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Abstract

Lety,, denote the first positive zero of /„. It is shown thatjv/(v + a) is a strictly decreasing
function of v for each positive a provided v is sufficiently large. For each a lowe. bounds
on v are given to assure the monotonicity of _/„/( v + a). From this it is shown that
jv> v + j0 for all v > 0, which is both simpler and an improvement on the well known
inequalityjr a* (v(v + 2))1/2.

1. Introduction

The zeros of Bessel functions have been investigated in depth because of their
relation to physical phenomena. For example, the transverse vibrations of a
membrane in the form of a circular sector, which is clamped along its edges, are
determined by the zeros of Bessel functions of the first kind. The study of the
behavior of the zeros of Bessel functions dates back at least as far as an entry in
Gauss' notebook dated October 16, 1797 (see the footnote on page 506 of [15]).
Since then results concerning the interlacing of zeros of various orders, monoton-
icity of growth, asymptotic expansions, and algebraic bounding functions for the
zeros have been established. Here we shall show that if j , denotes the first positive
zero of the Bessel function of the first kind /„, then for any a > O,jv/(t> + a) is a
strictly decreasing function whenever v is sufficiently large. For each a > 0, a
lower bound to v which ensures the monotonicity oljv/(y + a) is given. From this
it is shown that jv > v + j0 for all v > 0. This is an improvement on the well
known inequality^ > (v(v + 2))1/2.
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68 Roger C. McCann and E. R. Love (2 ]

2. Preliminary lemmas

We begin by considering the eigenvalue problem

-{xy')' +A2x-ly = \x2P-iy foia<x<l, (1)
y(a)=y(l) = 0, (2)

where 0 < a < 1, 0 <p, and A =A(p) = 1 — ap on the interval (0, a"1); and
a > 0. It is easily verified that the general solution of equation (1) is

and that the eigenvalues X are the positive zeros of

, a, X) =

Let R[p, y, a] denote the Rayleigh quotient

{-xy')' + A2x-ly}ydx

/ x2p~xy2dx

It is well known that the eigenvalues {Xn(p, a)} of (1), (2) can be obtained from
the Rayleigh quotient [10, Sections 31 and 35]. Let V(a) denote the linear space
of all functions in C2([a, 1]) which satisfy the boundary conditions (2). Then

Moreover, if j , is an eigenfunction of (1), (2) associated with X{(p, a), then
Xt(p, a) = R[p, yiy a]. Note that the eigenfunction j>, may be chosen to be

= JA/D(\{ xp/p) / . . . ?YA/»\*{ x /P)> (5)

where \ , = ^iC/', «)•

LEMMA 1. //O < 5 < C, then there is an x0 6 (0, B) such that \ Y,{x) | < | 7,(z) |
whenever 0 < 2 < JC0, Z ̂  x, a/w/ B < t < C.

PROOF. The integral representation, for x > 0,

r , (* ) = 77~' r s i n ( ; c s i n 0 - tO) dd - 77'1 / "" (g" + e~'scos fir)e~X^^s ds
Jo Jo
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is given on page 178 of [15]. If B < x and 0 < / < C, then

| *",(*) Is5 1 +n~l f°°2e"e-xsiBbsds

=s 1 +27r~l f°°eCs~Bsinhsds,

the latter integral being convergent. Thus there is an M such that

\Y,(x)\<M (6)

whenever B < x and B «£ t < C.
Let^, andy/ denote the least positive zeros of Y, and J't. On pages 485 and 487

of [15] it is shown that / <j[ and that Y,(x)2 is strictly decreasing on 0 < x <j,'
provided 0 < t. Thus | Y,(x) | is decreasing and positive on 0 < x < / if 0 < t. In
particular,

| Yt(x) | is a decreasing function of x 1

on 0 < x < B whenever B<t^C, [ (7)
and | Y,(x) \> 0 for these values of x and /. I

For positive integral n, let /„(/)= VI Y,(B/n) | . By (7), these functions form a
decreasing sequence of continuous functions of / on [5, C]. Moreover, /„(/) -» 0
as n -» oo. By Dini's Theorem (page 140 of [13]) this convergence is uniform.
Hence there is a positive integer n0 such that \fn(t) |< 1/Af whenever no< n and
/ G [5, C]. Set x0 = B/(n0 + 1). Then

M<\ Yt{x0) | whenever B<t<C. (8)

Suppose 0 < z < x0, z < x, and 5 < / < C. If 5 < x, then (6), (7) and (8) give

\Y,(x)\<M<\Y,(xo)\<\Yt(z)\

so that | Y,(x) |< | 7,(2) | • If A: < 5 this last inequality follows from (7) only.

