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Abstract

Copulas provide a powerful and flexible tool for modeling the dependence structure
of random vectors, and they have many applications in finance, insurance, engineer-
ing, hydrology, and other fields. One well-known class of copulas in two dimensions is
the Farlie–Gumbel–Morgenstern (FGM) copula, since its simple analytic shape enables
closed-form solutions to many problems in applied probability. However, the classi-
cal definition of the high-dimensional FGM copula does not enable a straightforward
understanding of the effect of the copula parameters on the dependence, nor a geomet-
ric understanding of their admissible range. We circumvent this issue by analyzing the
FGM copula from a probabilistic approach based on multivariate Bernoulli distributions.
This paper examines high-dimensional exchangeable FGM copulas, a subclass of FGM
copulas. We show that the dependence parameters of exchangeable FGM copulas can
be expressed as a convex hull of a finite number of extreme points. We also leverage
the probabilistic interpretation to develop efficient sampling and estimating procedures
and provide a simulation study. Throughout, we discover geometric interpretations of
the copula parameters that assist one in decoding the dependence of high-dimensional
exchangeable FGM copulas.
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1. Introduction

Copulas are a powerful tool for modeling dependence between the components of a random
vector. A well-known family of copulas is that of the Farlie–Gumbel–Morgenstern (FGM)
copulas, first studied by [17, 18, 26, 42].

FGM copulas are attractive since their simple shape enables exact calculus. Being quadratic
in each marginal, FGM copulas allow one to develop closed-form expressions for many quan-
tities of interest. For a given set of dependence parameters, many basic properties of FGM
copulas are known; see, for instance, [9, 31, 38], [35, Chapter 5], [34, Section 44.10], [16], or
[47]. FGM copulas have been applied in many disciplines, including, for instance, finance [38],
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actuarial science [5], bioinformatics [32], and hydrology [22]. However, it is not yet clear how
to interpret the FGM copula parameters in higher dimensions—in particular, it is not clear how
the copula parameters affect the dependence structure and how one may compare dependence
constructions in terms of dependence orders.

In [7], the authors establish a one-to-one correspondence between the family of d-variate
FGM copulas and the family of d-variate symmetric multivariate Bernoulli distributions. By
symmetric Bernoulli distributions, we mean a discrete random variable (RV) taking the value
1 with probability 1/2 and 0 with probability 1/2. One advantage of this representation is that
one may construct subfamilies of FGM copulas by selecting subfamilies of multivariate sym-
metric Bernoulli distributions. Then the subfamily of FGM copulas will share the dependence
properties of the symmetric Bernoulli distributions, thus simplifying the parameter space and
related operations like sampling and estimation. Another advantage of the stochastic represen-
tation of FGM copulas is that multivariate Bernoulli distributions are simpler to understand.
While FGM copulas only induce weak dependence, they are the simplest of the Bernstein cop-
ulas. A d-dimensional Bernstein copula, introduced by [54], is dense on the hypercube [0, 1]d,
but many dependence parameters are required to specify the copula. Indeed, because of their
flexibility, Bernstein copulas are sometimes used as alternatives to the empirical copula, as in
[56]. Understanding the stochastic nature of FGM copulas is essential preliminary work before
investigating the properties, geometries, and stochastic nature of Bernstein copulas. In light
of the new results presented in this paper, we will return to a stochastic representation of an
exchangeable Bernstein copula in the conclusion.

The present paper investigates exchangeable FGM (eFGM) copulas. The eFGM copulas
are subfamilies of FGM copulas that we construct with exchangeable symmetric multivariate
Bernoulli random vectors. It follows that eFGM copulas are the simplest of the exchangeable
Bernstein copulas and that understanding the geometry and properties of eFGM copulas lays
the groundwork for extending these to exchangeable Bernstein copulas. In turn, one will be
better positioned to investigate the general class of Bernstein copulas. The exchangeability
assumption is reasonable and useful in some contexts; consider, for instance, the study of litter-
mates in laboratory experiments [36], finance [49], reliability theory [45], actuarial science
[33], or credit default risk [20, 41]. Exchangeability also plays an important role in Bayesian
statistics [55].

Another advantage of studying the class of eFGM copulas is that an FGM copula corre-
sponding to the lower bound under the supermodular order is a special case of eFGM copulas.
We study this lower bound in detail in Section 6. We also introduce subfamilies of eFGM cop-
ulas that display a specific shape of dependence structure, and one may compare copulas under
the supermodular order within the subfamilies. Ordering of random vectors with respect to the
supermodular order is important for practical applications. For instance, in applied probability,
finance, and actuarial science, one may be interested in the distribution of the sum of the com-
ponents of a random vector. If one may order two copulas under the supermodular order, then
one may order the two aggregate distributions under the stop-loss order, which implies inequal-
ities of certain useful risk measures. See, for instance, Section 8.3 of [44] or Section 6.3 of [13]
for details on the supermodular order, the stop-loss order, and aggregate distributions.

