Re-nnd SOLUTIONS OF THE MATRIX EQUATION $A X B=C$

 DRAGANA S. CVETKOVIĆ-ILIĆ(Received 22 August 2006; revised 28 October 2007)

Communicated by J. J. Koliha

Abstract

In this article we consider Re-nnd solutions of the equation $A X B=C$ with respect to X, where A, B, C are given matrices. We give necessary and sufficient conditions for the existence of Re-nnd solutions and present a general form of such solutions. As a special case when $A=I$ we obtain the results from a paper of Groß ('Explicit solutions to the matrix inverse problem AX=B', Linear Algebra Appl. 289 (1999), 131-134).

2000 Mathematics subject classification: 15A24, 47A62.
Keywords and phrases: matrix equation, Hermitian part, Re-nnd solutions.

1. Introduction

Let $\mathbb{C}^{n \times m}$ denote the set of complex $n \times m$ matrices. Here I_{n} denotes the unit matrix of order n. By $A^{*}, \mathcal{R}(A), \operatorname{rank}(A)$ and $\mathcal{N}(A)$, we denote the conjugate transpose, the range, the rank and the null space of $A \in \mathbb{C}^{n \times m}$.

The Hermitian part of X is defined as $H(X)=(1 / 2)\left(X+X^{*}\right)$. We say that X is Re-nnd (Re-nonnegative definite) if $H(X) \geq 0$ and X is Re-pd (Re-positive definite) if $H(X)>0$.

The symbol A^{-}stands for an arbitrary generalized inner inverse of A, that is, A^{-} satisfies $A A^{-} A=A$. By A^{\dagger} we denote the Moore-Penrose inverse of $A \in \mathbb{C}^{n \times m}$, that is, the unique matrix $A^{\dagger} \in \mathbb{C}^{m \times n}$ satisfying

$$
A A^{\dagger} A=A, \quad A^{\dagger} A A^{\dagger}=A^{\dagger}, \quad\left(A A^{\dagger}\right)^{*}=A A^{\dagger}, \quad\left(A^{\dagger} A\right)^{*}=A^{\dagger} A
$$

For some important properties of generalized inverses see [5, 6, 16] and [15].

[^0]Many authors have studied the well-known equation

$$
\begin{equation*}
A X B=C, \tag{1.1}
\end{equation*}
$$

with the unknown matrix X, such that X belongs to some special class of matrices. For example, in [18] and [7] the existence of reflexive and anti-reflexive, with respect to a generalized reflection matrix P, solutions of the matrix equation (1.1) was considered, while in $[9,14,17,19]$ necessary and sufficient conditions for the existence of symmetric and antisymmetric solutions of the equation (1.1) were investigated.

The Hermitian nonnegative definite solutions for the equation $A X A^{*}=B$ were investigated by Khatri and Mitra [14], Baksalary [4], Dai and Lancaster [10], Groß [12], Zhang and Cheng [23] and Zhang [24].

Wu [21] studied Re-pd solutions of the equation $A X=C$, and Wu and Cain [22] found the set of all complex Re-nnd matrices X such that $X B=C$ and presented a criterion for Re-nndness. Groß [11] gave an alternative approach, which simultaneously delivers explicit Re-nnd solutions and gave a corrected version of some results from [22]. Some results from [22] were extended in the paper of Wang and Yang [20], in which the authors presented criteria for 2×2 and 3×3 partitioned matrices to be Re-nnd, found necessary and sufficient conditions for the existence of Re-nnd solutions of the equation (1.1) and derived an expression for these solutions. In the paper of Dajić and Koliha [3], a general form of Re-nnd solutions of the equation $A X=C$ is given for the first time, where A and C are given operators between Hilbert spaces. In addition to these papers many other papers have dealt with the problem of finding the Re-nnd and Re-pd solutions of some other forms of equations.