LEMMA 2. Le/ a, b, c, d be positive constants such that 0 < b < c < a~\ Set
t — p~x — a and

g{p, a, x, A) =

Then there are positive constants ao< j , k0 and k such that

\g{P,a,x,X)-J,{^/2x"/p)\<k0a
k

whenever 0 < a < a0, a ̂  x, b < p ^ c, and 0 < X < d.
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PROOF. Set B - c"1 - a and C = b~l - a so that 0 < B < C. Then t G [B, C]
if and only if p G [b, c]. With x0 as in Lemma 1, choose a0 G (0, j) so that
d1/2ap/b < xQ. Then 0 < X1/2ap/p < x0 whenever 0 < a < a0, b =£ p < c, and
0 < X < d. Replacing z and x in Lemma 1 by Xi/2ap/p and Xi/2xp/p respectively
yields

\Y,(Xl/2x"/p)\<\Yl{\1/2a''/p)\ (10)

whenever 0 < a «£ a0, 0 < o « x , b < /? < c, and 0 < A < d. By (9), (10), and
inequality (1) on page 49 of [15] we have

|g(p, a, x, X) - J,(X]/2x»/p) \

-'a'-^ (n)
where 0 < w is a lower bound for T(l + 0 on [B, C]. Since c<a~l the
inequah'ty in (11) is the desired inequality.

LEMMA 3. Le/ a, b, c be positive constants such that 0<b<c<a~]. Set
t = p~l — a and let X = X, = X,(/», a) denote the least positive root of

g(p,a,l,X) = 0

where g is defined by (9). Set yx{p, a, x) = g(p, a, x, X,). Then there are positive
constants a0 < j , A:, and k such that

\yAp,a,x)-J,{}l(2xp/p)\<kxa
k (12)

whenever 0 < a < a0, a ̂  x and b < p < c. Moreover, X]/2(p, a)/p converges to a
zero of Jt as a -> 0 + .

PROOF. Assume by analogy with the results on pages 409 and 419 of [2] that
(i) \i(/7, a) is a nondecreasing function of a in 0 < a < 1,
(ii) X,(/>, a) is a continuous fun6tion of p for fixed a.

By (ii), X,(/>, j) is continuous on b =£ p <c and therefore bounded, say by iV:
0 <Xi(p,$)<N whenever b =ep < c. By (i), 0 <Xt(p, a) <Xt(p,\) ^ N
whenever 0 < a *£ \ and 6 =£ p < c.

Lemma 2 with d and X replaced by N and X, = Xx(p, a) respectively now gives
the desired inequality (12).
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With x = 1 this inequality becomes

\J,{\\/2{p,a)/p)\<k,ak.

Since A,(/;, a) is a nondecreasing function of a there is a nonnegative number /
such that A,(/>, a) -»/ as a -» 0+ . If we now let a -» 0+ the above inequality
yields J,(li/2/p) — 0 so that /1/2//> is a zero of /,. The last sentence of the lemma
follows.

LEMMA 4. With the notation of Lemma 3, Xl/2(p, a) -> pj, as a -» 0+ , /or
/> «£ /? *£ c.

PROOF. Set A, = Xt(p, a). Since J,(Xl/2xp/p) and j>|(/7, a, x) are solutions of
equation (1) with X = A,, consecutive zeros on (0, oo) of either function are
separated by a zero of the other, by the Sturm comparison theorem. Thus,
between a and 1 (zeros of yx(p, a, x)) there is a zero of Jt(\

x(2xp/p). Therefore
the least positive zero (Kl/2PJt)l/p °f Jt(^/2xP/P) 1S i n t h e interval (0,1). Since
\,(/7, a) is nondecreasing in a (for fixed p),

whenever 0 < a < {. Thus, if 0 < a < min{^, (k\x/2{p, j)pj,)i/p},

that is, this inequality holds for a sufficiently small.
Let 7̂ 2 be the second positive zero of/,. By Sturm's theorem again, between the

first two positive zeros (Ki/2pj,y/p and (Ki/2pjl2y
/p oiJ,(\x/2xp/p) there is a

zero of y\(p, a, x). It is known (see page 452 of [2]) that an eigenfunction
corresponding to the smallest eigenvalue of a Sturm-Liouville system, such as in
equations (1) and (2), does not change sign on the interval whose endpoints are
given in the boundary conditions. Thus there are no zeros of y^p, a, x) between
a and 1, so that

or equivalently

Since A, is a nondecreasing function of a (for fixed p) we have

pj,^ Urn \l/2<pj,,2.
a—0+

The desired result now follows directly from Lemma 3.

