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Abstract

In this article we consider Re-nnd solutions of the equation AX B = C with respect to X , where A, B, C
are given matrices. We give necessary and sufficient conditions for the existence of Re-nnd solutions and
present a general form of such solutions. As a special case when A = I we obtain the results from a paper
of Groß (‘Explicit solutions to the matrix inverse problem AX = B’, Linear Algebra Appl. 289 (1999),
131–134).
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1. Introduction

Let Cn×m denote the set of complex n × m matrices. Here In denotes the unit matrix
of order n. By A∗,R(A), rank(A) and N (A), we denote the conjugate transpose, the
range, the rank and the null space of A ∈ Cn×m .

The Hermitian part of X is defined as H(X) = (1/2)(X + X∗). We say that X is
Re-nnd (Re-nonnegative definite) if H(X) ≥ 0 and X is Re-pd (Re-positive definite)
if H(X) > 0.

The symbol A− stands for an arbitrary generalized inner inverse of A, that is, A−

satisfies AA− A = A. By A† we denote the Moore–Penrose inverse of A ∈ Cn×m , that
is, the unique matrix A†

∈ Cm×n satisfying

AA† A = A, A† AA†
= A†, (AA†)∗ = AA†, (A† A)∗ = A† A.

For some important properties of generalized inverses see [5, 6, 16] and [15].
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Many authors have studied the well-known equation

AX B = C, (1.1)

with the unknown matrix X , such that X belongs to some special class of matrices. For
example, in [18] and [7] the existence of reflexive and anti-reflexive, with respect to a
generalized reflection matrix P , solutions of the matrix equation (1.1) was considered,
while in [9, 14, 17, 19] necessary and sufficient conditions for the existence of
symmetric and antisymmetric solutions of the equation (1.1) were investigated.

The Hermitian nonnegative definite solutions for the equation AX A∗
= B were

investigated by Khatri and Mitra [14], Baksalary [4], Dai and Lancaster [10],
Groß [12], Zhang and Cheng [23] and Zhang [24].

Wu [21] studied Re-pd solutions of the equation AX = C , and Wu and Cain [22]
found the set of all complex Re-nnd matrices X such that X B = C and presented
a criterion for Re-nndness. Groß [11] gave an alternative approach, which
simultaneously delivers explicit Re-nnd solutions and gave a corrected version of some
results from [22]. Some results from [22] were extended in the paper of Wang and
Yang [20], in which the authors presented criteria for 2 × 2 and 3 × 3 partitioned
matrices to be Re-nnd, found necessary and sufficient conditions for the existence of
Re-nnd solutions of the equation (1.1) and derived an expression for these solutions. In
the paper of Dajić and Koliha [3], a general form of Re-nnd solutions of the equation
AX = C is given for the first time, where A and C are given operators between Hilbert
spaces. In addition to these papers many other papers have dealt with the problem of
finding the Re-nnd and Re-pd solutions of some other forms of equations.

In this paper, we first consider the matrix equation

AX A∗
= C,

where A ∈ Cn×m , C ∈ Cn×n , and find necessary and sufficient conditions for the
existence of Re-nnd solutions. Also, we present a general form of these solutions.
Using this result, we obtain necessary and sufficient conditions for the equation

AX B = C,

where A ∈ Cn×m , B ∈ Cm×n and C ∈ Cn×n , to have a Re-nnd solution. This way, the
results of [22] and [11] follow as a corollary and a general form of those solutions is
given in addition. As far as the author is aware, this is the first time necessary and
sufficient conditions for the existence of a Re-nnd solution of the equation AX B = C
have been given in terms of g-inverses.

Now, we state some well-known results which are used frequently in the next
section.

THEOREM 1.1 Ben-Israel and Greville [5]. Let A ∈ Cn×m , B ∈ Cp×r and C ∈ Cn×r .
Then the matrix equation

AX B = C,
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is consistent if and only if, for some A−, B−,

AA−C B−B = C,

in which case the general solution is

X = A−C B−
+ Y − A− AY B B−,

for arbitrary Y ∈ Cm×p.

The following result was derived by Albert [1] for block matrices, by Cvetković-Ilić
et al. [8] for C∗ algebras, and by Dajić and Koliha [3] for operators between different
Hilbert spaces. Here, we give the basic version proved in [1].

THEOREM 1.2. Let M ∈ C(n+m)×(n+m) be a Hermitian block matrix given by

M =

[
A B

B∗ D

]
,

where A ∈ Cn×n and D ∈ Cm×m . Then, M ≥ 0 if and only if

A ≥ 0, AA† B = B, D − B∗ A† B ≥ 0.

