transfers to M̃, whereas we know from [Art13] that the set of
tempered L-packets ofH(F) that transfer to a given representation of M̃(F) is a union
of the members of at most one Aut(H, M̃)-orbit of L-packets. _us, the number of
σ ’s that contribute nontrivially to the right-hand side of (3.7) is 1 or 0, depending on
whether or not π comes by endoscopic transfer from H. It now suõces to show that
f H(є) /= 0 in the former case. _is follows since fσ(є) /= 0 (as I( fσ) /= 0 and fσ is a
pseudo-coeõcient for σ), and since fσ ○ ι(є) = fσ(є) for all ι ∈ Aut(H, M̃).

3.5.2 Case 1, G = G1

Now assume that we are in Case 1 with M = M1 = GL(W) × Sp(X). In this case,
the endoscopic datum E = (H,H, s, ξ̂),whose transfer factorswe denote by ∆, can be
viewed as a product of two endoscopic data: the usual endoscopic datumE′ for Sp(X)
with H as the underlying group, and the twisted endoscopic datum E′′ for G̃L(W) ≅
G̃L1 with the trivial group as the underlying endoscopic group, which corresponds to
the L-embedding ofWF = 1 ×WF into ĜL(W) ×WF = GL1(C) ×WF = C× ×WF via
ω. Write ∆′ and ∆′′ for the transfer factorswith respect to these two endoscopic data.
_en we can see that a strongly M̃-regular γ ∈ H(F) matches

(a, δ) ∈ G̃L(W)(F) × Sp(X)(F) = M̃(F)
if and only if γ matches δ for E′, and

∆(γ, (a, δ)) = ∆′(γ, δ)∆′′(1, a) = ω(a)∆′(γ, δ),
up to a nonzero scalar independent of γ, δ, and a that does not concern us. _us,
for f = f1 ⊗ f2 ∈ C∞c (M̃(F)) with f1 ∈ C∞c (G̃L(W)(F)) and f2 ∈ Sp(X)(F), it is
easy to see that its endoscopic transfer f H, up to a nonzero scalar and up to looking
only at stable orbital integrals, equals the product of an integral of f1 against an ω-
equivariant function and an endoscopic transfer of f2 with respect to E′. Now using a
similar argument as in Case 2 with M = M2 (in fact, what we want is summarized in
[Mœg14,Remark 4.15]), it is easy to see that a supercuspidal representation π = ω⊗π′
of M̃(F), the restriction ω of whose central character to A(F) is quadratic, comes
from the endoscopic datum E if and only if π′ comes in the sense of Arthur from the
unique endoscopic datumof Sp(X)whose underlying group is the special orthogonal
group in dimX = 2n − 2 variables, which is quasi-split, non-split if ω /= 1, and split
over the degree one/quadratic extension of F determined by ω.

3.5.3 Case 1, M = M2

Finally, we consider Case 1 with M = M2 = GSp(X), but only sketch the arguments
in this situation. Our claim in this case is that the condition f H(1) /= 0 for some f
as in Deûnition 3.15 is equivalent to π arising by endoscopic transfer in the sense of
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[Xu15] from the group GSO2n−2,ω which is non-split if ω /= 1, and splits over the
trivial/quadratic extension deûned by ω (in this case the group also determines the
endoscopic datum). Since [Xu15] has established the relevant endoscopic character
identities for GSp2n−2, π comes by endoscopic transfer from GSO2n−2,ω in the sense
of [Xu15] if and only if its coarse Langlands parameter as in that reference factors
through the appropriate embedding of L-groups. From the commutative diagram in
the proof of [Xu15, Proposition 2.7], this is equivalent to the image of its coarse Lang-
lands parameter in the L-group of Sp2n−2 factoring through the L-group of SO2n−2,ω ,
or equivalently [Xu15, §4.1], π∣Sp2n−2(F) having an irreducible component coming via
endoscopic transfer from SO2n−2,ω . By what we have seen for Case 1 with M = M1,
it now suõces to show that f H(1) /= 0 if and only if f H1

1 (1) /= 0, where f1 is the pull
back of f to M̃1(F) and f H1

1 is an endoscopic transfer of f1 for the endoscopic datum
we have associated with M1 and the pull back of ω via A1(F)

≅→ A2(F). Since f1 is a
matrix coeõcient for π∣M̃1(F), this can be easily seen from Lemmas 3.6, 3.7, and 3.9
(togetherwith the fact that the setsO forG1 andG2 are isomorphic under the obvious
map G1 → G2).

4 Proofs of Lemmas from Section 3

4.1 Proof of Lemma 3.3

Using the Cayley transform or the exponential map, for (i), we see that it is enough
to prove an analogous assertion with N replaced by its Lie algebra n. _e second
assertion of (i) follows from the ûrst, the deûnition of stable conjugacy (recalled in
Remark 3.1), and the fact that the kernel ofM(F)→M2(F) is contained inZIntw0

M (F).
In all cases, one has an obvious identiûcation of n(F)with the set of elements (A, B) ∈
Hom(X ,W ′) ⊕ Hom(W ,W ′) such that B + B∗ = 0. Under the identiûcation of
Hom(W ,W ′) with the space of bilinear forms on W given by T ↦ ⟨ ⋅ , T( ⋅ )⟩, the
condition B+B∗ = 0merely says that B is symplectic (inCases 2 and 3), or orthogonal
(in Case 1). For the rest of this proof, we will o�en use that the exponential map
(or, alternatively, an appropriately normalized Cayley transform) takes an element
(A, B) ∈ n(F) as above to the element n(A, B − (1/2)AA∗) ∈ N(F) in the notation
that was introduced shortly following (2.2).