LEMMA 5. With the notation of Lemma 3, \Y2(p, a) -»pj, as a -» 0+ uniformly
on b <p < c.
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PROOF. For clarity we denote t, that is, p~l —a, by t(p). Let {an} be a
decreasing sequence tending to 0 as n -» oo. Then ^(2{p, an) is nonincreasing, by
(i) of Lemma 3; and by Lemma 4

as n ^ oo

for A =£ p < c. For these values of p, t(p) is decreasing, so

'(/>)>'(<0 =<?-' - o > 0 ,
since 0 < b < c < a~l. Thus /> (̂/,) is a continuous function of p. But X'/2(/?, an)
is also continuous, for each fixed n, by (ii) of Lemma 3. Dini's Theorem (page 140
of [13]) accordingly shows that the convergence of the sequence )}/2(p, an) is
uniform on b ^ p «£ c.

The stated conclusion now follows since \]/2(p, a) is a nondecreasing function
of a.

LEMMA 6. Under the hypotheses of Lemma 3, together with 0 < £ < 1,

y2(p,a,x) ^J,2

uniformly for | < x < 1 a«J b < p < c.

PROOF. AS in Lemma 2, let B = c~l — a and C = b~] — a. Since \/p is
bounded on b < /? < c, Lemma 5 gives that A'/2(/>, a)/p -»y, as a -> 0+ uni-
formly on b < p < c. So there is an a' > 0 such that

2yc >7c +>, > *Y2/P >J, - tin > i/>
whenever 0 < a < a' and b < p< c, since then B < t < C. For £ < x < 1 we thus
have

tJB*e < A1/2*'//> < 27c
whenever 0 < a < a' and b<p<c. Since /,(") is uniformly continuous on
B < / < C, i /B | c < u < 2yc,

Jt(\Y
2xp/p)-JiU,x') (13)

as a -» 0 + uniformly foib<p<c and £ < x < 1. Also, by Lemma 3,

yx{p,a,x)-Jt{^(2x"/p)^0 (14)

as a -> 0+ uniformly for b <p < c and £ < x < 1. Adding (13) and (14) gives

yy{p,a,x) -+J,(j,xp)

as a -» 0 + uniformly for b ^ /? *£ c and £ ̂  x < 1.
It is easily proved that if /n(x) -»/(x) uniformly for x e 5, as « -» oo, and/(x)

is bounded on the set S, then /n
2(x) -* f2(x) uniformly for x G S. It is known

that ([1], page 362) | Jy(z) |< 1 for all v > 0 and z > 0. The desired result follows.
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3. The function K{v)

LEMMA 7. For v > 0 let jv and j'v denote the least positive zeros of ./„ and J'v
respectively. Let K(v) denote the least positive integer m such that j , , <jl+m- Then
K(v) exists, and

(i) for fixed X>\ such that K(X) > 3, K(p) > 3 for all v>\\
(ii) for fixed X>5 such that K(X) > 4, K(p) > 4 for all v>X.

PROOF. Existence of K(v) for all v > 0 follows from the facts that 7',, > j'r and
j ^ > p for all ji > 0 (see [15] page 485).

The proofs of (i) and (ii) are similar; we will prove (ii). We do not prove here
the existence of a A such that A > 5 and K(X) > 4; for that see Lemma 8.

Suppose that A > 5, K(\) > 4, v > X and K(v) < 4, and seek a contradiction.
Let ix be the lower bound of numbers t > X such that K(t) < 4; then X < n < v.
There is a sequence /„ -> jn+ such that K(tn) < 4, and so K(tn) < 3 since # is
integer-valued. Hence

using the increasing property of j'r (see [15] page 510). Thus7^ —j!+i, which is a
continuous function of t, has nonpositive limit as t -»/x+ .

If /x > X, A"(0 > 4 for X < t < |LI, and so K(t) > 3. By definition of K,j, >ji+i;
thus the continuous function j , —7/4.3 has nonnegative limit as / -»/x — . With the
conclusion of the previous paragraph this gives that7M — j ^ + 3 = 0. The function
Jt ~M+3IS a l s o differentiable, and so

Similarly, if /x = A we have since K(X) > 3 thatyx >j\+3. And by a previous
paragraph the continuous function j , — jf+3 has nonpositive limit as t -> X+ . It
follows that it vanishes at / = A. Further, since /„ -> A4- and 7^ — j ' , n + 3 < 0, its
derivative is nonpositive at t = A.

