A BOUND FOR THE DEGREE OF $H^{2}\left(G, Z_{p}\right)$

SNEH SHARMA

1. Introduction. Let G be a group and N a trivial G-module. We say an element $\xi \in H^{2}(G, N)$ is of degree $\leqq n$ if a 2 -cocycle representative of ξ is a polynomial 2-cocycle of degree $\leqq n[\mathbf{1}]$. Let $P_{n} H^{2}(G, N)$ denote the subgroup of $H^{2}(G, N)$ consisting of elements with degree $\leqq n$. Then we have a filtration

$$
0=P_{0} H^{2}(G, N) \leqq P_{1} H^{2}(G, N) \leqq P_{2} H^{2}(G, N) \leqq \ldots \leqq P_{n} H^{2}(G, N) \leqq \ldots
$$

of $H^{2}(G, N)$. We say that the degree of $H^{2}(G, N)$ is $\leqq n$ if $P_{n} H^{2}(G, N)=$ $H^{2}(G, N)$. Passi and Stammbach [5] have studied this filtration for the case when the coefficients are in T, the additive group of rationals mod 1 . We are interested in the filtration of $H^{2}\left(G, Z_{p}\right)$, where Z_{p} is the additive group of integers $\bmod p$ and is regarded as a trivial G-module. Our main result is

$$
\operatorname{deg} H^{2}\left(G, Z_{p}\right) \leqq p(M \text {-class of } G)-1
$$

i.e., $P_{p n-1} H^{2}\left(G, Z_{p}\right)=H^{2}\left(G, Z_{p}\right)$ where $n=M$-class of G. (See section 2 for the definition of M-class.) As a consequence we deduce that if π is a group and N is a normal subgroup of π which is an elementary abelian p-group and is contained in the centre of π and π / N is of M-class n, then

$$
N \cap\left(1+\Delta_{Z_{p}}{ }^{p n+1}(\pi)+\Delta_{z_{p}}(\pi) \Delta_{Z_{p}}(N)\right)=1
$$

where Z_{p} denotes the field of p elements and $\Delta_{Z_{p}}(G)$ denotes the augmentation ideal of the group algebra $Z_{p}(G)$.

Finally we give an example which shows that $p(M$-class of $G)-1$ is the best possible bound for the degree of $H^{2}\left(G, Z_{p}\right)$.

Acknowledgement. The author is very grateful to Dr. I. B. S. Passi for his encouragement and advice during the preparation of this paper.
2. Notations and preliminaries. For a group $G, M_{i}(G)$ denotes the i th term in its Brauer-Jennings-Zassenhaus series which is defined inductively as follows:

$$
M_{1}(G)=G, M_{i}(G)=\left[G, M_{i-1}(G)\right] M_{(i / p)}(G)^{p} \quad \text { for } i \geqq 2
$$

where (i / p) is the least integer $\geqq i / p$ and $\left[G, M_{i-1}(G)\right]$ denotes the subgroup generated by all commutators

$$
[x, y]=x^{-1} y^{-1} x y, \quad x \in G, y \in M_{i-1}(G) .
$$

Received March 8, 1973.
G is said to be of M-class n if $M_{n}(G) \neq 1, M_{n+1}(G)=1$. If k is a field of characteristic $p>0$ and $\Delta_{k}(G)$ is the augmentation ideal of the group algebra $k(G)$, then it is shown (see for example [2] or [7]) that

$$
M_{i}(G)=\left\{g \in G \mid g-1 \in \Delta_{k}^{i}(G)\right\} .
$$

Arguing as in [3, Theorem 2.1] we can prove the following:
Proposition 1. Let π be a group of M-class $n+1$. Let $\alpha: M_{n+1}(\pi) \rightarrow Z_{p}$ be a homomorphism. Then α is extendable to a Z_{p}-polynomial map $\phi: \pi \rightarrow Z_{p}$ of degree $\leqq n+1$ if and only if the central extension induced by α is of degree $\leqq n$.

Lemma [8, Proposition 3.9, Chapter II]. Let G be an arbitrary group, N an abelian group regarded as a trivial G-module. Let $f: G \times G \rightarrow N$ be an arbitrary 2 -cocycle. Let

$$
N \stackrel{i}{\mapsto} \pi \stackrel{\theta}{\rightrightarrows} G
$$

be a central extension of N by G which corresponds to the 2 -cocycle f. If H, K are subgroups of G such that $\left[\theta^{-1}(H), \theta^{-1}(K)\right]=1$, then $f(h, k)=f(k, h)$ for all $h \in H, k \in K$.