The remainder of this paper is organized as follows. In Section 2, we introduce the sub-
class of eFGM copulas. Section 3 presents construction methods for symmetric exchangeable
Bernoulli RVs and their relationship to eFGM copulas. In Section 4, we show that the param-
eters of all eFGM copulas can be expressed as a convex hull of eFGM copula dependence
parameters. We also provide a method for analytically obtaining extreme points corresponding
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to the copula parameters. One can view an eFGM copula as a finite mixture model. By study-
ing the extreme points of the convex hull of the dependence parameters of d-variate eFGM
copulas, we gain a geometric understanding of the class of eFGM copulas. We characterize,
in Section 5, the class of d-variate eFGM copulas that can be represented as the first elements
of an infinite sequence of RVs. We deal with dependence ordering in Section 6, providing
methods to compare d-variate eFGM copulas under the supermodular order. In Section 7, we
discuss sampling and estimation for high-dimensional eFGM copulas. In particular, we lever-
age the stochastic representation of eFGM copulas to propose an efficient stochastic sampling
method, and we leverage the finite mixture representation to propose an estimation algorithm.
In Section 8, we offer some conclusions and discussions for future research. Certain proofs are
deferred to the appendix.

2. Definition

In this section, we introduce the subfamily of copulas studied in the paper. First, recall
that copulas are multivariate cumulative distribution functions (CDFs) of RVs with uniform
marginals.

Definition 1. A (d-variate) copula is a function C : [0, 1]d → [0, 1] satisfying the following
conditions:

1. C(u1, . . . , ud) = 0 if any uj = 0, j ∈ {1, . . . , d}.
2. C(u1, . . . , ud) = uj if uk = 1 for all k ∈ {1, . . . , d} and k �= j.

3. C is d-increasing on [0, 1]d; that is,

2∑
i1=1

· · ·
2∑

id=1

(−1)i1+···+id C(u1i1 , . . . , udid ) ≥ 0

for all 0 ≤ uj1 ≤ uj2 ≤ 1 and j ∈ {1, . . . , d}.
An important family of copulas is that of the FGM copulas, first studied by [17, 18, 26, 42].

One may refer to [9, 31], [35, Chapter 5], [34, Section 44.10], or [22] for properties of this
family of copulas. A d-variate FGM copula is defined as

C (u1, . . . , ud)=
⎛⎝ d∏

j=1

uj

⎞⎠⎛⎝1 +
d∑

k=2

∑
1≤j1<···<jk≤d

θj1...jk uj1 uj2 . . . ujk

⎞⎠,
(u1, . . . , ud) ∈ [0, 1]d, (1)

where uj = 1 − uj, j ∈ {1, . . . , d}. The set of admissible parameters for FGM copulas, derived
in [9], is given by⎧⎨⎩(θ12, . . . , θ1...d) ∈R

2d−d−1 : 1 +
d∑

k=2

∑
1≤j1<···<jk≤d

θj1...jkεj1εj2 . . . εjk ≥ 0

⎫⎬⎭, (2)

for all {εj1 , εj2 , . . . , εjk } ∈ {−1, 1}d. We call the
(d

k

)
parameters θj1...jk , for 1 ≤ j1 < · · ·< jk ≤ d,

the k-dependence parameters, k ∈ {2, . . . , d}. A d-variate FGM copula has 2d − d − 1 param-
eters; the large number of parameters becomes impractical for high-dimensional applications
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of FGM copulas. However, one may rely on a new stochastic representation of FGM copulas,
as introduced in the following theorem from [7].

Theorem 1. The copula in (1) has an equivalent representation

C(u1, . . . , ud) =E

[
d∏

m=1

um
(
1 + (−1)Imum

)]
, (3)

for (u1, . . . , ud) ∈ [0, 1]d, where I = (I1, . . . , Id) is a symmetric multivariate Bernoulli ran-
dom vector with

θj1...jk = (−2)k
E

⎡⎣ k∏
j=1

(
Ij − 1

2

)⎤⎦ , k ∈ {2, . . . , d}. (4)

In particular, the probability mass function (PMF) of the underlying random vector associated
with an FGM copula is given by

fI(i) = 1

2d

⎛⎝1 +
d∑

k=2

∑
1≤j1<···<jk≤d

(−1)ij1+···+ijk θj1...jk

⎞⎠, (5)

for i ∈ {0, 1}d, while the copula parameters associated with the PMF of a symmetric multivari-
ate Bernoulli random vector are