By the two preceding paragraphs we have constructed ft s» A, and so /x > 5,
such that

J5 . -V ; + 3 = O
 a n d ^ ( y ; -77+3)1,=^ °-

The rest of the proof develops a contradiction of this.
Using the standard identity xJ,'(x) + Ut(x) - x/,_,(x) once and the identity

/,_,(*) + J,+ l(x) = (2t/x)J,(x) twice, we find that

K'+30M) = {(3M + 5) -
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74 Roger C. McCann and E. R. Love |8]

The left side vanishes since yM =y^+3; but J^+xiJ^) ¥=0 since jli<jll+l. Conse-
quently

We shall also need the formula

from the Note on page 510 of [15]; it holds for all v > 0. Here Ko is the modified
Bessel function of the second kind of order 0.

Consider for t > 0 the function

g(') = U'+3cosh2r - 0* + 3)2} - [j£3 - (M + 3)2}e6'.

To prove this decreasing we have, sincey^+3 — j ^ ,

g'{t) = 2j?sinh2t - 6{yM
2 - (/i +

= 6e6'{(n + 3)2 - (1 - i e -

Now e~6'sinh2? is maximum when tanh2/ = j , sinh2r = 1/2/2", e~2' = 1/ -Jl
ande~6'sinh2r = | . So

5) - 23(M + 1)(M + 2)}

3)(5ju2 - 15/* - 44).

Since ft > 5, this is negative and so g(f) is decreasing.
Now g(0) = 0; consequentlyg(t) < 0 for t > 0, and so

using (3) on page 508 of [15]. This provides the desired contradiction.

LEMMA 8. Let K(v) be as in Lemma 7. Thert
(i) K(v) -> oo as v -> oo,

(ii) ifm is a positive integer, then J^+m(jv) > 0 if and only if K{v) < m,
(ni) K(i>) 2s 2 if r > 0,
(iv) K{v) > 3 if v> 3.5,
(v) K(v) > 4 if v > 18.5.
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PROOF, (i) The asymptotic expansions

j; = t + cV/3 + o(r '/3)

when / -» oo, where c = 1.855 757 1 . . . and c' = 0.808 616 5 . . . , may be found in
[14] or on page 371 of [1]. They give

0 <y;+Jf(,, ~jr = K(v) + c'{v + K(v))l/3 - cv^ + 0{v'^)

as v -» oo, since (f + A"(JO)~ 1 / 3 < p" 1 / 3 .
Suppose that AX»')->'*ooas»'->oo. Then there is B such that K(v) < B for

arbitrarily large v; and so K(vn) < 5 for a sequence pn -» oo. Therefore, as
n -» oo,

But the right side tends to -oo since c > c' > 0. This contradiction proves (i).
(ii) Suppose that K{v) < w. Using the inequality P < J , ' and the Note on page

510 of [15], we find that j'v is an increasing function of v for v > 0. Since
p + K(v) « i i + fflwe have

Since //(x) > 0 for all t > 0 and positive x sufficiently small, Jfcx) > 0 for
0 < x <j't\ consequently

•£+»(*) > 0 forO<x<y; + m .

In particular,

/;+m(yr)>o.

Conversely, suppose this last inequality holds. Then the graph of / r '+ m shows
that either /„ <j'v+m oxj'v+m2 <jr, where j ' t l is the second positive zero of//. The
graph of Jt shows thaty, <j'h2\

 a n d , by page 508 of [15], y, is increasing for / > 0.
Hence jv <jv+m *^j'v+m<2, which rules out the second alternative; and soy, <j'v+m-
Since m is a positive integer, the definition of K(v) now gives that K(v) < m,
which completes the proof of (ii).

(iii) Using the recurrence formula /,_,(;c) — Jl+i(x) — 2J',(x) with t = v + 1
and x =jv we have - Jy+2(jv) — 2/,'+i(/.)- Since v > 0 and 0 <jr <jy+2, this
gives

2/;+,a) = -Jr,+2(7;)<o.
HenceX'+1 <yr . This proves that #(»>) > 2, giving (iii).

(iv) and (v). Using the table on page 321 of [11],

75'5 < 6.96 <y 3 5 , j'2x 5 < 23.78 <y 1 8 5 .

Thus A"(3.5) > 2, from which Lemma 7(i) gives that K(v) > 3 for all p > 3.5,
proving (iv). Similarly A:(18.5) > 3, and Lemma 7(ii) gives (v).
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4. The integral / (p)

The next four lemmas are to assist in showing that the Rayleigh quotient is an
increasing function of p whenever p is sufficiently small. From this we shall be
able to derive the desired results.