InCases 1 and 2, the set n′′ of all (A, B) in n,where A ∈ Hom(X ,W ′)∖{0} and B ∈
Isom(W ,W ′), is nonempty, Zariski open, andM-invariant, and hence contains n′. In
Case 3, one takes n′′ to be the set of pairs (A, B) in n such that A ∈ Hom(X ,W ′)∖{0}
and such that B is a symplectic formonW whose radical RadB ⊂W has rank 1 and is
not contained in the kernel ofA∗ ∈ Hom(W , X). Again, n′′ isnonempty,Zariski open
(the conditions amount to requiring thatA /= 0 and that B−(1/2)AA∗ ∈ Hom(W ,W ′)
is a nondegenerate bilinear form on W), andM-invariant, and hence contains n′. To
prove (i), it suõces to show that n′′(F) is a singleM2(F)-orbit.

In Case 1, using an identiûcation W ≅ F, M2 can be naturally identiûed with
GSp(X⊗FW , ⟨ ⋅ , ⋅ ⟩), with its action on N given by g ⋅ (A, B) = (A○ g−1 , µ(g)−1B), µ
denoting the similitude character. _en (i) in Case 1 follows from the surjectivity of
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µ∶GSp(X)→ F× together with the transitivity of the action of Sp(X) on

Hom(X ,W ′) ∖ {0}.

InCase 2, (i) follows from the fact thatGL(W)(F) acts transitively on the space of
nondegenerate symplectic forms onW , and that the stabilizer of any such symplectic
form acts transitively on Hom(X ,W ′) ∖ {0}.

_us, let us now prove (i) for Case 3, which comes down to showing that
GL(W)(F) acts transitively on the space of symplectic forms B on W with
dimRadB(W) = 1, and that any stabilizer of any of these symplectic forms acts tran-
sitively on the set of elements A∗ ∈ Hom(W , X) ∖ {0} such that ker(A∗) does not
containRadB(W). _atGL(W)(F) acts transitively on the space of symplectic forms
B with dimRadB = 1 follows from the fact that GL(W)(F) acts transitively on the
one-dimensional subspaces W1 ⊂ W , together with the fact that the stabilizer of any
such W1 in GL(W)(F) surjects onto GL(W/W1)(F). To ûnish (i), therefore, it is
enough to show that given a lineW1 ⊂W and a symplectic form B onW with radical
W1, the stabilizer of B in GL(W)(F) is transitive on Hom(W , F)∖Hom(W/W1 , F).
_is is easy: given φ, φ′ belonging to this latter set, choose ordered symplectic bases
for their kernels and take one to the other while ûxing W1 pointwise.

Now let us prove (ii) and (iii). First consider Case 1. Any element m̃ ∈ t(N′(F)) ⊂
M̃(F) is the image of an element of M̃1(F) ≅ Isom(W ,W ′) × Sp(X)(F) of the
form (a, 1 + ξ∗η−1ξ) (2.3). Now as an element of End(X), ξ∗η−1ξ is nilpotent, since
image(ξ∗), being one-dimensional, is contained in image(ξ∗)⊥ = ker ξ. _us, m̃s is
the image of some (a, 1) ∈ M̃1(F). From here, both (ii) and (iii) for Case 1 are easy to
check (use Remark 3.2).

InCases 2 and 3, by (2.3), an element m̃ ∈ t(N′(F)) ⊂ M̃(F) has image in M̃2(F) ≅
Isom(W ,W ′) of the form B − (1/2)AA∗ for some

A ∈ Hom(X ,W ′) and B ∈ Hom(W ,W ′).

Viewing B and m̃ as bilinear forms on W , we have a relation

m̃(w1 ,w2) = B(w1 ,w2) − (1/2)aλ(w1)λ(w2),

where a ∈ F× and λ is a linear functional on W (the composite of A∗ with some
isomorphism X ≅ F).

Let us consider Case 2 ûrst. (ii) and (iii) for M1 follow from the corresponding
assertions for M2 (use that the obvious map A → A2 is an isomorphism, and verify,
say using the computations that follow, that η̃ cannot beM(F)-conjugated to b ⋅ η̃ if
b /= 1 belongs to the kernel ofM1(F) → M2(F)), so it is enough to consider the case
whereM = M2. Choose e ∈W such that λ = B(e , ⋅) on W . _en for w1 ,w2 ∈W

m̃(w1 ,w2) = B(w1 ,w2) − (a/2)B(e ,w1)B(e ,w2)(4.1)
= B(w1 − (a/2)B(e ,w1)e ,w2) = B(m̃u(w1),w2),

where m̃u ∈ GL(W)(F) = M(F) is given by w ↦ w − B((a/2)e ,w)e. It is easy to
see that m̃u is unipotent, in fact belonging to OSp(W ,B) (see Remark 3.2), and that its
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inverse is given by w ↦ w + B((a/2)e ,w)e. _erefore,

B(w1 , m̃−1
u w2) = B(w1 ,w2) + (a/2)B(e ,w2)B(w1 , e)(4.2)

= B(w1 ,w2) − (a/2)B(e ,w1)B(e ,w2) = m̃(w1 ,w2).