In this paper, we first consider the matrix equation

$$
A X A^{*}=C
$$

where $A \in \mathbb{C}^{n \times m}, C \in \mathbb{C}^{n \times n}$, and find necessary and sufficient conditions for the existence of Re-nnd solutions. Also, we present a general form of these solutions. Using this result, we obtain necessary and sufficient conditions for the equation

$$
A X B=C,
$$

where $A \in \mathbb{C}^{n \times m}, B \in \mathbb{C}^{m \times n}$ and $C \in \mathbb{C}^{n \times n}$, to have a Re-nnd solution. This way, the results of [22] and [11] follow as a corollary and a general form of those solutions is given in addition. As far as the author is aware, this is the first time necessary and sufficient conditions for the existence of a Re-nnd solution of the equation $A X B=C$ have been given in terms of g-inverses.

Now, we state some well-known results which are used frequently in the next section.

Theorem 1.1 Ben-Israel and Greville [5]. Let $A \in \mathbb{C}^{n \times m}, B \in \mathbb{C}^{p \times r}$ and $C \in \mathbb{C}^{n \times r}$. Then the matrix equation

$$
A X B=C
$$

is consistent if and only if, for some A^{-}, B^{-},

$$
A A^{-} C B^{-} B=C,
$$

in which case the general solution is

$$
X=A^{-} C B^{-}+Y-A^{-} A Y B B^{-},
$$

for arbitrary $Y \in \mathbb{C}^{m \times p}$.
The following result was derived by Albert [1] for block matrices, by Cvetković-Ilić et al. [8] for C^{*} algebras, and by Dajić and Koliha [3] for operators between different Hilbert spaces. Here, we give the basic version proved in [1].
THEOREM 1.2. Let $M \in \mathbb{C}^{(n+m) \times(n+m)}$ be a Hermitian block matrix given by

$$
M=\left[\begin{array}{cc}
A & B \\
B^{*} & D
\end{array}\right]
$$

where $A \in \mathbb{C}^{n \times n}$ and $D \in \mathbb{C}^{m \times m}$. Then, $M \geq 0$ if and only if

$$
A \geq 0, \quad A A^{\dagger} B=B, \quad D-B^{*} A^{\dagger} B \geq 0
$$

Anderson and Duffin [2] define the parallel sum of matrices for a pair of matrices of the same order as

$$
A: B=A(A+B)^{-} B
$$

It is clear that for this definition to be meaningful, the expression $A(A+B)^{-} B$ must be independent of the choice of the g-inverse $(A+B)^{-}$. Hence, a pair of matrices A and B will be said to be parallel summable if $A(A+B)^{-} B$ is invariant under the choice of the inverse $(A+B)^{-}$, that is, if

$$
\mathcal{R}(A) \subseteq \mathcal{R}(A+B) \wedge \mathcal{R}\left(A^{*}\right) \subseteq \mathcal{R}\left(A^{*}+B^{*}\right)
$$

or, equivalently,

$$
\begin{equation*}
\mathcal{R}(B) \subseteq \mathcal{R}(A+B) \wedge \mathcal{R}\left(B^{*}\right) \subseteq \mathcal{R}\left(A^{*}+B^{*}\right) \tag{1.2}
\end{equation*}
$$

Note that

$$
\mathcal{R}(A) \subseteq \mathcal{R}(B) \Leftrightarrow B B^{-} A=A
$$

By [13, Theorem 2.1],

$$
\mathcal{R}(A) \subseteq \mathcal{R}(B) \Leftrightarrow A A^{*} \leq \lambda^{2} B B^{*} \quad \text { for some } \lambda \geq 0,
$$

so, for the nonnegative definite matrices A and B, we have that

$$
A \leq A+B \Leftrightarrow \mathcal{R}\left(A^{1 / 2}\right) \subseteq \mathcal{R}\left((A+B)^{1 / 2}\right),
$$

which implies $\mathcal{R}(A) \subseteq \mathcal{R}\left((A+B)^{1 / 2}\right)$ or, equivalently,