LEMMA 9. For a a positive constant, andp E (0, a~'), set A(p) = 1 — ap and

Then

/(/»)= 1 ( ( ' -« )» - «"KUJ),
n = l

where v and) stand for v{p) = A(p)/p — p~x —a andj^p) respectively.

PROOF. We begin by noting that v > 0. If we change variables according to
/ =jxp, integrate by parts, and use the asymptotic expansion, for small z,
Jr(z) ~ (2TO + \))~xz\ we find that

/ = - o /V(0 dt - ,/7(ln j W(0 dtJo Jo\JI

= - a fJUy
2(t) dt + v fJt~l f'sJ,2(s) ds dt.Jo Jo Jo

Using the well known identity

J,-l(z)+J,+ l(z) = 2rz-lJ,(z), (15)

wehavey,,_,(7) = - J,+ i(j). On page 135 of [15] it is shown that for w > 0

{s)ds= \t^{t) - / „ _ , ( / ) / . + ,(»)}. (16)

With / replaced byy, and w successively replaced by v 4- \,v and v — 1, we find
that

/ V ( , ) dt = (JUUt) dt = /V+1(0 dt. (17)
yo •'o •'o

Using the recurrence formula (15) it is easy to verify that

M = -U- , (0 - U2
+i(0 + 2v2r2j,2(t). (18)
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1111 Zeros of Bessel functions

The identities (16), (17), and (18) enable us to write / as

I = -a (JU2{t) dt + {v/2) fJt{Jr
2{t) - J,-i(t)Jw+l(t)} dt

Jo Jo

= (v/2-a)(JtJr
2(t)dt +

= i(" - «) f V ( 0 dt + H" - «) r^+i(Odt - v3 (JrxJ2{t) dt.
Jo Jo Jo

On pages 151 and 152 of [15] it is shown that

n = 0

and

2vfr^(t) dt = J2(z) + 2 1 J?+n(z).

These identities enable us to write / as
00 00

= 2 ((r-a)n-av)J,\n(j).
n=\

LEMMA 10.1(p), defined in Lemma 9, is positive whenever p is sufficiently small;
that is, whenever v(p)—p~l—a is sufficiently large. Specifically, / ( /?)> 0
whenever v > a and K(v) > 2av/(y — a).

PROOF. We will do the proof for the case K{v) even; when K(v) is odd the
proof is analogous. We begin by noting that 0 <Jv+i(j) and 0 <Jy+2U) since

For integers n > K(p), with v > a and K(v)> 2av/(v — a),

(v — a)n — av > (v — a)K(v) — av> 2av — av = av > 0.

Hence

/(/>)> lLU."-«)n-av)j?+H{j). (19)
n=\

By Lemma 8(ii), for n = 1,2,.. .,K(v) - 1 we have /;+„(» ^ 0 . From the
recurrence formula /,_,(z) — J,+ \(z) = 2J,'(z) we conclude that 0 </,,+ iO) <

0 < Jr+1(j
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Let M be the least odd integer such that (v — a)M 3= av, and let N be the least
even integer such that (v - a)N > av. Then N = M±\. If N = M + 1, then
M - 1 < av/(v — a) < {K(v). By Lemma 8(iii) we have that 1 < \K(v) and so
M < {K(v) + 1 < K{v). Since K{v) is integer valued, N = M + 1 < K(v). A
similar argument shows that if N = M — 1, then N < K(v) and M «£ ^(f) . In
either case we have N, M ̂  K(p).

For notational simplicity set f(n) - (v — a)n — av. Then

n = l n = l
n even n even

n = l
neven

since7v+m(7) </, ,+ m + 2(y) for positive even integers m < ^f(^), and since/(«) < 0
for n < TV - 2, and/(«) > 0 for « 3= AT. Hence

2 ((v-«)«-W)/PUi)>^(;) I ((v-a)n-av)
n=\ n=\

n even n even

since 2av/(v — a) < K(v) and f > a. Similarly,

KZ((»-a)n-av)Jp\nU)^J?+M(j) 2 ((* - a)n - a,)
n=\ n=\
nodd nodd

These, with (19), show that I(p) > 0 whenever v > a and K(v) > 2av/(v - a).
Finally, these conditions are satisfied for all v sufficiently large; because K(v) -» 00
as v -> 00 by Lemma 8(i), while 2av/(v — a) -» 2a. This completes the proof of
Lemma 10.