_us, by (4.1) and (4.2), the unipotent element m̃u ∈ GL(W)(F) and the semisimple
element B ∈ G̃L(W)(F) satisfy m̃uB = m̃ = Bm̃u . It follows that B = η̃, giving (ii) as
m̃u ∈ OSp(W ,B) = OSp(W , η̃). Further,Os is actually a singleM(F) = M2(F)-conjugacy
class, for nondegenerate symplectic forms onW are all GL(W)(F)-conjugate, show-
ing (iii) in Case 2.

Now wemove to Case 3. Once again, when M = M1, (ii) and (iii) follow from the
corresponding assertions for M = M2. _is time A1 → A2 is not an isomorphism, but
we can instead use that the inverse image of A2(F) in M1(F) is A1(F). _erefore, we
now assumeM = M2. Recall that in this case an element of n′(F) is represented by a
pair (A, B),where A ∈ Hom(X ,W ′)∖{0} and B ∈ Hom(W ,W ′),with the condition
that B − (1/2)AA∗ ∈ Isom(W ,W ′). _is latter condition implies that the kernel of
A∗,which is a 2N-dimensional subspace ofW , does not contain the one-dimensional
subspace RadB ofW , and is hence complementary to RadB inW . _erefore,writing
two elements ofW as v1 + v2 and w1 +w2 with v1 ,w1 ∈ kerA∗ and v2 ,w2 ∈ RadB, we
have

(B − (1/2)AA∗)(v1 + v2 ,w1 +w2)

= B(v1 + v2 ,w1 +w2) −
1
2
⟨A∗(v1 + v2),A∗(w1 +w2)⟩X

= B(v1 ,w1) −
1
2
⟨A∗v2 ,A∗w2⟩X ,

so that by (2.3), m̃ = B− (1/2)AA∗ ∈ G̃L(W)(F) is a nondegenerate bilinear form on
W that realizesW as a direct sumof the 2N-dimensional symplectic space (kerA∗ , B)
and the one-dimensional quadratic space (RadB, (−1/2)AA∗). Hence m̃ is already
semisimple, so η̃ = m̃ (in particular, yielding (ii)). _e centralizerMm̃ of m̃ is thusnat-
urally isomorphic to Sp2N ×O1. Butone also sees thatMm̃ = Mm̃ ⋅{±1} = Mm̃ ⋅Zm̃

M(F),
yielding that the stable conjugacy class of m̃ is precisely IntM(F) ⋅ m̃ ∩ M̃(F). Fur-
ther, this stable conjugacy class identiûes with the space of all nondegenerate bilinear
forms on W that split into a direct sum of a 2N-dimensional symplectic part and a
one-dimensional orthogonal part. _us, it is easy to see that one can bijectively map
the set ofM(F)-conjugacy classes within the stable conjugacy class of m̃ to F×/F×2,
assigning any representative of such a conjugacy class to the discriminant of the qua-
dratic form on the orthogonal part. _is also immediately gives (iii), although it is
no longer the case that M2(F) acts transitively on the stable conjugacy class Os in
question.

Remark 4.1 In each of our cases, it follows from the above proof that given any
η̃ ∈ Os ,Mη = Mη ⋅ZηM, andMη(F) = Mη(F) ⋅ZηM(F) (η = Int η̃; see Section 2.1). _is
implies also that the stable conjugacy class Os of η̃ equals IntM(F)(η̃) ∩ M̃(F).

https://doi.org/10.4153/CJM-2016-032-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2016-032-3


1192 S. Varma

4.2 Notation to Deal With Endoscopic Transfer

Henceforth ûx any η̃ ∈ Os .
We wish to ûx a base point θ̃ ∈ M̃(F). We will also deûne a Borel pair (B,T) in M

stable under θ = Int θ̃ and an element ν ∈ T(F) such that η̃ = νθ̃.
Suppose ûrst that we are in Case 1 or Case 2. In these cases, we set θ̃ = η̃ and

ν = 1 ∈ M(F), so that η̃ = νθ̃. It is easy to check that η = Int η̃ = θ ûxes a splitting
of M. Fix a Borel pair (B,T) in M forming part of such a splitting. Let (BH ,TH) be
a Borel pair in H. Dual to ξ̂ (and realized using the above choices of Borel pairs), we
have a homomorphism ξ∶T→ TH that factors through an isomorphismT /(1−η)T =
T /(1 − θ)T → TH (ξ will no longer be used to denote an element of Hom(X ,W ′)
as we have done before). We have abused notation slightly here: if H is not split, ξ is
only deûned over the quadratic extension that splits H.