$$
(A+B)^{1 / 2}\left((A+B)^{1 / 2}\right)^{\dagger} A=A
$$

Now,

$$
(A+B)(A+B)^{\dagger} A=\left((A+B)^{1 / 2}\left((A+B)^{1 / 2}\right)^{\dagger}\right)^{2} A=A
$$

which is equivalent to $\mathcal{R}(A) \subseteq \mathcal{R}(A+B)$.
Hence, nonnegative definite matrices A and B are parallel summable. Furthermore, in [2] it was proved that for a pair of parallel summable matrices the following expression holds:

$$
A: B=B: A
$$

that is,

$$
\begin{equation*}
A(A+B)^{-} B=B(A+B)^{-} A \tag{1.3}
\end{equation*}
$$

2. Results

The next result was first proved by Wu and Cain [22] and later derived in a different way by Groß [11]. It gives necessary and sufficient conditions for the matrix equation $A X=C$ to have a Re-nnd solution X, where A, C are given matrices of suitable size and presents a possible explicit expression for X.

TheOrem 2.1. Let $A \in \mathbb{C}^{n \times m}, C \in \mathbb{C}^{n \times m}$. There exists a Re-nnd matrix $X \in \mathbb{C}^{m \times m}$ satisfying $A X=C$ if and only if $A A^{\dagger} C=C$ and $A C^{*}$ is Re-nnd.

From the proof of this theorem we can see that

$$
X_{0}=A^{\dagger} C-\left(A^{\dagger} C\right)^{*}+A^{\dagger} A C^{*}\left(A^{\dagger}\right)^{*}
$$

is one of Re-nnd solutions of $A X=C$. Also, in [11] the author mentions that any matrix of the form

$$
X=X_{0}+\left(I-A^{\dagger} A\right) Y\left(I-A^{\dagger} A\right)
$$

with $Y \in \mathbb{C}^{m \times m}$ which is Re-nnd is also a Re-nnd solution of $A X=C$, in the case where such solutions exist, but he did not present a general form of such solutions. Our main aim is to generalize these results to the equation $A X B=C$ and to present a general form of Re-nnd solutions of it.

First, we consider the equation

$$
\begin{equation*}
A X A^{*}=C \tag{2.1}
\end{equation*}
$$

and find necessary and sufficient conditions for the existence of Re-nnd solutions.
The next auxiliary result presents a general form of a solution X of (2.1) which satisfies $H(X)=0$.

Lemma 2.2. If $A \in \mathbb{C}^{n \times m}$, then $X \in \mathbb{C}^{m \times m}$ is a solution of the equation

$$
\begin{equation*}
A X A^{*}=0 \tag{2.2}
\end{equation*}
$$

which satisfies $H(X)=0$ if and only if

$$
\begin{equation*}
X=W\left(I-A^{\dagger} A\right)-\left(I-A^{\dagger} A\right) W^{*} \tag{2.3}
\end{equation*}
$$

for some $W \in \mathbb{C}^{m \times m}$.
Proof. Denote by $r=\operatorname{rank}(A)$. Let us suppose that X is a solution of the equation (2.2) and $H(X)=0$. Using a singular value decomposition of $A=U^{*}$ $\operatorname{Diag}(D, 0) V$, where $U \in \mathbb{C}^{n \times n}, V \in \mathbb{C}^{m \times m}$ are unitary and $D \in \mathbb{C}^{r \times r}$ is an invertible matrix, we have that

$$
A^{\dagger}=V^{*} \operatorname{Diag}\left(D^{-1}, 0\right) U \quad \text { and } \quad X=V^{*}\left[\begin{array}{ll}
X_{1} & X_{2} \\
X_{3} & X_{4}
\end{array}\right] V
$$

for some $X_{1} \in \mathbb{C}^{r \times r}$ and $X_{4} \in \mathbb{C}^{(m-r) \times(m-r)}$.
From $A X A^{*}=0$ we obtain that $X_{1}=0$ and, by $H(X)=0$, that $X_{3}=-X_{2}^{*}$ and $H\left(X_{4}\right)=0$. Hence,

$$
X=V^{*}\left[\begin{array}{cc}
0 & X_{2} \\
-X_{2}^{*} & X_{4}
\end{array}\right] V
$$