The estimate contained in Lemma 10 as to how large v must be before I(p)> 0
is probably very crude. Two special cases which will be of use later are a «£ 1.1
and a < 2.411. We will compute better estimates for v in these two cases in the
following lemma.
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LEMMA 11. / ( /> )> 0 whenever either
( i ) 0 < o < 1.1 and3.5 < *; or
(ii) 0 < a =£ 2.411, 20.5 < *, and (t + \)j~] is a nondecreasing function on

20.5 < /.

PROOF, (i) Suppose a < 1.1. It v > 3.5 and n > 2, then (* - a)« — av>
(* - 1.1)2 - 1.1* 2* 0. By Lemma 8(iv) A"(*) > 3 so that by Lemma 8(ii) we have
Jy+2(j) *= 0. From the recurrence relation Jp+l(j) — Jy+3(j) = 2 / / + 2 (y) we ob-
tain 0 < Jp+1(j) < ^+3(y)- fiy Lemma 9,

((r - «) - av)Jv\x{j) + ((" - a)3 - av)J?+3(j)

(-O.li- - 1.1H2
+I(y) + (1.9v - 3 . 3K 2

+ 3 (»

This completes the proof of (i).
(ii) Now suppose a < 2.411 and 20.5 < v. If n > 5, then (c — a)n — a^ >

5(J> - 2.411) - 2.41 \v > 2.589>' - 12.055 > 0. By Lemma 8(v), K(v) > 4 and so
by Lemma 8(ii) /„'+](>) < 0, Jp+2(j) ^ 0, and J,+3(j) < 0. Using the recurrence
formula/,+ 1(x) — / r + 3 (x) = 2/ /+ 2 (x) , we conclude that

0 =

From the recurrence formula J,_\(x) + Jt+^(x) = Itx lJ,(x), we obtain that
Jp+2(j) — 2(* + l ) ; ~ ^ + i ( ; ) . Hence, by Lemma 9,

I(p) > (-1.411* - 2All)J2
+l(j) + (-0.411* - 4.822K2

+2(y)

+ (0.589* - 7.233)y,2
+3(7) + (1.589* - 9.644)/,,2

+4O)

> {-0.822* - 9.644 + (1.178* - 14.466)4(* + \)2j~2}J2
+l(j).

Let £(*) denote the coefficient of Jv\\(j) in the last line. Since (* + \)j~x is
nondecreasing we have (* + \)j~l s* 21.5(y2O5)~' > 0.828335, where the value of
j 2 0 5 is found on page 28 of [12]. Hence,

£ (*) > -0.822* - 9.644 + (1.178* - 14.466)(2.744555). (20)

A short calculation shows that the right hand side of the inequality in (20) is
positive whenever * 3= 20.5. This completes the proof of (ii).

5. The Rayleigh quotient

LEMMA 12. Let 0 <p0 < a~l, A(p) = 1 — ap, *(/>) — p~x — a. Let A,(/>, a)

andy^p, a, x) be as defined in Lemma 3, except that t there is replaced by v here.
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Let I(p) be as defined by the integral in Lemma 9. Let I(po)> 0, and

Kq> P> a) = f{A'{q) - A(q)ln x}x2«-]yl
2(p, a, x) dx.

Then there are a0 G (0,1) and a neighborhood Do C (0, a"1) of p0 such that
I(q, p, a) > 0 whenever 0 < a < a0 and q, p G DQ.

PROOF. Fix b and c such that 0 < b <p0 < c <a~l. Then

A'(q) - A(q)ln x ^ - a - (1 - ac)ln x > 0

if 0 < x < e-<»/0-«O( ^ e [bt c] a n d x E (0,1], Hence there is an a, 6 (0,1),
independent of q, such that A'(q) — ^(^f)ln x>Qiorb<q<c and Q<x<ax.
Writing AQ, A'o, and P0 for A(p0), A'(p0), and v(pQ), we have, by definition of

f\A'o - Aoln x)x2>»>-^Q(ixPo) dx _> I(Po)/Pojt

as a -» 0 + ; so that this integral is positive for all a sufficiently small, say
0 < a < a 2 < 1 where a2 is independent of ^ since the whole integral is. Now set
a% — min{a1, a2} G (0,1). Then

A'(q) - A(q)ln x > 0 (21)

for b ̂  q ̂  c and 0 < x < a3. Also

/f = / ' ( ^ - 4,lii x)x2>°-lJ,2o(jWBx'o) dx > o. (22)

By Lemma 6, _Vj2(/>, a, x) -» J,2(jyXp) as a -> 0+ uniformly for b <p ^ c and
a 3 < x < l . Moreover, [/4'(?) - -^(^)hi X]JC2<?~' is continuous on b < r̂ < c,
a3 < x < 1, and independent of/> and a. Consequently