Anderson and Duffin [2] define the parallel sum of matrices for a pair of matrices
of the same order as

A : B = A(A + B)−B.

It is clear that for this definition to be meaningful, the expression A(A + B)−B must
be independent of the choice of the g-inverse (A + B)−. Hence, a pair of matrices A
and B will be said to be parallel summable if A(A + B)−B is invariant under the
choice of the inverse (A + B)−, that is, if

R(A) ⊆R(A + B) ∧R(A∗) ⊆R(A∗
+ B∗),

or, equivalently,

R(B) ⊆R(A + B) ∧R(B∗) ⊆R(A∗
+ B∗). (1.2)

Note that
R(A) ⊆R(B) ⇔ B B− A = A.

By [13, Theorem 2.1],

R(A) ⊆R(B) ⇔ AA∗
≤ λ2 B B∗ for some λ ≥ 0,

so, for the nonnegative definite matrices A and B, we have that

A ≤ A + B ⇔R(A1/2) ⊆R((A + B)1/2),

https://doi.org/10.1017/S1446788708000207 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788708000207


66 D. S. Cvetković-ilić [4]

which impliesR(A) ⊆R((A + B)1/2) or, equivalently,

(A + B)1/2((A + B)1/2)† A = A.

Now,

(A + B) (A + B)† A = ((A + B)1/2((A + B)1/2)†)2 A = A,

which is equivalent toR(A) ⊆R(A + B).
Hence, nonnegative definite matrices A and B are parallel summable. Furthermore,

in [2] it was proved that for a pair of parallel summable matrices the following
expression holds:

A : B = B : A,

that is,

A(A + B)−B = B(A + B)− A. (1.3)

2. Results

The next result was first proved by Wu and Cain [22] and later derived in a different
way by Groß [11]. It gives necessary and sufficient conditions for the matrix equation
AX = C to have a Re-nnd solution X , where A, C are given matrices of suitable size
and presents a possible explicit expression for X .

THEOREM 2.1. Let A ∈ Cn×m , C ∈ Cn×m . There exists a Re-nnd matrix X ∈ Cm×m

satisfying AX = C if and only if AA†C = C and AC∗ is Re-nnd.

From the proof of this theorem we can see that

X0 = A†C − (A†C)∗ + A† AC∗(A†)∗,

is one of Re-nnd solutions of AX = C . Also, in [11] the author mentions that any
matrix of the form

X = X0 + (I − A† A)Y (I − A† A),

with Y ∈ Cm×m which is Re-nnd is also a Re-nnd solution of AX = C , in the case
where such solutions exist, but he did not present a general form of such solutions.
Our main aim is to generalize these results to the equation AX B = C and to present a
general form of Re-nnd solutions of it.

First, we consider the equation

AX A∗
= C, (2.1)

and find necessary and sufficient conditions for the existence of Re-nnd solutions.
The next auxiliary result presents a general form of a solution X of (2.1) which

satisfies H(X) = 0.
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LEMMA 2.2. If A ∈ Cn×m , then X ∈ Cm×m is a solution of the equation

AX A∗
= 0, (2.2)

which satisfies H(X) = 0 if and only if

X = W (I − A† A) − (I − A† A)W ∗, (2.3)

for some W ∈ Cm×m .

PROOF. Denote by r = rank(A). Let us suppose that X is a solution of the
equation (2.2) and H(X) = 0. Using a singular value decomposition of A = U∗

Diag(D, 0)V , where U ∈ Cn×n , V ∈ Cm×m are unitary and D ∈ Cr×r is an invertible
matrix, we have that

A†
= V ∗ Diag(D−1, 0)U and X = V ∗

[
X1 X2
X3 X4

]
V,

for some X1 ∈ Cr×r and X4 ∈ C(m−r)×(m−r).
From AX A∗

= 0 we obtain that X1 = 0 and, by H(X) = 0, that X3 = −X∗

2
and H(X4) = 0. Hence,

X = V ∗

[
0 X2

−X∗

2 X4

]
V .

Taking into account that H(X4) = 0, for

W = V ∗

[
I X2
0 (1/2)X4

]
V,

we have that
X = W (I − A† A) − (I − A† A)W ∗.

In the other direction we can easily check that for arbitrary W ∈ Cm×m , X defined
by (2.3) is a solution of the equation (2.2) which satisfies H(X) = 0.