In Case 3, slightly more explicit computations will be needed, so that we ûx our
choices a bit more precisely. Recall that η̃ deûnes a direct sum decomposition of
W into a 2N-dimensional symplectic space and a one-dimensional quadratic space.
Choose an ordered basis e1 , . . . , e2N+1 of V such that e1 , . . . , eN , eN+2 , . . . , e2N+1 form
an ordered symplectic basis for the symplectic part of η̃ and eN+1 spans the orthog-
onal part (in particular, η̃(e i , e2N+2−i) = 1 for 1 ≤ i ≤ N). _is ordered basis gives a
Borel pair (B,T) in M. As before, dual to ξ̂ and using the choices of Borel pairs we
havemade, we have amap ξ∶T→ TH. _is time, ξ is deûned over F as both M andH
are split, so that ξ̂ is triviallyWF-equivariant.
Before proceeding further, assume that M = M2. _en our ordered basis gives an

identiûcation T ≅ G2N+1
m /F. On the other hand, the choice of the basis ê1 , . . . , ê2N+1

gave a Borel pair (B̂, T̂) in M̂ together with an identiûcation T̂ ≅ G2N+1
m /C. We as-

sume our L-group data to be chosen so that the identiûcation of T̂ as Langlands dual
to T (made using the Borel pairs (B,T) and (B̂, T̂)), modulo the above identiûca-
tions, is the usual identiûcation of G2N+1

m /C with the Langlands dual of G2N+1
m /F.

Let f1 , . . . , f2N be an ordered symplectic basis for a symplectic space that deûnes
H = Sp2N , and use this ordered basis to deûne a Borel pair (BH ,TH) for H together
with an isomorphism TH ≅ GN

m . Again we assume that this isomorphism dualizes
(using the obvious choices of Borel pairs) to the isomorphism T̂H ≅ GN

m deûned by
the ordered basis ê1 , . . . , ê2N+1 of Ŵ . It isnow easy to see that under the identiûcations
T ≅ G2N+1

m and TH ≅ GN
m , themap ξ is given by

(a1 , . . . , a2N+1)↦ (a1a−1
2N+1 , . . . , aNa−1

N+2).

Let θ̃ be the quadratic form on W such that θ̃(e i , e j) = (−1)iδ i ,(2N+2− j) for i /=
N + 1, and such that θ̃(eN+1 , eN+1) = (−1)N η̃(eN+1 , eN+1). _us, η̃ = νθ̃ where,

ν = (−1, 1,−1, 1, . . . , (−1)N

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
N terms

, (−1)N , (−1)N−1 , . . . ,−1, 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

N terms

) ∈ G2N+1
m (F)

= T(F) ⊂ GL(W)(F).

_e choice we have made ensures that det ν = 1 ∈ F×2, so that θ̃ lies in the image of
M̃1(F) → M̃2(F). _is property allows us to deûne ν when G = G1: simply choose
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any preimage inM1(F) of the corresponding element forM2. _is also lets one deûne
θ̃ by requiring that η̃ = νθ̃.

4.2.1 On Matching of Conjugacy Classes

We use θ̃ and ξ to deûne matching of semisimple conjugacy classes. In other words,
semisimple elements δ ∈ M̃(F) and γ ∈ H(F) match if and only if ξ(t) = tH for
some t ∈ T(F) and tH ∈ TH(F) such that tθ̃ is M(F)-conjugate to δ and tH is H(F)-
conjugate to γ.

Example 4.2 In all three cases, the conjugacy classes of η̃ and є match because
ξ(ν) = є.

4.3 Semisimple Descent

Let r > 0. ByHr wewill denote q∣−1
H(F)(q(TH(F)<r)),where q∶H→ H //H is themap

from H to its quotient under IntH, and

TH(F)<r = {t ∈ TH(F) ∣ ∣χ(t) − 1∣ < r,∀χ ∈ X∗(TH)}.

Here ∣ ⋅ ∣ denotes the unique extension to F of the normalized absolute value on F. One
knows thatHr is an open and closed subset ofH(F). Every neighborhood of 1 ∈ H(F)
that is invariant under H(F)-conjugation contains some Hr (this is easy to see from
the fact that H has only ûnitely many H(F)-conjugacy classes of maximal F-tori),
and the intersection of all the Hr is the set of unipotent elements in H(F). Deûne
tH(F)<r = {X ∈ tH(F) ∣ ∣dχ(X)∣ < r, ∀χ ∈ X∗(TH)}, where dχ∶ tH ×F F → Ga/F
is the derivative of χ∶TH ×FF → Gm/F. We can adapt the deûnition of Hr to talk of
Mη ,r , hr andmη ,r . For small enough r, one knows that exp(hr) = Hr , and similarly for
the other groups of interest. (_is follows from the computations in [HC99, §10.1].)
Clearly these sets are closed under stable conjugacy.

Deûnition 4.3 Given η̃′ ∈ M̃(F) that is semisimple, and a suõciently small r > 0,
deûne the map tcη̃′ ∶M(F) × mη′ ,r → M̃(F) by (m, X) ↦ Intm−1(exp(X)η̃′) (here
η′ = Int η̃′). Set Uη̃′ ,r = tcη̃′(M(F) ×mη′ ,r).