{^'(9) - A(q)]n x}x2"-lyf(p, a, x) - {A'(q) - A(q)ln x}x2«-xJ?{jvxP)

as a -» 0 + uniformly iot b < q < c, b ̂  p ^ c, and a3 < JC < 1. Thus

) (23)

as a -» 0 + uniformly forb<q<c and b ̂  p < c.
The right side of (23) is a continuous function of (#, /;) in [b, c] X [Z», c] and by

(22) has the positive value H when q = p = p0. Therefore, there is a compact
neighborhood Do C (0, a"1) of />0 such that the right hand side of (23) is greater
than {H on Do X Do. By the uniform convergence, the left side of (23) exceeds
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\H for all a sufficiently small, say 0 < a «£ aA. The integrand on the left of (23) is
nonnegative on 0 < x < a 3 if b ̂  q ̂  c and b < /? < c, by (21). Writing aQ =
min{a 3 , a 4 } ,

C{A'{q) - A{q)\n x)x2«-y{p, a, x) dx > \H > 0

if (<7> />) G ^o x ^o a n ^ 0 < a < a0. This completes the proof.

DEFINITIONS. For each a G (0,1) to F(a) </e«ote f/ie jef of all functions y G
C2[a, 1] satisfyingy(a) = 0 =^(1). L«' /? ie a«j closed subinterval of (0, a"1)
/e/ W(a, D) denote the set of all functions y G V(a) such that

]A'(q) -A(q)lnx]x2'i-]y2(x)dx>.0(
a

for all qED.

LEMMA 13. 7/0 < p < a"1, A(p) = 1 — ap, 0 < a < 1, D is any closed subin-
terval of (0, a"1), andy G W(a, D), then

f
R[P, y, a] = ^

•'a

w a« increasing function of p on D.

PROOF. Whenever/? > q we have x2/>~' < x2q~l for every x G (0,1). Hence, if
a G (0, a0),

f\-xy')'ydx f\-xy')'ydx

'1

"a

since /o' —(xy')'ydx = /J xy'2 dx > 0. This shows that one term of R[p, y, a] is
nondecreasing. For the other, it suffices to show that

is an increasing function on D. A short calculation shows that g\p) is a quotient
with positive denominator and numerator

2A(P)f\A'(P)-A(p)lnx}x2"-ydx.

Since y G W(a, D) we have g'(p) > 0 on D. The desired result follows directly.
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LEMMA 14. / / the conditions of Lemma 12 hold, including I(fo) > 0, and Do is
the neighborhood ofp0 constructed there, then pjv(P) is a nondecreasing function of p
on Do.

PROOF. Let p,q G DQ and q <p. By Lemma 12, yt(r, a, x) G W(a, Do) for
every r 6 O 0 and a G (0, a0). Also, by Rayleigh theory, A,(r, a) = R[r, yx, a]. So
by Lemma 13, since W(a, Do) C V(a),

\i(q,a) = min R[q, y, a] < min R[p, y, a] = \{(p, a)
y<EW(a,D0) y&W(a,D0)

y^O y¥=0

for each a G (0, a0). By Lemma 5, X,(r, a) -»(rj^^)2 as a -» 0+ , so that

( « / ^ ) ) 2 = lim X,(?,fl)*: lim A,(p,a) = (/y;{ })2.

The desired result now follows immediately.

6. Main result

THEOREM 15. The quantity jv/(r + a) is a strictly decreasing function of v, for
fixed a, whenever a > 0 and any of the following hold:

(i)a < 1.1 and 3.5 < P,

(ii) a < 2.41 land 20.5 < p,
(iii) v > a and K(v) > 2av/(y — a).

Moreover, jv/(v + a ) - » l a s » ' - » o o .

PROOF. The case a = 0 is Theorem 3 of [8]. Let p = (v + a)~\ so that
v = v(p)=p-{ -a.

(i) Suppose that 0 < a =s 1.1 and 3.5 =£ v. By Lemma ll(i), I{p)> 0; and by
Lemma 14, pjv(p) is nondecreasing. By the definition of p and v(p) we have that
Jp{P)/(v(P) + «) is a nondecreasing function of p. Since/? is a decreasing function
of v, jv/{y + a) is a nonincreasing function of P. In particular, jv/(y + 1) is
nonincreasing for 3.5 < v.

(ii) By Lemma 11 (ii), I(p)> 0 for 0 < a < 2.411 and 20.5 < v. An argument
analogous to that above shows that )v/(y + a) is nonincreasing under these
conditions.