Taking into account that $H\left(X_{4}\right)=0$, for

$$
W=V^{*}\left[\begin{array}{cc}
I & X_{2} \\
0 & (1 / 2) X_{4}
\end{array}\right] V
$$

we have that

$$
X=W\left(I-A^{\dagger} A\right)-\left(I-A^{\dagger} A\right) W^{*}
$$

In the other direction we can easily check that for arbitrary $W \in \mathbb{C}^{m \times m}, X$ defined by (2.3) is a solution of the equation (2.2) which satisfies $H(X)=0$.
THEOREM 2.3. Let $A \in \mathbb{C}^{n \times m}, C \in \mathbb{C}^{n \times n}$ be given matrices such that the equation (2.1) is consistent and let $r=\operatorname{rank} H(C)$. There exists a Re-nnd solution of the equation (2.1) if and only if C is Re-nnd. In this case the general Re-nnd solution is given by

$$
\begin{equation*}
X=A^{=} C\left(A^{=}\right)^{*}+\left(I-A^{-} A\right) U U^{*}\left(I-A^{-} A\right)^{*}+W\left(I-A^{\dagger} A\right)-\left(I-A^{\dagger} A\right) W^{*} \tag{2.4}
\end{equation*}
$$

with

$$
\begin{equation*}
A^{=}=A^{-}+\left(I-A^{-} A\right) Z\left(H(C)^{1 / 2}\right)^{-}, \tag{2.5}
\end{equation*}
$$

where A^{-}and $\left(H(C)^{1 / 2}\right)^{-}$are arbitrary but fixed generalized inverses of A and $H(C)^{1 / 2}$, respectively, and $Z \in \mathbb{C}^{m \times n}, U \in \mathbb{C}^{m \times(m-r)}, W \in \mathbb{C}^{m \times m}$ are arbitrary matrices.

Proof. If X is a Re-nnd solution of the equation (2.1), then

$$
A H(X) A^{*}=H(C) \geq 0
$$

In the other direction, if C is Re-nnd, then $X_{0}=A^{-} C\left(A^{-}\right)^{*}$ is a Re-nnd solution of the equation (2.1).

Let us prove that a representation of the general Re-nnd solution is given by (2.4). If X is defined by (2.4), then X is Re-nnd and $A X A^{*}=A A^{-} C\left(A A^{-}\right)^{*}=C$.

If X is an arbitrary Re-nnd solution of (2.1), then $H(X)$ is a Hermitian nonnegativedefinite solution of the equation

$$
A Z A^{*}=H(C)
$$

so, by [12, Theorem 1],

$$
H(X)=A^{=} H(C)\left(A^{=}\right)^{*}+\left(I-A^{-} A\right) U U^{*}\left(I-A^{-} A\right)^{*},
$$

where $A^{=}$is given by (2.5), for some $Z \in \mathbb{C}^{m \times n}$ and $U \in \mathbb{C}^{m \times(m-r)}$.
Note that,

$$
H(X)=H\left(A^{=} C\left(A^{=}\right)^{*}+\left(I-A^{-} A\right) U U^{*}\left(I-A^{-} A\right)^{*}\right),
$$

implying

$$
X=A^{=} C\left(A^{=}\right)^{*}+\left(I-A^{-} A\right) U U^{*}\left(I-A^{-} A\right)^{*}+Z,
$$

where $H(Z)=0$ and $A Z A^{*}=0$. Using Lemma 2.2, we have that

$$
Z=W\left(I-A^{\dagger} A\right)-\left(I-A^{\dagger} A\right) W^{*}
$$

for some $W \in \mathbb{C}^{m \times n}$. Hence, we obtain that X has a representation as in (2.4).
Now, let us consider the equation

$$
\begin{equation*}
A X B=C, \tag{2.6}
\end{equation*}
$$

where $A \in \mathbb{C}^{n \times m}, B \in \mathbb{C}^{m \times n}$ and $C \in \mathbb{C}^{n \times n}$ are given matrices and find necessary and sufficient conditions for the existence of a Re-nnd solution.