Lemma 4.4 For suõciently small r > 0, the following are true.
(i) If X ∈ mη′ ,r , then X is semisimple (resp., regular semisimple) if and only if

(expX)η̃′ ∈ Uη̃′ ,r

is semisimple (resp., regular semisimple) as an element of M̃(F).
(ii) If X1 , X2 ∈ mη′ ,r and m ∈ M(F) are such that (expX1)η̃′ = Intm((expX2)η̃′),

then m ∈ Mη′(F).
(iii) Uη̃′ ,r ⊂ M̃(F) is open, and themap tcη̃′ is submersive everywhere onM(F)×mη′ ,r .
(iv) For all f ∈ C∞c (Uη̃′ ,r) ⊂ C∞c (M̃(F)), there exists ϕ ∈ C∞c (mη′ ,r) such that for all

X ∈ mη′ ,r , we have an equality of orbital integrals

O(X , ϕ,Mη′) = O((expX)η̃′ , f ).
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(See Subsection 3.2.1 for the deûnition of orbital integrals.) Here we assume that
the centralizermeasures are chosen compatibly, something thatmakes sense thanks
to (ii).

(v) Assume that Mη′(F) = Mη′(F)Zη
′

M(F). _en the association f ↦ ϕ of (iv)
(while not well deûned) induces a well-deûned bijection between the sets I(Uη̃′ ,r)
and I(mη′ ,r), where I(Uη̃′ ,r) (resp., I(mη′ ,r)) denotes the quotient of C∞c (Uη̃′ ,r)
(resp., C∞c (mη′ ,r)) by the equivalence relation that identiûes functions with the
same strongly regular semisimple orbital integrals.

Proof Most of this can be found in [Wal08, §2.4]. _ere X is assumed to be regu-
lar semisimple, but the proof goes through to arbitrary X, verbatim, except that one
needs to use [RR72] to justify the absolute convergence of not necessarily semisimple
(possibly twisted) orbital integrals. Further, on the face of it, [Wal08, Lemma 2.4] only
states the existence of an injectivemap I(Uη̃′ ,r)→ I(mη′ ,r), but we claim that the ar-
gument there easily gives surjectivity, too. For this, given an element φ ∈ C∞c (mη′ ,r),
let K′ ⊂ M(F) be an open compact subgroup and let

α = (measK′)−11K′ ⊗ φ ∈ C∞c (M(F))⊗ C∞c (mη′ ,r) = C∞c (M(F) ×mη′ ,r),
and note that we can deûne fα ∈ C∞c (Uη̃′ ,r) by requiring that

fα(m−1 exp(X)η̃′m) = ∫
Mη′(F)

α(m−1
1 m,m−1

1 Xm1) dm1 .

Now a computation as in the proof of [Wal08, Lemma 2.4], using that Mη′(F) =
Mη′(F)Zη

′

M(F), gives that the image of fα in I(Uη̃′ ,r) maps to the image of φ in
I(mη′ ,r).

Lemma 4.4 will only be applied to η̃′ in the stable conjugacy class Os contain-
ing ts(N′(F)). For these η̃′, the assumption in (v) of that lemma, that Mη′(F) =
Mη′(F)Zη

′

M(F), holds (see Remark 4.1).

Lemma 4.5 Let η̃′ belong to the stable conjugacy class Os . Let r, 0 < r < ∣4∣, be
such that ∣2∣−1r is as in Lemma 4.4. Suppose δ ∈ M̃(F) and γ ∈ H(F) are semisimple
elements that match.
(i) If δ belongs to the union of the Uη̃′ ,r , η̃′ running through Os , then γ ∈ єHr .
(ii) If γ ∈ єHr , then δ belongs to the union of the Uη̃′ ,∣2∣−1 r , η̃′ running through Os .

Proof Because ξ(ν) = є (see Example 4.2), the isomorphism (T /(1 − θ)T) ×F F →
TH ×FF induced by ξ sends ν ⋅ (T /(1 − θ)T)(F)<r to єTH(F)<r . Because є is central
in H, the set of semisimple elements of H(F) that are H(F)-conjugate to єTH(F)<r
is precisely єHr .

Since θ∣T has order 2, we get maps Tθ(F) → (T /(1 − θ)T)(F) → Tθ(F), where
the ûrst map is induced by the inclusion Tθ ↪ T and the latter is induced by themap
t ↦ tθ(t). _e latter map, like any homomorphism of tori, takes (T /(1− θ)T)(F)<r
to Tθ(F)<r , while the composite map, being given by t ↦ t2, takes Tθ(F)<∣2∣

−1 r iso-
morphically onto Tθ(F)<r (because, using r < ∣4∣, we see that every x ∈ F× with
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∣x − 1∣ < r has a square root
√
x such that ∣

√
x − 1∣ < ∣2∣−1r, and that such a

√
x is

unique, using that ∣2∣−1r < ∣2∣).
Now (ii) will follow if we show that a semisimple element of M̃(F) belongs to

some Uη̃′ ,∣2∣−1 r , with η̃′ ∈ Os , if and only if it is M(F)-conjugate to an element of
Tθ(F)<∣2∣

−1 r η̃. Let us prove this assertion. _en the same assertion with ∣2∣−1r re-
placed by r will also give (i).