(iii) Similarly, under conditions (iii), Lemmas 10 and 14 give thaty,,/^ + a) is
a nonincreasing function of v.

(iv) We will now show that under conditions (i), (ii) or (iii), jr/{v + a) is not
only nonincreasing but is indeed a strictly decreasing function of v. Suppose that
it is nonincreasing for a < y and 8 < v. Let /} G (a, y). Then jv/(v + /?) is
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nonincreasing and (v + fi)/(v + a) is strictly decreasing for 8 =£ v. Therefore
jv/(v + a) is strictly decreasing, since

h = L " + fi
v + a v + / } ' v + a'

(v) From the asymptotic expansion jr = v + O(P]/3) as v -> oo, found in [14] or
on page 371 of [1], it follows immediately thaty,/^ + a) -> 1. This completes the
proof of Theorem 15.

7. Consequences

Theorem 15 can be used to compute upper bounds ior jp. For example, using
(ii) we have

< 1.133(K + 2.411)

< 1.133*' + 2.732 (24)

for 20.5 < v, where the value ofy2os has been taken from page 28 of [15]. To the
authors' knowledge the best upper bound fory, previously known is

y , < { ! ( " + i ) ( " + 5)} l / 2 (25)

which may be found on page 487 of [15]. A short calculation shows that the upper
bound in (24) is better than that in (25) for 20.5 < v.

The theorem may also be used to compute a lower bound for jv. Since
j0 < 2.405 and^(f + a)"1 > 1 whenever a < 2.411 and 20.5 < v, we havey, > v
+ j0 whenever 20.5 < P. Using the tables in [12], [5, page 167], and [3, page 317],
we find that

I > 20.5+jo^p+jo for K G [18,20.5],

X > 1 8 + y o > " + y o for f £ [15.5,18],
jv > 15.5 +j0 > v +j0 for v G [13.5,15.5],

jv> 0.15+jo>v+jo for* E [0.1,0.15],

j\,>O.l+jo>v+jo for/^G [0.075,0.1],

jv > 0.075 +j0 > v +j0 for v G [0.05,0.075].

Hence,./, > v + j0 whenever 0.05 < v.
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On page 508 of [15] (where7,, is denoted byj) it is shown that, for v > 0,

Using the identity

f-lJXs)ds = J?(z)+2 f J?+m(z)
0 m=\

which is (5) on page 152 of [15], we have

— > — \ 1 + — >•.

From the recurrence formula/,_,(*) + Jl+i(x) = 2tx~1J,(x), with t = v 4- 1, we
have J,+2(j) = 2{v + l)j~lJ9+}(j). Hence,

From the table on page 317 of [3] we find that/, < 2.4817 on the interval [0,0.05].
Hence, on this interval,

^ > 2(2.4817)"'{l + 4(2.4817)"2} > 1.

It follows directly that/, > v + j0 for v G (0,0.05]. Combining the above calcula-
tions, we have

THEOREM 16. Ifjv is the least positive zero ofJv, then

Jv>v+h forv>0.

The most commonly cited lower bound fory,,, other than/, > v, seems to be

which may be found on page 486 of [15]. Clearly v+jo> {v(v + 2)}1/2 for all
v > 0. In [9] it is shown that

Again it is clear that, for v > 0, v + j 0 > (v2 +yo
2)1/2.

In [4] it is shown that

jv » VIT/2 + 3 V 4 (26)

whenever v E [0, \]. The inequality in Theorem 16 becomes equality when v = 0,
while the expression in (26) has a strict inequality. However, when v = \ equality
holds in (26). Hence, for v e [0, \\ neither of the inequalities in Theorem 16 or
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(26) implies the other. It should be emphasized that Theorem 16 is valid for all
v > 0 while (26) is valid only for v £ [0, \\.

The inequality in Theorem 16 may be interpreted as follows. Consider a
membrane, clamped along its edges, in the form of a circular sector 0 < r < 1,
0 *£ 8 < a, where a <2IT. The fundamental frequency for the transverse vibra-
tions of the membrane is proportional toj^/a. From Theorem 16 we see that the
fundamental frequency is a superlinear function of a~'.

It is of interest to consider the behavior of the function f{v) = jj(v +j0).
Using the tables in [12] for v = jk, k = 0 ,1 , . . . ,41, we find that f(jk) increases
from/(0) = 1.0000 to/(4.5) =1.1850 and then decreases to/(20.5) = 1.1332.*
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'Theorem 15 shows that f(v) thereafter decreases towards 1; and the range of this function
illuminates Theorem 16.
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