Analogous to [6, Proposition 4.6] we establish the following:
Proposition 2. Let G be a group of M-class n. Let $\xi \in H^{2}\left(G, Z_{p}\right)$ and

$$
Z_{p} \stackrel{i}{\mapsto} \pi \stackrel{\theta}{\mapsto} G
$$

be a central extension corresponding to ξ. If M-class of $\pi=M$-class of $G=n$, then

$$
\xi \in \operatorname{Im}\left(\inf : H^{2}\left(G / M_{n}(G), Z_{p}\right) \rightarrow H^{2}\left(G, Z_{p}\right)\right)
$$

Proof. G being of M-class n,

$$
1=M_{n+1}(G)=\left[G, M_{n}(G)\right] M_{((n+1) / p)}(G)^{p}
$$

Thus
(i) $M_{n}(G) \leqq$ centre of G, and
(ii) $M_{n}(G)$ is of exponent p because $n>((n+1) / p)$ and therefore $M_{n}(G) \leqq M_{\left((n+1)^{\prime} p\right)}(G)$ which is of exponent p. Similarly, $M_{n}(\pi) \leqq$ centre of π and $M_{n}(\pi)$ is of exponent p.

Therefore the sequence

$$
Z_{p} \stackrel{i}{\mapsto} M_{n}(\pi) Z_{p} \stackrel{\theta}{\mapsto} M_{n}(G)
$$

splits and we have a homomorphism

$$
\phi: M_{n}(G) \rightarrow M_{n}(\pi) Z_{p}
$$

such that $(\theta \circ \phi)(z)=z$ for all $z \in M_{n}(G)$. We have a central extension

$$
M_{n}(G) \stackrel{i}{\mapsto} G \stackrel{\alpha}{\longrightarrow} G / M_{n}(G)
$$

where α is the natural projection. Let $\{w(h)\}$ be a set of representatives in G of elements $h \in G / M_{n}(G)$; then every element of G is uniquely expressible as $w(h) z$ where $z \in M_{n}(G)$ and $h \in G / M_{n}(G)$. Also, $M_{n}(G)$ being in the centre of G, we have $w(h) z=z w(h)$. We choose representatives $\{\phi(g)\}_{g \in G}$ in π as follows: Choose arbitrarily representative $\phi(w(h))$ in π of the element $w(h)$ and set $\phi(g)=\phi(z) \phi(w(h))$, where $g=w(h) z, h \in G / M_{n}(G)$ and $z \in M_{n}(G)$. Let $f: G \times G \rightarrow Z_{p}$ be the 2 -cocycle corresponding to the above choice of representatives in π of elements $g \in G$. Then
(2.1) $f\left(z_{1}, z_{2}\right)=0$ for all $z_{1}, z_{2} \in M_{n}(G)$

$$
\begin{equation*}
f(z, w(h))=0 \quad \text { for all } z \in M_{n}(G), h \in G / M_{n}(G) \tag{2.2}
\end{equation*}
$$

(2.1) and (2.2) imply that

$$
\begin{aligned}
f\left(w\left(h_{1}\right) z_{1}, w\left(h_{2}\right) z_{2}\right)=f\left(w\left(h_{1}\right), w\left(h_{2}\right)\right)+f\left(w\left(h_{1}\right), z_{2}\right), \\
h_{1}, h_{2} \in G / M_{n}(G) \text { and } z_{1}, z_{2} \in M_{n}(G) .
\end{aligned}
$$

In particular,

$$
f(z, g)=0 \text { for all } z \in M_{n}(G), g \in G
$$

But $f(z, g)=f(g, z)$ for all $z \in M_{n}(G), g \in G$ (by the Lemma). Therefore

$$
\begin{equation*}
f(g, z)=0=f(z, g) \quad \text { for all } z \in M_{n}(G), g \in G \tag{2.3}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
f\left(w\left(h_{1}\right) z_{1}, w\left(h_{2}\right) z_{2}\right)=f\left(w\left(h_{1}\right), w\left(h_{2}\right)\right) . \tag{2.4}
\end{equation*}
$$

Define $\bar{f}: G / M_{n}(G) \times G / M_{n}(G) \rightarrow Z_{p}$ by

$$
\bar{f}\left(h_{1}, h_{2}\right)=f\left(w\left(h_{1}\right), w\left(h_{2}\right)\right) .
$$

\bar{f} is clearly a 2 -cocycle and it defines an element η, say, of $H^{2}\left(G / M_{n}(G), Z_{p}\right)$ whose image under the inflation is ξ. This completes the proof of the proposition.