Without loss of generality we may assume that $n=m$ and that matrices A and B are both nonnegative definite. This follows from the fact that whenever the equation (2.6) is consistent then X is a solution of that equation if and only if X is a solution of the equation $A^{*} A X B B^{*}=A^{*} C B^{*}$. Hence, from now on, we assume that A and B are nonnegative-definite matrices from the space $\mathbb{C}^{n \times n}$.

The next theorem is the main result of this paper which presents necessary and sufficient conditions for the equation (2.6) to have a Re-nnd solution.

THEOREM 2.4. Let $A, B, C \in \mathbb{C}^{n \times n}$ be given matrices such that A and B are nonnegative definite and the equation (2.6) is consistent. There exists a Re-nnd solution of (2.6) if and only if

$$
T=B(A+B)^{-} C(A+B)^{-} A,
$$

is Re-nnd, where $(A+B)^{-}$is a g-inverse of $A+B$. In this case a general Re-nnd solution is given by

$$
\begin{align*}
X= & (A+B)^{=}(C+Y+Z+W)\left((A+B)^{=}\right)^{*} \\
& +\left(I-(A+B)^{-}(A+B)\right) U U^{*}\left(I-(A+B)^{-}(A+B)\right)^{*} \\
& +Q\left(I-(A+B)^{\dagger}(A+B)\right)-\left(I-(A+B)^{\dagger}(A+B)\right) Q^{*}, \tag{2.7}
\end{align*}
$$

where Y, Z, W are arbitrary solutions of the equations

$$
\begin{align*}
& Y(A+B)^{-} B=C(A+B)^{-} A \\
& A(A+B)^{-} Z=B(A+B)^{-} C \tag{2.8}\\
& A(A+B)^{-} W(A+B)^{-} B=T
\end{align*}
$$

such that $C+Y+Z+W$ is Re-nnd, $(A+B)=$ is defined by

$$
(A+B)^{=}=(A+B)^{-}+\left(I-(A+B)^{-}(A+B)\right) P\left(H(C+Y+Z+W)^{1 / 2}\right)^{-}
$$

where $U \in \mathbb{C}^{n \times(n-r)}, Q \in \mathbb{C}^{n \times n}, P \in \mathbb{C}^{n \times n}$ are arbitrary, $r=\operatorname{rank}(C+Y+Z+W)$.
Proof. Denote by

$$
\begin{aligned}
E=(A+B)^{-} B, & F=C(A+B)^{-} A, \\
K & =A(A+B)^{-},
\end{aligned} \quad L=B(A+B)^{-} C . ~ \$
$$

Now, equations (2.8) are equivalent to

$$
\begin{equation*}
Y E=F, \quad K Z=L, \quad K W E=T \tag{2.9}
\end{equation*}
$$

Using (1.2), (1.3) and the fact that E is g-invertible and $E^{-}=B^{-}(A+B)$, we have that

$$
\begin{aligned}
F E^{-} E & =C(A+B)^{-} A B^{-}(A+B)(A+B)^{-} B \\
& =C(A+B)^{-} A B^{-} B=C B^{-} B(A+B)^{-} A B^{-} B \\
& =C B^{-} A(A+B)^{-} B B^{-} B=C B^{-} A(A+B)^{-} B \\
& =C B^{-} B(A+B)^{-} A=C(A+B)^{-} A=F,
\end{aligned}
$$

which implies that the equation $Y E=F$ is consistent. In a similar way, we can prove that the other two equations from (2.9) are consistent. Furthermore, $T^{*}=F^{*} E=$ $K L^{*}$ is Re-nnd which implies, by Theorem 2.1, that the first two equations from (2.9) have Re-nnd solutions.