_e ‘only if ’ part is obvious. _erefore, it is enough to show that any m̃ ∈ M(F)
such that m−1

1 m̃m1 = tη̃ for somem1 ∈ M(F) and t ∈ Tθ(F)<∣2∣
−1 r belongs to Uη̃′ ,∣2∣−1 r

for some η̃′ ∈ Os .
Write m̃ = m′η̃′, where m′ = m1 tm−1

1 , η̃′ = m1 η̃m−1
1 . If we show that η̃′ belongs to

M̃(F), it beingM(F)-conjugate to η̃will also be stably conjugate to η̃ (seeRemark 4.1);
and then it is easy to see that m̃ = m′η̃′ ∈ Uη̃′ ,∣2∣−1 r .

_us, it remains to show that m1 η̃m−1
1 ∈ M̃(F), or equivalently, that m1 tm−1

1 ∈
M(F). In other words, we want to show that for all σ ∈ Gal(F/F), Int(σ(m1)−1m1)
takes t to σ(t). Such a σ necessarily takes tη̃ = tνθ̃ to an M(F)-conjugate of it, so
that by [KS99, Lemma 3.2.A] and the sentence just before it, there exists w ∈ Mθ(F)
normalizing T such thatw tνw−1 and σ(t)ν have the same image in (T /(1−θ)T)(F).
We claim that w tw−1 and σ(t) have the same image in (T /(1 − θ)T)(F). _is is
because (even when G = G1 in Case 3) ν is easily checked to be necessarily ûxed by
w. Since t belongs to Tθ(F)<∣2∣

−1 r ,whichmaps injectively to (T /(1−θ)T)(F) (this is
because t ↦ tθ(t) = t2 is injective on Tθ(F)<∣2∣

−1 r , as observed above), we conclude
that w tw−1 = σ(t). Since Int σ(m1)−1m1(tη̃) = σ(tη̃) = w tw−1 ⋅ η̃ = w(tη̃)w−1,
conjugation by w−1σ(m−1

1 )m1 preserves tη̃. We have an M-conjugation equivariant
map M̃ → M given by mη̃ ↦ mη(m)η2(m)η3(m) (η has order two in Case 1 and
Case 2, and order four in Case 3). Hence we get that Intw−1σ(m−1

1 )m1 preserves t4,
so that (since t is in the image of exp) it also preserves t. _is forces Int σ(m−1

1 )m1 to
take t to w tw−1 = σ(t), as needed.

Remark 4.6 Lemma 4.5(ii) and [Wal14, Section 5.1, (1)] together have the conse-
quence that endM̃

H (δє) is supported in the set of elements of M̃(F) whose semisimple
part belongs to Os (this uses that f H(є) = 0 if the stable strongly regular semisim-
ple orbital integrals of f H in єHr vanish, a consequence of a well-known result of
Rogawski on Shalika germs [Rog80] ).

Proof of Lemma 3.6 Let us prove the two assertions somewhat simultaneously.
Note that (ii) is clear if M = M2, so that for the purposes of proving (ii) we as-
sume M = M1. For M′ = M1 ,M2 or M, set M′

♯ = M′ /Zθ
M′ . Set A♯ = A /Aθ . We

have natural isomorphisms Gm ≅ A and Gm ≅ A♯, which we write as z ↦ a(z)
and z ↦ a♯(z), respectively. Waldspurger [Wal14, §2.7] described a character ω♯ of
M♯(F) such that for all γ ∈ H(F) and δ ∈ M̃(F) that match, and for all m ∈ M♯(F),
∆(γ,m−1δm) = ω♯(m)∆(γ, δ). Considering M2 in place of M, we get a character
ω2,♯ ofM2,♯(F). Now note the following.

● In all three cases, Int a♯(z) acts on M̃ as multiplication by a(z), so (i) will follow
from showing that ω(a(z)) = ω♯(a♯(z)). In Case 3 when M = M1, becauseM2(F)
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is (explicitly checked to be) generated by A♯(F) and the image ofM1(F), this will
also give (ii).

● InCase 1 andCase 2,M♯ = M2,♯, so (ii)will follow from showing thatω♯ = ω2,♯∣M♯(F)
in these cases.
So now let us recall from [Wal14, §2.7] the prescription for ω♯. From

1→ T /Zθ
M → (1 − θ)T×Tad → (1 − θ)Tad → 1,

(with themapT /Zθ
M → (1−θ)T induced by t ↦ t−1θ(t))wehave, letting p∶ M̂sc → M̂

denote the obvious map, and dualizing and restricting, an exact sequence

(4.3) 1→ ZM̂sc
/Zθ̂

M̂sc

(p,1−θ̂)→ ZM̂ /(ZM̂ ∩T̂θ̂) × ZM̂sc
→ ZM̂♯ → 1.

