A BOUND FOR THE DEGREE OF $H^2(G, Z_p)$

SNEH SHARMA

1. Introduction. Let G be a group and N a trivial G-module. We say an element $\xi \in H^2(G, N)$ is of degree $\leq n$ if a 2-cocycle representative of ξ is a polynomial 2-cocycle of degree $\leq n$ [1]. Let $P_nH^2(G, N)$ denote the subgroup of $H^2(G, N)$ consisting of elements with degree $\leq n$. Then we have a filtration

$$0 = P_0 H^2(G, N) \leq P_1 H^2(G, N) \leq P_2 H^2(G, N) \leq \ldots \leq P_n H^2(G, N) \leq \ldots$$

of $H^2(G, N)$. We say that the degree of $H^2(G, N)$ is $\leq n$ if $P_n H^2(G, N) = H^2(G, N)$. Passi and Stammbach [5] have studied this filtration for the case when the coefficients are in T, the additive group of rationals mod 1. We are interested in the filtration of $H^2(G, Z_p)$, where Z_p is the additive group of integers mod p and is regarded as a trivial G-module. Our main result is

 $\deg H^2(G, \mathbb{Z}_p) \leq p(M \text{-class of } G) - 1,$

i.e., $P_{pn-1}H^2(G, Z_p) = H^2(G, Z_p)$ where n = M-class of G. (See section 2 for the definition of M-class.) As a consequence we deduce that if π is a group and N is a normal subgroup of π which is an elementary abelian p-group and is contained in the centre of π and π/N is of M-class n, then

$$N \cap (1 + \Delta_{Z_p}^{pn+1}(\pi) + \Delta_{Z_p}(\pi) \Delta_{Z_p}(N)) = 1,$$

where Z_p denotes the field of p elements and $\Delta_{Z_p}(G)$ denotes the augmentation ideal of the group algebra $Z_p(G)$.

Finally we give an example which shows that p(M-class of G) - 1 is the best possible bound for the degree of $H^2(G, Z_p)$.

Acknowledgement. The author is very grateful to Dr. I. B. S. Passi for his encouragement and advice during the preparation of this paper.

2. Notations and preliminaries. For a group G, $M_i(G)$ denotes the *i*th term in its Brauer-Jennings-Zassenhaus series which is defined inductively as follows:

$$M_1(G) = G, M_i(G) = [G, M_{i-1}(G)] M_{(i/p)}(G)^p$$
 for $i \ge 2$

where (i/p) is the least integer $\geq i/p$ and $[G, M_{i-1}(G)]$ denotes the subgroup generated by all commutators

$$[x, y] = x^{-1}y^{-1}xy, x \in G, y \in M_{i-1}(G).$$

Received March 8, 1973.

1010

G is said to be of *M*-class *n* if $M_n(G) \neq 1$, $M_{n+1}(G) = 1$. If *k* is a field of characteristic p > 0 and $\Delta_k(G)$ is the augmentation ideal of the group algebra k(G), then it is shown (see for example [2] or [7]) that

$$M_i(G) = \{g \in G \mid g - 1 \in \Delta_k^i(G)\}.$$

Arguing as in [3, Theorem 2.1] we can prove the following:

PROPOSITION 1. Let π be a group of M-class n + 1. Let $\alpha : M_{n+1}(\pi) \to Z_p$ be a homomorphism. Then α is extendable to a Z_p -polynomial map $\phi : \pi \to Z_p$ of degree $\leq n + 1$ if and only if the central extension induced by α is of degree $\leq n$.

LEMMA [8, Proposition 3.9, Chapter II]. Let G be an arbitrary group, N an abelian group regarded as a trivial G-module. Let $f: G \times G \to N$ be an arbitrary 2-cocycle. Let

$$N \xrightarrow{i} \pi \xrightarrow{\theta} G$$

be a central extension of N by G which corresponds to the 2-cocycle f. If H, K are subgroups of G such that $[\theta^{-1}(H), \theta^{-1}(K)] = 1$, then f (h, k) = f(k, h) for all $h \in H, k \in K$.