Now, suppose that the equation (2.6) has a Re-nnd solution X. Then

$$
\begin{aligned}
H(T) & =H\left(B(A+B)^{-} A X B(A+B)^{-} A\right) \\
& =\left(B(A+B)^{-} A\right) H(X)\left(B(A+B)^{-} A\right)^{*} \geq 0 .
\end{aligned}
$$

Conversely, let T be Re-nnd. We can check that

$$
\begin{equation*}
X_{0}=(A+B)^{-}(C+Y+Z+W)(A+B)^{-} \tag{2.10}
\end{equation*}
$$

is a solution of the equation (2.6), where Y, Z, W are arbitrary solutions of the equations (2.9). This follows from

$$
\begin{aligned}
A X_{0} B & =(A+B)(A+B)^{-} C(A+B)^{-}(A+B) \\
& =(A+B)(A+B)^{-} A A^{-} C B^{-} B(A+B)^{-}(A+B) \\
& =A A^{-} C B^{-} B=C .
\end{aligned}
$$

Now, we have to prove that for some choice of Y, Z, W, the matrix $C+Y+Z+W$ is Re-nnd which would imply that X_{0} is Re-nnd.

Let

$$
\begin{gathered}
Y=F E^{-}-\left(F E^{-}\right)^{*}+\left(E^{-}\right)^{*} F^{*} E E^{-}+\left(I-E E^{-}\right)^{*}\left(I-E E^{-}\right) \\
Z=K^{-} L-\left(K^{-} L\right)^{*}+K^{-} K L^{*}\left(K^{-}\right)^{*}+\left(I-K^{-} K\right) Q\left(I-K^{-} K\right)^{*}, \\
W=K^{-} T E^{-}-\left(I-K^{-} K\right) S-S\left(I-E E^{-}\right),
\end{gathered}
$$

where $\quad Q=\left(C^{*}-K^{-} T^{*} E^{-}\right)\left(C^{*}-K^{-} T^{*} E^{-}\right)^{*} \quad$ and $\quad S=K^{-} K C^{*}+C^{*} E E^{-}$. Obviously, Y, Z, W are solutions of the equations (2.9) and

$$
\begin{gathered}
H(Y)=\left(E^{-}\right)^{*} H(T) E^{-}+\left(I-E E^{-}\right)^{*}\left(I-E E^{-}\right), \\
H(Z)=K^{-} H(T)\left(K^{-}\right)^{*}+\left(I-K^{-} K\right) H(Q)\left(I-K^{-} K\right)^{*} \\
H(W)=K^{-} T E^{-}+\left(E^{-}\right)^{*} T^{*}\left(K^{-}\right)^{*}-H\left(C^{*} E E^{-}+K^{-} K C^{*}-2 K^{-} T^{*} E^{-}\right) .
\end{gathered}
$$

Using

$$
\begin{gathered}
K^{-} K K^{-} T^{*} E^{-}=K^{-} K K^{-} K L^{*} E^{-}=K^{-} K L^{*} E^{-}=K^{-} T^{*} E^{-}, \\
K^{-} T^{*} E^{-} E E^{-}=K^{-} F^{*} E E^{-} E E^{-}=K^{-} F^{*} E E^{-}=K^{-} T^{*} E^{-}, \\
\\
K C^{*} E=K L^{*}=T^{*},
\end{gathered}
$$

we compute,

$$
\begin{aligned}
H(C+Y+Z+W)= & \left(\left(E^{-}\right)^{*}+K^{-}\right) H(T)\left(\left(E^{-}\right)^{*}+K^{-}\right)^{*} \\
& +\left[\left(I-E E^{-}\right)^{*} \quad\left(I-K^{-} K\right)\right] D\left[\begin{array}{c}
I-E E^{-} \\
\left(I-K^{-} K\right)^{*}
\end{array}\right],
\end{aligned}
$$

where

$$
D=\left[\begin{array}{cc}
I & C-\left(E^{-}\right)^{*} T\left(K^{-}\right)^{*} \\
C^{*}-K^{-} T^{*} E^{-} & H(Q)
\end{array}\right] .
$$

By Theorem 1.2, it follows that D is nonnegative definite, so $H(C+Y+Z+W)$ ≥ 0.