THEOREM 2.3. Let A ∈ Cn×m , C ∈ Cn×n be given matrices such that the
equation (2.1) is consistent and let r = rank H(C). There exists a Re-nnd solution of
the equation (2.1) if and only if C is Re-nnd. In this case the general Re-nnd solution
is given by

X = A=C(A=)∗ + (I − A− A)UU∗(I − A− A)∗ + W (I − A† A) − (I − A† A)W ∗,

(2.4)
with

A=
= A−

+ (I − A− A)Z(H(C)1/2)−, (2.5)

where A− and (H(C)1/2)− are arbitrary but fixed generalized inverses of A and
H(C)1/2, respectively, and Z ∈ Cm×n , U ∈ Cm×(m−r), W ∈ Cm×m are arbitrary
matrices.
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PROOF. If X is a Re-nnd solution of the equation (2.1), then

AH(X)A∗
= H(C) ≥ 0.

In the other direction, if C is Re-nnd, then X0 = A−C(A−)∗ is a Re-nnd solution of
the equation (2.1).

Let us prove that a representation of the general Re-nnd solution is given by (2.4).
If X is defined by (2.4), then X is Re-nnd and AX A∗

= AA−C(AA−)∗ = C .
If X is an arbitrary Re-nnd solution of (2.1), then H(X) is a Hermitian nonnegative-

definite solution of the equation

AZ A∗
= H(C),

so, by [12, Theorem 1],

H(X) = A=H(C)(A=)∗ + (I − A− A)UU∗(I − A− A)∗,

where A= is given by (2.5), for some Z ∈ Cm×n and U ∈ Cm×(m−r).
Note that,

H(X) = H(A=C(A=)∗ + (I − A− A)UU∗(I − A− A)∗),

implying
X = A=C(A=)∗ + (I − A− A)UU∗(I − A− A)∗ + Z ,

where H(Z) = 0 and AZ A∗
= 0. Using Lemma 2.2, we have that

Z = W (I − A† A) − (I − A† A)W ∗,

for some W ∈ Cm×n . Hence, we obtain that X has a representation as in (2.4).

Now, let us consider the equation

AX B = C, (2.6)

where A ∈ Cn×m , B ∈ Cm×n and C ∈ Cn×n are given matrices and find necessary and
sufficient conditions for the existence of a Re-nnd solution.

Without loss of generality we may assume that n = m and that matrices A and B are
both nonnegative definite. This follows from the fact that whenever the equation (2.6)
is consistent then X is a solution of that equation if and only if X is a solution of the
equation A∗ AX B B∗

= A∗C B∗. Hence, from now on, we assume that A and B are
nonnegative-definite matrices from the space Cn×n .

The next theorem is the main result of this paper which presents necessary and
sufficient conditions for the equation (2.6) to have a Re-nnd solution.

THEOREM 2.4. Let A, B, C ∈ Cn×n be given matrices such that A and B are
nonnegative definite and the equation (2.6) is consistent. There exists a Re-nnd
solution of (2.6) if and only if

T = B(A + B)−C(A + B)− A,

https://doi.org/10.1017/S1446788708000207 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788708000207


[7] Solutions to AX B = C 69

is Re-nnd, where (A + B)− is a g-inverse of A + B. In this case a general Re-nnd
solution is given by

X = (A + B)=(C + Y + Z + W ) ((A + B)=)∗

+ (I − (A + B)−(A + B))UU∗(I − (A + B)−(A + B))∗

+ Q(I − (A + B)†(A + B)) − (I − (A + B)†(A + B))Q∗, (2.7)

where Y, Z , W are arbitrary solutions of the equations

Y (A + B)−B = C(A + B)− A,

A(A + B)−Z = B(A + B)−C,

A(A + B)−W (A + B)−B = T,

(2.8)

such that C + Y + Z + W is Re-nnd, (A + B)= is defined by

(A + B)= = (A + B)− + (I − (A + B)−(A + B))P(H(C + Y + Z + W )1/2)−,

where U ∈ Cn×(n−r), Q ∈ Cn×n , P ∈ Cn×n are arbitrary, r = rank(C + Y + Z + W ).

PROOF. Denote by

E = (A + B)−B, F = C(A + B)− A,

K = A(A + B)−, L = B(A + B)−C.

Now, equations (2.8) are equivalent to

Y E = F, K Z = L , K W E = T . (2.9)

Using (1.2), (1.3) and the fact that E is g-invertible and E−
= B−(A + B), we have

that

F E−E = C(A + B)− AB−(A + B)(A + B)−B

= C(A + B)− AB−B = C B−B(A + B)− AB−B

= C B− A(A + B)−B B−B = C B− A(A + B)−B

= C B−B(A + B)− A = C(A + B)− A = F,

which implies that the equation Y E = F is consistent. In a similar way, we can prove
that the other two equations from (2.9) are consistent. Furthermore, T ∗

= F∗E =

K L∗ is Re-nnd which implies, by Theorem 2.1, that the first two equations from (2.9)
have Re-nnd solutions.