Analogous to [6, Proposition 4.6] we establish the following:

PROPOSITION 2. Let G be a group of M-class n. Let $\xi \in H^2(G, Z_p)$ and

$$Z_n \xrightarrow{i} \pi \xrightarrow{\theta} G$$

be a central extension corresponding to ξ . If M-class of $\pi = M$ -class of G = n, then

 $\xi \in \operatorname{Im} (\inf : H^2(G/M_n(G), Z_p) \to H^2(G, Z_p)).$

Proof. G being of M-class n,

$$1 = M_{n+1}(G) = [G, M_n(G)] M_{((n+1)/p)}(G)^p.$$

Thus

(i) $M_n(G) \leq \text{centre of } G$, and

(ii) $M_n(G)$ is of exponent p because n > ((n+1)/p) and therefore $M_n(G) \leq M_{((n+1)'p)}(G)$ which is of exponent p. Similarly, $M_n(\pi) \leq$ centre of π and $M_n(\pi)$ is of exponent p.

Therefore the sequence

$$Z_p \xrightarrow{i} M_n(\pi) Z_p \xrightarrow{\theta} M_n(G)$$

splits and we have a homomorphism

$$\boldsymbol{\phi}: M_{\boldsymbol{n}}(G) \to M_{\boldsymbol{n}}(\boldsymbol{\pi}) \ Z_{\boldsymbol{p}}$$

such that $(\theta \circ \phi)(z) = z$ for all $z \in M_n(G)$. We have a central extension

 $M_n(G) \xrightarrow{i} G \xrightarrow{\alpha} G/M_n(G)$

where α is the natural projection. Let $\{w(h)\}$ be a set of representatives in Gof elements $h \in G/M_n(G)$; then every element of G is uniquely expressible as w(h)z where $z \in M_n(G)$ and $h \in G/M_n(G)$. Also, $M_n(G)$ being in the centre of G, we have w(h)z = zw(h). We choose representatives $\{\phi(g)\}_{g \in G}$ in π as follows: Choose arbitrarily representative $\phi(w(h))$ in π of the element w(h)and set $\phi(g) = \phi(z)\phi(w(h))$, where g = w(h)z, $h \in G/M_n(G)$ and $z \in M_n(G)$. Let $f: G \times G \to Z_p$ be the 2-cocycle corresponding to the above choice of representatives in π of elements $g \in G$. Then

- (2.1) $f(z_1, z_2) = 0$ for all $z_1, z_2 \in M_n(G)$
- (2.2) f(z, w(h)) = 0 for all $z \in M_n(G)$, $h \in G/M_n(G)$.
- (2.1) and (2.2) imply that

$$f(w(h_1)z_1, w(h_2)z_2) = f(w(h_1), w(h_2)) + f(w(h_1), z_2),$$

$$h_1, h_2 \in G/M_n(G) \text{ and } z_1, z_2 \in M_n(G).$$

In particular,

f(z, g) = 0 for all $z \in M_n(G)$, $g \in G$. But f(z, g) = f(g, z) for all $z \in M_n(G)$, $g \in G$ (by the Lemma). Therefore (2.3) f(g, z) = 0 = f(z, g) for all $z \in M_n(G)$, $g \in G$.

It follows that

$$(2.4) \quad f(w(h_1) \ z_1, \ w(h_2) \ z_2) = f(w(h_1), \ w(h_2)).$$

Define $\overline{f}: G/M_n(G) \times G/M_n(G) \to Z_p$ by

 $\bar{f}(h_1, h_2) = f(w(h_1), w(h_2)).$

f is clearly a 2-cocycle and it defines an element η , say, of $H^2(G/M_n(G), Z_p)$ whose image under the inflation is ξ . This completes the proof of the proposition.