Hence, with such a choice of Y, Z, W, it can be seen that X_{0} defined by (2.10) is Re-nnd solution of (2.6). So, we proved the sufficient part of the theorem.

Let X be an arbitrary Re-nnd solution of (2.6). It is evident that $Y=A X A$, $Z=B X B$ and $W=B X A$ are solutions of (2.9), and that

$$
(A+B) X(A+B)=C+Y+Z+W,
$$

is Re-nnd. Now, using Theorem 2.3, we obtain that X has the representation (2.7).
Let us mention that, if we apply Theorem 2.4 to the equation

$$
A X=C
$$

we obtain [11, Theorem 1] as a corollary.
Note that if the equation $A X=C$ is consistent then X is a solution of it if and only if $A^{*} A X=A^{*} C$. By Theorem 2.4, we obtain that there exists a Re-nnd solution of the equation $A X=C$ if and only if

$$
T=\left(A^{*} A+I\right)^{-1} A^{*} C\left(A^{*} A+I\right)^{-1} A^{*} A
$$

is Re-nnd. Note that in this case $\left(I+A^{*} A\right)$ is invertible matrix.
Let us prove that T is Re-nnd if and only if $C A^{*}$ is Re-nnd.
By

$$
\left(A^{*} A+I\right)^{-1} A^{*} A=A^{*} A\left(A^{*} A+I\right)^{-1}
$$

we have that

$$
T=\left(\left(A^{*} A+I\right)^{-1} A^{*}\right)\left(C A^{*}\right)\left(\left(A^{*} A+I\right)^{-1} A^{*}\right)^{*}
$$

that is,

$$
H(T)=\left(\left(A^{*} A+I\right)^{-1} A^{*}\right) H\left(C A^{*}\right)\left(\left(A^{*} A+I\right)^{-1} A^{*}\right)^{*}
$$

From the last equality, $H\left(C A^{*}\right) \geq 0$ implies $H(T) \geq 0$.
Now, suppose that $H(T) \geq 0$. Owing to the consistence of the equation $A X=C$, it follows that $A A^{\dagger} C=C$ which implies that

$$
\left(A^{\dagger}\right)^{*}\left(A^{*} A+I\right) T\left(\left(A^{\dagger}\right)^{*}\left(A^{*} A+I\right)\right)^{*}=\left(A^{\dagger}\right)^{*} A^{*} C A^{*} A A^{\dagger}=A A^{\dagger} C A^{*}=C A^{*}
$$

that is,

$$
H\left(C A^{*}\right)=\left(\left(A^{\dagger}\right)^{*}\left(A^{*} A+I\right)\right) H(T)\left(\left(A^{\dagger}\right)^{*}\left(A^{*} A+I\right)\right)^{*} \geq 0 .
$$