Note that there is an obvious compatibility in the form of a commutative diagram
between the above sequence and the analogous one for M2. Given w ∈ WF , consider
an element of ξ̂( L H) = ξ̂(H) of the form (g(w),w), e.g., ξ̂(1⋊w), andwrite g(w) =
z(w)p(gsc(w)) with z(w) ∈ ZM̂ and gsc(w) ∈ M̂sc. Let ssc be an element of M̂sc with
the same image as s in M̂ad. Note thatwemay and shall arrange that gsc(w) and ssc are
the same as their analogues for M2, and that z(w) is the image in M̂ of the analogous
object for M2. _us, if we deûne asc(w) ∈ M̂sc by

ssc θ̂(gsc(w))w(ssc)−1 = asc(w)gsc(w),

then asc(w) belongs to ZM̂sc
and coincides with the analogous object for M2 in place

ofM. According to [Wal14, Lemma 2.7], ω♯ is the character ofM♯(F) corresponding
to the element of H1(WF ,ZM̂♯) represented by w ↦ z♯(w), where z♯(w) is the image
of (z(w), asc(w)) in ZM̂♯ under the relevant map in (4.3). In Cases 1 and 2, where
M♯ = M2,♯, it is clear thatw ↦ z♯(w) coincides (on the nose)with its analogue forM2,
yielding the assertion sought in (ii) above, namely, that ω♯ = ω2,♯∣M♯(F). (i) remains.

What we now need to prove is that under the isomorphim ι∶A♯ → A obtained by
factoring the isogeny θ − 1 on A, ω♯∣A♯(F) corresponds to ω−1 = ω. Now ω♯∣A♯(F) is
given by the composition ofw ↦ z♯(w)with the obviousmap d♯∶ M̂♯ → Â♯ (this easily
follows, e.g., from the construction in [Bor79, §10.2]). It is easy to see that in (4.3) the
map from the ZM̂sc

factor to ZM̂♯ is the obvious one, so that its composite with Â♯ is
trivial (as it is induced by a composite homomorphism M̂sc → M̂♯ → Â♯ that is nec-
essarily trivial as a simply connected group cannot have a torus as a quotient). _us,
using the description of the secondmap of (4.3),we get that d♯(z♯(w)) = ι̂(d(z(w))),
where d∶ M̂ → Â is the obvious map. It now suõces to show that w ↦ d(z(w)) is
the Langlands parameter of ω. But since there does not exist a nontrivial homomor-
phism of algebraic groups from a simply connected group to a torus, this is the same
as w ↦ d(g(w)), which by Remark 2.3 equals ω.

Let η̃′ be stably conjugate to η̃, i.e., η̃′ ∈ Os . Given φ ∈ C∞c (mη′ ,r) ⊂ C∞c (mη′(F))
and t ∈ OF ∖ {0}, deûne φt ∈ C∞c (mη′ ,r) by φt(X) = φ(t−1X) for all X ∈ mη ,r . Sim-
ilarly we have a self-map φH ↦ φH

t of C∞c (hr) into itself, which, via the exponential
map andmultiplication by є, yields a self-map f H ↦ f Ht of C∞c (єHr) ⊂ C∞c (H(F)).
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Lemma 4.7 Suppose r > 0 is suõciently small. Fix η̃′ stably conjugate to η̃. If regular
semisimple X ∈ mη′ ,r and Y ∈ hr are such that exp(Y)є ∈ єHr and exp(X)η̃′ ∈ Uη̃′ ,r
match, then for all t ∈ F ∖ {0} such that t2X ∈ mη′ ,r and t2Y ∈ hr ,

∆(exp(t2Y)є, exp(t2X)η̃′) = ∣t∣dim Mη − dim H∆(exp(Y)є, exp(X)η̃′).
In particular, for regular semisimple Y ∈ hr and X ∈ mη ,r , exp(Y)є and exp(X)η̃′
match if and only if exp(t2Y)є and exp(t2X)η̃′ match.

Proof _e latter assertion follows from the former assertion together with the fact
that ∆(γ, δ) /= 0 if and only if γ and δ match. So let us prove the former. Using
Lemmas 3.3 and 3.6, wemay assume without loss of generality that η̃′ = η̃.

We now wish to apply Waldspurger’s descent for transfer factors [Wal08]. For this
weneed to deûne a diagram as in [Wal08, §3.2]. By [KS99,Lemma 3.3.B], there exists a
maximal F-torus T0 ofM that is θ-stable, and g0 ∈ Mθ̃ ,sc(F), such that Int g0(T0) = T
and ξ ○ Int g0∶T0 → TH is deûned over F (recall that ξ itself is not deûned over F ifH
is not split). In fact, we would like T0 to be η-stable as well. _is is clear in Case 1 and
Case 2where η̃ = θ̃. In Case 3, TH is necessarily split so thatwe take T0 = T and g = 1,
so that T0 is η-stable. Now it is easy to check that (TH ,T0 ,T0 ,T0, η̃ = T0, θ̃ , 1, g0 , 1, η̃)
is a diagram coming from є.