3. Main result.

THEOREM. Let G be any group of M-class n. Then

$$\deg H^2(G, \mathbb{Z}_p) \leq pn - 1 = p(M \text{-class of } G) - 1.$$

Proof. We proceed by induction on the *M*-class of *G*. Let *G* be a group of M-class 1. Then

$$1 = M_2(G) = [G, G] M_{(2/p)}(G)^p = [G, G] M_1(G)^p = [G, G] G^p.$$

1012

[G,G] $G^p = 1$ implies that G is an elementary abelian p-group. Let $\xi \in H^2(G, \mathbb{Z}_p)$ and

$$(3.1) \quad Z_p \stackrel{i}{\rightarrowtail} \pi \xrightarrow{\theta} G$$

be the central extension corresponding to ξ . Now

$$\theta(M_2(\pi)) = M_2(G) = 1,$$

i.e., $M_2(\pi) \leq Z_p$ which is cyclic of order p, so either $M_2(\pi) = 1$ or $M_2(\pi) = Z_p$. *Case* (i) $M_2(\pi) = 1$: Then π is also an elementary abelian p-group and hence the sequence (3.1) splits. Consequently deg $\xi = 0$.

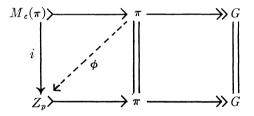
Case (ii). $M_2(\pi) = Z_{\pi}$: In this case the *M*-series of π becomes

$$\pi = M_1(\pi) \ge M_2(\pi) = Z_p \ge M_3(\pi)$$
$$\ge M_4(\pi) \ge \ldots \ge M_p(\pi) \ge M_{p+1}(\pi) = 1.$$

Therefore *M*-class of π is $\leq p$. Suppose *M*-class of $\pi = c, 1 < c \leq p$, i.e., $M_c(\pi) = Z_p, M_{c+1}(\pi) = 1$. We embed $M_c(\pi)$ into $Z_p(\pi)/\Delta_{Z_p}^{c+1}(\pi)$. Therefore the homomorphism $i: M_c(\pi) \to Z_p$ is extendable to a homomorphism $\beta: Z_p(\pi)/\Delta_{Z_p}^{c+1}(\pi) \to Z_p$. Then $\phi: \pi \to Z_p$ given by

 $\phi(x) = \beta((x-1) + \Delta_{z_p}^{c+1}(\pi))$

is a polynomial map of degree $\leq c$ and $\phi | M_c(\pi) = i$ and we have a commutative diagram:



The lower row of this diagram is the central extension induced by the embedding *i* and therefore by Proposition 1, it is of degree $\leq c-1 \leq p-1$. Hence deg $H^2(G, Z_p) \leq c-1 \leq p-1$. Thus we have shown that deg $H^2(G, Z_p) \leq p-1$ if G is a group of *M*-class 1.

Suppose now that the result is true for the groups of M-class < n. Let G be a group of M-class n. Then

$$1 = M_{n+1}(G) = [G, M_n(G)] M_{((n+1)/p)}(G)^p.$$

This implies that $M_n(G) \leq \text{centre of } G$ and $M_i(G)$ is of exponent p where i is the least integer $\geq (n + 1)/p$. Let $\xi \in H^2(G, \mathbb{Z}_p)$ and

$$Z_p \xrightarrow{i} \pi \xrightarrow{\theta} G$$

be the corresponding central extension. Now

$$\theta(M_{n+1}(\pi)) = M_{n+1}(G) = 1,$$

i.e., $M_{n+1}(\pi) \leq Z_p$. Therefore, either $M_{n+1}(\pi) = 1$ or $M_{n+1}(\pi) = Z_p$.

Case (i)* $M_{n+1}(\pi) = 1$: In this case, *M*-class of $\pi = n = M$ -class of *G*. Therefore, by Proposition 2, $\xi \in \text{Im}$ (inf: $H^2(G/M_n(G), Z_p) \to H^2(G, Z_p)$). Since *M*-class of $G/M_n(G) = n - 1$ [2, Theorems 4.1 and 5.5], induction gives deg $H^2(G/M_n(G), Z_p) \leq p(n-1) - 1$. It is not hard to see that if deg $H^2(G/N, Z_p) \leq k$, where *N* is a normal subgroup of *G*, then

deg (Im (inf : $H^2(G/N, Z_p) \rightarrow H^2(G, Z_p))$) $\leq k$.