3. Main result.

Theorem. Let G be any group of M-class n. Then

$$
\operatorname{deg} H^{2}\left(G, Z_{p}\right) \leqq p n-1=p(M \text {-class of } G)-1
$$

Proof. We proceed by induction on the M-class of G. Let G be a group of M-class 1. Then

$$
1=M_{2}(G)=[G, G] M_{(2 / p)}(G)^{p}=[G, G] M_{1}(G)^{p}=[G, G] G^{p}
$$

$[G, G] G^{p}=1$ implies that G is an elementary abelian p-group. Let $\xi \in H^{2}\left(G, Z_{p}\right)$ and
(3.1) $\quad Z_{p} \stackrel{i}{\mapsto} \pi \xrightarrow{\theta} G$
be the central extension corresponding to ξ. Now

$$
\theta\left(M_{2}(\pi)\right)=M_{2}(G)=1
$$

i.e., $M_{2}(\pi) \leqq Z_{p}$ which is cyclic of order p, so either $M_{2}(\pi)=1$ or $M_{2}(\pi)=Z_{p}$.

Case (i) $M_{2}(\pi)=1$: Then π is also an elementary abelian p-group and hence the sequence (3.1) splits. Consequently $\operatorname{deg} \xi=0$.

Case (ii). $M_{2}(\pi)=Z_{p}$: In this case the M-series of π becomes

$$
\begin{aligned}
\pi=M_{1}(\pi) \geqq M_{2}(\pi)=Z_{p} & \geqq M_{3}(\pi) \\
& \geqq M_{4}(\pi) \geqq \ldots \geqq M_{p}(\pi) \geqq M_{p+1}(\pi)=1 .
\end{aligned}
$$

Therefore M-class of π is $\leqq p$. Suppose M-class of $\pi=c, 1<c \leqq p$, i.e., $M_{c}(\pi)=Z_{p}, M_{c+1}(\pi)=1$. We embed $M_{c}(\pi)$ into $Z_{p}(\pi) / \Delta_{Z_{p}}{ }^{c+1}(\pi)$. Therefore the homomorphism $i: M_{c}(\pi) \rightarrow Z_{p}$ is extendable to a homomorphism β : $Z_{p}(\pi) / \Delta_{Z_{p}}{ }^{c+1}(\pi) \rightarrow Z_{p}$. Then $\phi: \pi \rightarrow Z_{p}$ given by

$$
\phi(x)=\beta\left((x-1)+\Delta_{Z_{p}}{ }^{c+1}(\pi)\right)
$$

is a polynomial map of degree $\leqq c$ and $\phi \mid M_{c}(\pi)=i$ and we have a commutative diagram:

The lower row of this diagram is the central extension induced by the embedding i and therefore by Proposition 1 , it is of degree $\leqq c-1 \leqq p-1$. Hence deg $H^{2}\left(G, Z_{p}\right) \leqq c-1 \leqq p-1$. Thus we have shown that deg $H^{2}\left(G, Z_{p}\right) \leqq p-1$ if G is a group of M-class 1 .

Suppose now that the result is true for the groups of M-class $<n$. Let G be a group of M-class n. Then

$$
1=M_{n+1}(G)=\left[G, M_{n}(G)\right] M_{((n+1) / p)}(G)^{p}
$$

This implies that $M_{n}(G) \leqq$ centre of G and $M_{i}(G)$ is of exponent p where i is the least integer $\geqq(n+1) / p$. Let $\xi \in H^{2}\left(G, Z_{p}\right)$ and

$$
Z_{p} \stackrel{i}{\mapsto} \pi \stackrel{\theta}{\mapsto} G
$$

be the corresponding central extension. Now

$$
\theta\left(M_{n+1}(\pi)\right)=M_{n+1}(G)=1
$$

i.e., $M_{n+1}(\pi) \leqq Z_{p}$. Therefore, either $M_{n+1}(\pi)=1$ or $M_{n+1}(\pi)=Z_{p}$.