Given this diagram,we have an endoscopic datum forMη as in [Wal08, §3.5] (note
that in all our cases we have Mη = Mη ,sc). Let H denote the group underlying this
datum. By [Wal08, §3.6], one has a nonstandard endoscopic triple (Hsc ,Hsc , j∗). _is
deûnes a bijection between the set of stable conjugacy classes of hsc(F) = h(F) and
those of hsc(F) = h(F). Write Y ↔ Y if the stable conjugacy classes of

Y ∈ h(F) = hsc(F) and Y ∈ hsc(F) = h(F)
correspond under this bijection. According to [Wal08,_eorem 3.9],we can normal-
ize the transfer factors between H and Mη so that for r > 0 suõciently small, for all
Y ∈ hr and X ∈ mη ,r (so that exp(X)η̃ ∈ Uη̃ ,r)

(4.4) ∆(exp(Y)є, exp(X)η̃) = ∆(Y , X),
for any Y ∈ h(F) = hsc(F) such that Y ↔ Y .

Now the required assertion follows by combining (4.4) together with the fact that
for all t ∈ F×, ∆(t2Y , t2X) = ∣t∣dim Mη − dim H∆(Y , X) = ∣t∣dim Mη − dim H∆(Y , X) (see
[Fer07, Lemma 3.2.1] or [Sha90, proof of Lemma 9.7]), and the fact that Y ↔ Y if and
only if t2Y ↔ t2Y .

Now we prove Lemma 3.7.

Proof of Lemma 3.7 Notice that for any η̃′ stably conjugate to η̃, the restriction of
the endoscopic transfer f ↦ f H to C∞c (Uη̃′ ,r) can, in view of Lemma 4.4 (v), be
viewed as a transfer φ ↦ f H on C∞c (mη′ ,r). Further, by Lemma 4.5 (i) and the fact
that єHr is closed and open in H(F), wemay view this as a transfer from C∞c (mη′ ,r)
to C∞c (єHr).
By Remark 4.6 and Lemma 4.4, it now suõces to show that the pull back Dη̃′ of

f H ↦ f H(є) under φ ↦ f H is supported in log(Oη̃′), for any ûxed η̃′ stably conjugate
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to η̃ (seeRemark 3.4). Note that by Lemma 4.5 (ii),Dη̃ is supported in the intersection
of all the mη ,s(0 < s ≤ ∣2∣−1r), namely, in the nilpotent cone of mη(F). _us, it is a
linear combination of nilpotent orbital integrals.

Using Lemmas 3.3 (iii) and 3.6, we may assume without loss of generality that
η̃′ = η̃ ∈ Os . Since log(Oη̃) is precisely the union of the nilpotent orbits in mη(F)
with dimension dimMη −dimH (Remark 3.5), it suõces to show that Dη̃(φt2) =
∣t∣dim Mη − dim HDη̃(φ) for all t ∈ OF ∖ {0} (see [HC99, Lemma 3.2 ]). Since δє is in-
variant under f H ↦ f Ht2 for all nonzero t ∈ OF , we are reduced to showing that if
f H ∈ C∞c (єHr) is a transfer of φ, then ∣t∣dim Mη − dim H f Ht2 is a transfer of φt2 .

Let us prove this. Let γ ∈ H(F) be strongly M̃-regular. It is enough by Lemma 4.4
to show that

(4.5) ∑
γ′

O(γ′ , f Ht2 ) =∑
X
∆(γ, exp(X)η̃) ⋅ ∣t∣dim H− dim Mη ⋅ O(X , φt2),

where γ′ runs over a set of representatives for the conjugacy classes stably conjugate to
γ, and X over a set of representatives for theMη(F)-conjugacy classes (or equivalently
Mη(F)-conjugacy classes; see Remark 4.1) of elements X′ ∈ mη ,r such that exp(X′)η
and γ match.
First suppose γ /∈ єH∣t∣2 r . _en none of the γ′ contributing to (4.5) belongs to

єH∣t∣2 r , so that the le�-hand side of the equation vanishes. On the other hand, by
Lemma 4.5 (i), the right-hand side of (4.5) is an empty sum, so the desired equality
trivially holds.

Now assume γ ∈ єH∣t∣2 r , and write γ = є exp(t2Y) with Y ∈ hr . Since f H is a
transfer of φ, we have an equation analogous to (4.5):

(4.6) ∑
γ′′

O(γ′′ , f H) =∑
X′′
∆(exp(Y)є, exp(X′′)η̃)O(X′′ , φ),

with γ′′ running over a set of representatives for the conjugacy classes stably conjugate
to є exp(Y). It is easy to see that the terms γ′ contributing to the le�-hand side of (4.5)
are in one-to-one correspondencewith the terms γ′′ contributing to the le�-hand side
of (4.6), under the rule that Y ′ = t2Y ′′ where γ′ = exp(Y ′)є and γ′′ = exp(Y ′′)є.
_en we have O(γ′ , f Ht2 ) = O(γ′′ , f H), and the le�-hand sides of (4.5) and (4.6) co-
incide. Similarly, but using Lemma 4.7, the terms X contributing to the right-hand
side of (4.5) are in one-to-one correspondence with the terms X′′ contributing to
the right-hand side of (4.6), under the rule X = t2X′′. _erefore, using Lemma 4.7
again, ∆(γ, exp(X)η̃)∣t∣dim H− dim MηO(X , φt2) = ∆(γ′′ , exp(X′′)η̃)O(X′′ , φ). _us,
the right-hand sides of (4.6) and (4.5) also coincide. Since (4.6) holds, (4.5) also holds,
as desired.
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