References

[1] A. Albert, 'Conditions for positive and nonnegative definiteness in terms of pseudoinverses', SIAM J. Appl. Math. 17(2) (1969), 434-440.
[2] W. N. Anderson and R. J. Duffin, 'Series and parallel addition of matrices', J. Math. Anal. Appl. 26 (1969), 576-594.
[3] A. Dajić and J. J. Koliha, 'Equations $a x=c$ and $x b=d$ in rings with applications to Hilbert space operators', Preprint.
[4] J. K. Baksalary, 'Nonnegative definite and positive definite solutions to the matrix equation $A X A^{*}=B^{\prime}$, Linear Multilinear Algebra 16 (1984), 133-139.
[5] A. Ben-Israel and T. N. E. Greville, Generalized inverses: theory and applications (WileyInterscience, New York, 1974).
[6] S. R. Caradus, Generalized inverses and operator theory, Queen's Paper in Pure and Applied Mathematics, 50 (Queen's University, Kingston, Ontario, 1978).
[7] D. S. Cvetković-Ilić, 'The reflexive solutions of the matrix equation $A X B=C$ ', Comp. Math. Appl. 51(6-7) (2006), 897-902.
[8] D. S. Cvetković-Ilić, D. S. Djordjević and V. Rakočević, 'Schur complements in C^{*}-algebras', Math. Nachr. 278 (2005), 1-7.
[9] H. Dai, 'On the symmetric solutions of linear matrix equations', Linear Algebra Appl. 131 (1990), 1-7.
[10] H. Dai and P. Lancaster, 'Linear matrix equations from an inverse problem of vibration theory', Linear Algebra Appl. 246 (1996), 31-47.
[11] J. Groß, 'Explicit solutions to the matrix inverse problem $A X=B$ ', Linear Algebra Appl. 289 (1999), 131-134.
[12] \quad, 'Nonnegative definite and positive definite solutions to the matrix equation $A X A^{*}=$ B-revisited', Linear Algebra Appl. 321 (2000), 123-129.
[13] P. A. Fillmore and J. P. Williams, 'On operators ranges', Adv. Math. 7 (1971), 254-281.
[14] C. G. Khatri and S. K. Mitra, 'Hermitian and nonnegative definite solutions of linear matrix equations', SIAM J. Appl. Math. 31 (1976), 579-585.
[15] J. J. Koliha, 'The Drazin and Moore-Penrose inverse in C^{*}-algebra’, Math. Proc. R. Ir. Acad. 99A (1999), 17-27.
[16] R. Penrose, 'A generalized inverse for matrices', Proc. Cambridge Philos. Soc. 51 (1955), 406-413.
[17] Z. Y. Peng, 'An iterative method for the least squares symmetric solution of the linear matrix equation $A X B=C^{\prime}$, Appl. Math. Comput. 170(1) (2005), 711-723.
[18] Z. Y. Peng and X. Y. Hu, 'The reflexive and anti-reflexive solutions of the matrix equation AX = B', Linear Algebra Appl. 375 (2003), 147-155.
[19] Y. X. Peng, X. Y. Hu and L. Zhang, 'An iteration method for the symmetric solutions and the optimal approximation solution of the matrix equation $A X B=C^{\prime}$, Appl. Math. Comput. 160 (2005), 763-777.
[20] Q. Wang and C. Yang, 'The Re-nonnegative definite solutions to the matrix equation $A X B=C$ ', Comment. Math. Univ. Carolin. 39(1) (1998), 7-13.
[21] L. Wu, 'The Re-positive definite solutions to the matrix inverse problem $A X=B$ ', Linear Algebra Appl. 174 (1992), 145-151.
[22] L. Wu and B. Cain, 'The Re-nonnegative definite solutions to the matrix inverse problem AX $=B^{\prime}$, Linear Algebra Appl. 236 (1996), 137-146.
[23] X. Zhang and M. Y. Cheng, 'The rank-constrained Hermitian nonnegative definite and positive definite solutions to the matrix equation $A X A^{*}=B^{\prime}$, Linear Algebra Appl. 370 (2003), 163-174.
[24] X. Zhang, 'Hermitian nonnegative definite and positive definite solutions of the matrix equation $A X B=C^{\prime}$, Appl. Math. E-Notes 4 (2004), 40-47.

DRAGANA S. CVETKOVIĆ-ILIĆ, Faculty of Sciences and Mathematics, Department of Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia e-mail: gagamaka@ptt.yu

[^0]: (C) 2008 Australian Mathematical Society 1446-7887/08 \$A2.00 +0.00