Hence deg $\xi \leq p(n-1) - 1 < pn - 1$.

Case (ii)* $M_{n+1}(\pi) = Z_p$: M-series of π in this case is as follows:

$$\pi = M_1(\pi) \ge M_2(\pi) \ge \ldots \ge M_{n+1}(\pi) = Z_p \ge M_{n+2}(\pi)$$
$$\ge M_{n+3}(\pi) \ge \ldots \ge M_{pn}(\pi) \ge M_{pn+1}(\pi) = 1$$

for

$$M_{pn+1}(\pi) = [\pi, M_{pn}(\pi)] \quad M_{((pn+1)/p)}(\pi)^p = M_{(n+1/p)}(\pi)^p = M_{n+1}(\pi)^p = 1.$$

Therefore *M*-class of $\pi \leq pn$. Suppose that *M*-class of π is c^* , $n < c^* \leq pn$, i.e., $M_{c^*}(\pi) = Z_p$, $M_{c^*+1}(\pi) = 1$. Now proceeding analogously as in case (ii) above, we get

 $\deg H^2(G, Z_p) \leq c^* - 1 \leq pn - 1.$

This completes the induction. Hence deg $H^2(G, \mathbb{Z}_p) \leq p$ (*M*-class of G) - 1.

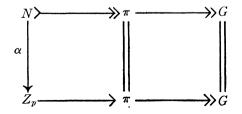
COROLLARY. Let π be a group and N be a normal subgroup of π , which is elementary abelian p-group and is contained in the centre of π . Let π/N be of M-class n. Then

$$N \cap (1 + \Delta_{Z_p}^{pn+1}(\pi) + \Delta_{Z_p}(\pi) \ \Delta_{Z_p}(N)) = 1.$$

Proof. Let $G = \pi/N$. Consider the central extension

$$N \rightarrowtail \pi \twoheadrightarrow G.$$

Let $1 \neq x \in N$. Then there exists a homomorphism $\alpha: N \to Z_p$ such that $\alpha(x) \neq 0$. Let $Z_p \mapsto \pi \twoheadrightarrow G$ be the central extension induced by α . Then we have the following commutative diagram:



1014

Now the induced central extension is of degree $\leq pn - 1$ as deg $H^2(G, Z_p) \leq pn - 1$. Hence by (the mod *p*-version of [4, Theorem 2.1]), α can be extended to a map $\phi : \pi \to Z_p$ whose linear extension to $Z_p(\pi)$ vanishes on $\Delta_{Z_p}^{pn+1}(\pi) + \Delta_{Z_p}(\pi) \Delta_{Z_p}(N)$. Therefore $\alpha(x) = \phi(x) = 0$, a contradiction. Hence

$$N \cap (1 + \Delta_{Z_p}^{pn+1}(\pi) + \Delta_{Z_p}(\pi) \ \Delta_{Z_p}(N)) = 1.$$

Remark. "pn - 1" is the best possible bound for the "deg $H^2(G, Z_p)$ " where G is of M-class n. For example, take $G = Z_p$. Then M-class of G is 1 and it is easily seen that deg $H^2(G, Z_p)$ is exactly p - 1.

References

- 1. A. Babakhanian, Cohomological methods in group theory (Marcel Dekkar Inc., New York, 1972).
- S. A. Jennings, The structure of the group ring of a p-group over a modular field, Trans. Amer. Math. Soc. 50 (1941), 175-185.
- 3. I. B. S. Passi, Induced central extensions, J. Algebra 16 (1970), 27-39.
- 4. Polynomial maps on groups, II (to appear).
- 5. I. B. S. Passi and U. Stammbach, A filtration of Schur multiplicator (to appear).
- 6. I. B. S. Passi and L. R. Vermani, *The inflation homomorphism*, J. London Math. Soc. 2 (1972), 129–136.
- 7. R. Sandling, The modular group ring of p-groups, Ph.D. Thesis, University of Chicago, 1969
- 8. L. R. Vermani, Nilpotent groups, Ph.D. Thesis, Kurukshetra University, 1970.

Kurukshetra University, Kurukshetra, India