Case (i)* $M_{n+1}(\pi)=1$: In this case, M-class of $\pi=n=M$-class of G. Therefore, by Proposition 2, $\xi \in \operatorname{Im}\left(\right.$ inf: $\left.H^{2}\left(G / M_{n}(G), Z_{p}\right) \rightarrow H^{2}\left(G, Z_{p}\right)\right)$. Since M-class of $G / M_{n}(G)=n-1$ [2, Theorems 4.1 and 5.5], induction gives deg $H^{2}\left(G / M_{n}(G), Z_{p}\right) \leqq p(n-1)-1$. It is not hard to see that if $\operatorname{deg} H^{2}\left(G / N, Z_{p}\right) \leqq k$, where N is a normal subgroup of G, then

$$
\operatorname{deg}\left(\operatorname{Im}\left(\inf : H^{2}\left(G / N, Z_{p}\right) \rightarrow H^{2}\left(G, Z_{p}\right)\right)\right) \leqq k
$$

Hence deg $\xi \leqq p(n-1)-1<p n-1$.
Case (ii)* $M_{n+1}(\pi)=Z_{p}: M$-series of π in this case is as follows:

$$
\begin{aligned}
\pi=M_{1}(\pi) \geqq M_{2}(\pi) & \geqq \ldots \geqq M_{n+1}(\pi)=Z_{p} \geqq M_{n+2}(\pi) \\
& \geqq M_{n+3}(\pi) \geqq \ldots \geqq M_{p n}(\pi) \geqq M_{p n+1}(\pi)=1
\end{aligned}
$$

for

$$
M_{p n+1}(\pi)=\left[\pi, \quad M_{p n}(\pi)\right] \quad M_{((p n+1) / p)}(\pi)^{p}=M_{(n+1 / p)}(\pi)^{p}=M_{n+1}(\pi)^{p}=1
$$

Therefore M-class of $\pi \leqq p n$. Suppose that M-class of π is $c^{*}, n<c^{*} \leqq p n$, i.e., $M_{c^{*}}(\pi)=Z_{p}, M_{c^{*}+1}(\pi)=1$. Now proceeding analogously as in case (ii) above, we get

$$
\operatorname{deg} H^{2}\left(G, Z_{p}\right) \leqq c^{*}-1 \leqq p n-1
$$

This completes the induction. Hence $\operatorname{deg} H^{2}\left(G, Z_{p}\right) \leqq p(M$-class of $G)-1$.
Corollary. Let π be a group and N be a normal subgroup of π, which is elementary abelian p-group and is contained in the centre of π. Let π / N be of M-class n. Then

$$
N \cap\left(1+\Delta_{z_{p}}^{p n+1}(\pi)+\Delta_{z_{p}}(\pi) \Delta_{Z_{p}}(N)\right)=1
$$

Proof. Let $G=\pi / N$. Consider the central extension

$$
N \mapsto \pi \rightarrow G .
$$

Let $1 \neq x \in N$. Then there exists a homomorphism $\alpha: N \rightarrow Z_{p}$ such that $\alpha(x) \neq 0$. Let $Z_{p} \mapsto \pi \rightarrow G$ be the central extension induced by α. Then we have the following commutative diagram:

Now the induced central extension is of degree $\leqq p n-1$ as deg $H^{2}\left(G, Z_{p}\right) \leqq$ $p n-1$. Hence by (the mod p-version of [4, Theorem 2.1]), α can be extended to a map $\phi: \pi \rightarrow Z_{p}$ whose linear extension to $Z_{p}(\pi)$ vanishes on $\Delta_{Z_{p}}^{p n+1}(\pi)+$ $\Delta_{Z_{p}}(\pi) \Delta_{Z_{p}}(N)$. Therefore $\alpha(x)=\phi(x)=0$, a contradiction. Hence
$N \cap\left(1+\Delta_{Z_{p}}^{p n+1}(\pi)+\Delta_{Z_{p}}(\pi) \Delta_{Z_{p}}(N)\right)=1$.
Remark. " $p n-1$ " is the best possible bound for the " $\operatorname{deg} H^{2}\left(G, Z_{p}\right)$ " where G is of M-class n. For example, take $G=Z_{p}$. Then M-class of G is 1 and it is easily seen that $\operatorname{deg} H^{2}\left(G, Z_{p}\right)$ is exactly $p-1$.

References

1. A. Babakhanian, Cohomological methods in group theory (Marcel Dekkar Inc., New York, 1972).
2. S. A. Jennings, The structure of the group ring of a p-group over a modular field, Trans. Amer. Math. Soc. 50 (1941), 175-185.
3. I. B. S. Passi, Induced central extensions, J. Algebra 16 (1970), 27-39.
4. -_ Polynomial maps on groups, II (to appear).
5. I. B. S. Passi and U. Stammbach, A filtration of Schur multiplicator (to appear).
6. I. B. S. Passi and L. R. Vermani, The inflation homomorphism, J. London Math. Soc. 2 (1972), 129-136.
7. R. Sandling, The modular group ring of p-groups, Ph.D. Thesis, University of Chicago, 1969
8. L. R. Vermani, Nilpotent groups, Ph.D. Thesis, Kurukshetra University, 1970.

Kurukshetra University,
Kurukshetra, India