Now, suppose that the equation (2.6) has a Re-nnd solution X . Then

H(T ) = H(B(A + B)− AX B(A + B)− A)

= (B(A + B)− A)H(X)(B(A + B)− A)∗ ≥ 0.
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Conversely, let T be Re-nnd. We can check that

X0 = (A + B)−(C + Y + Z + W )(A + B)−, (2.10)

is a solution of the equation (2.6), where Y, Z , W are arbitrary solutions of the
equations (2.9). This follows from

AX0 B = (A + B)(A + B)−C(A + B)−(A + B)

= (A + B)(A + B)− AA−C B−B(A + B)−(A + B)

= AA−C B−B = C.

Now, we have to prove that for some choice of Y, Z , W , the matrix C + Y + Z + W
is Re-nnd which would imply that X0 is Re-nnd.

Let

Y = F E−
− (F E−)∗ + (E−)∗F∗E E−

+ (I − E E−)∗(I − E E−),

Z = K −L − (K −L)∗ + K −K L∗(K −)∗ + (I − K −K )Q(I − K −K )∗,

W = K −T E−
− (I − K −K )S − S(I − E E−),

where Q = (C∗
− K −T ∗E−)(C∗

− K −T ∗E−)∗ and S = K −K C∗
+ C∗E E−.

Obviously, Y, Z , W are solutions of the equations (2.9) and

H(Y ) = (E−)∗H(T )E−
+ (I − E E−)∗(I − E E−),

H(Z) = K −H(T )(K −)∗ + (I − K −K )H(Q)(I − K −K )∗,

H(W ) = K −T E−
+ (E−)∗T ∗(K −)∗ − H(C∗E E−

+ K −K C∗
− 2K −T ∗E−).

Using

K −K K −T ∗E−
= K −K K −K L∗E−

= K −K L∗E−
= K −T ∗E−,

K −T ∗E−E E−
= K −F∗E E−E E−

= K −F∗E E−
= K −T ∗E−,

K C∗E = K L∗
= T ∗,

we compute,

H(C + Y + Z + W ) = ((E−)∗ + K −)H(T )((E−)∗ + K −)∗

+[(I − E E−)∗ (I − K −K )]D

[
I − E E−

(I − K −K )∗

]
,

where

D =

[
I C − (E−)∗T (K −)∗

C∗
− K −T ∗E− H(Q)

]
.

By Theorem 1.2, it follows that D is nonnegative definite, so H(C + Y + Z + W )

≥ 0.

https://doi.org/10.1017/S1446788708000207 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788708000207


[9] Solutions to AX B = C 71

Hence, with such a choice of Y, Z , W , it can be seen that X0 defined by (2.10) is
Re-nnd solution of (2.6). So, we proved the sufficient part of the theorem.

Let X be an arbitrary Re-nnd solution of (2.6). It is evident that Y = AX A,
Z = B X B and W = B X A are solutions of (2.9), and that

(A + B)X (A + B) = C + Y + Z + W,

is Re-nnd. Now, using Theorem 2.3, we obtain that X has the representation (2.7).
Let us mention that, if we apply Theorem 2.4 to the equation

AX = C,

we obtain [11, Theorem 1] as a corollary.
Note that if the equation AX = C is consistent then X is a solution of it if and only

if A∗ AX = A∗C . By Theorem 2.4, we obtain that there exists a Re-nnd solution of the
equation AX = C if and only if

T = (A∗ A + I )−1 A∗C(A∗ A + I )−1 A∗ A,

is Re-nnd. Note that in this case (I + A∗ A) is invertible matrix.
Let us prove that T is Re-nnd if and only if C A∗ is Re-nnd.
By

(A∗ A + I )−1 A∗ A = A∗ A(A∗ A + I )−1,

we have that
T = ((A∗ A + I )−1 A∗)(C A∗)((A∗ A + I )−1 A∗)∗,

that is,
H(T ) = ((A∗ A + I )−1 A∗)H(C A∗)((A∗ A + I )−1 A∗)∗.

From the last equality, H(C A∗) ≥ 0 implies H(T ) ≥ 0.
Now, suppose that H(T ) ≥ 0. Owing to the consistence of the equation AX = C , it

follows that AA†C = C which implies that

(A†)∗(A∗ A + I )T ((A†)∗(A∗ A + I ))∗ = (A†)∗ A∗C A∗ AA†
= AA†C A∗

= C A∗,

that is,
H(C A∗) = ((A†)∗(A∗ A + I ))H(T )((A†)∗(A∗ A + I ))∗ ≥ 0.
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e-mail: gagamaka@ptt.yu

https://doi.org/10.1017/S1446788708000207 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788708000207