θj1...jk =
∑

(
ij1 ,...,ijk

)∈{0,1}k

(−1)ij1+···+ijk fIj1 ,...,Ijk

(
ij1, . . . , ijk

)
,

for 1 ≤ j1 < · · ·< jk ≤ d and k ∈ {2, . . . , d}.
The current paper studies the subfamily of eFGM copulas that have the shape

Cd(u1, . . . , ud) =
⎛⎝ d∏

j=1

uj

⎞⎠⎛⎝1 +
d∑

k=2

∑
1≤j1<···<jk≤d

θkuj1 . . . ujk

⎞⎠, (u1, . . . , ud) ∈ [0, 1]d,

(6)
for d ≥ 2. For k ∈ {2, . . . , d}, this class of FGM copulas sets each of the

(d
k

)
parameters θj1...jk =

θk for all 1 ≤ j1 < · · ·< jk ≤ d; that is, all k-dependence parameters are equal. By symmetry
of the bivariate FGM copula, it is obvious that with d = 2, each admissible parameter θ2 ∈
[ − 1, 1] corresponds to an exchangeable bivariate FGM copula parameter; that is, the entire
class of bivariate FGM copulas are also eFGM copulas.

A d-variate eFGM copula is specified by a vector of d − 1 parameters (θ2, . . . , θd) ∈ Td

(as opposed to 2d − d − 1 for the complete class of d-variate FGM copulas) where, for all
{ε1, . . . , εd} ∈ {−1, 1}d, the set of admissible parameters is

Td =
⎧⎨⎩(θ2, . . . , θd) ∈R

d−1 : 1 +
d∑

k=2

∑
1≤j1<···<jk≤d

θkεj1 . . . εjk ≥ 0

⎫⎬⎭ . (7)

As the dimension d increases, satisfying the 2d−1 constraints for the parameters (θ2, . . . , θd)
in (7) becomes tedious (it is a computation in exponential time). A preferable approach to
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studying eFGM copulas is by constructing a stochastic representation, along the same lines as
in Theorem 1.

Corollary 1. Let C be a copula as in (6). Then C also admits a stochastic representation as in
(3) if and only if I is an exchangeable symmetric Bernoulli random vector.

Proof. We first show that if I is an exchangeable symmetric Bernoulli random vector, then
C is an eFGM copula. For all 1 ≤ j1 < · · ·< jk ≤ d, 1 ≤ j′1 < · · ·< j′k ≤ d, and k ∈ {2, . . . , d},
we have from (4) that

θj1...jk = (−2)k
E

[
k∏

l=1

(
Ijl − 1

2

)]
and θj′1...j′k = (−2)k

E

[
k∏

l=1

(
I′
jl − 1

2

)]
.

By exchangeability of I, we have that

E

[
k∏

l=1

(
Ijl − 1

2

)]
=E

[
k∏

l=1

(
I′
jl − 1

2

)]

for all 1 ≤ j1 < · · ·< jk ≤ d, 1 ≤ j′1 < · · ·< j′k ≤ d, and k ∈ {2, . . . , d}; hence θj1...jk = θj′1...j′k .
Next, we must show that if C is an eFGM copula, then the underlying symmetric mul-

tivariate Bernoulli random vector I is exchangeable. Replacing θj1...jk by θk in (5) for all
1 ≤ j1 < · · ·< jk ≤ d and k ∈ {2, . . . , d} in (5), we see that fI(i1, . . . , id) = fI(i′1, . . . , i′d) when-
ever i1 + · · · + id = i′1 + · · · + i′d; it follows by the associative property of addition that I is
exchangeable. �

We offer an interpretation of the dependence structure within eFGM copulas in the follow-

ing. Let V1 and V2 be a pair of independent standard uniform RVs. Define U[1]
D= min (V1, V2)

and U[2]
D= max (V1, V2), where

D= means equality in distribution. We have that U[1] is beta
distributed with CDF FU[1] (u) = u(2 − u), and U[2] is beta distributed with CDF FU[2] (u) = u2,
for 0 ≤ u ≤ 1. Let U[j] be a vector of independent RVs where each component has CDF FU[j] ,
for j ∈ {1, 2}. Let U be a random vector whose joint CDF corresponds to an eFGM copula.
Then we have from Theorem 1 that there exists a random vector I such that

U = (1 − I)U[1] + IU[2], (8)

where 1 is a vector of ones. Within the context of this paper, we require that I is a vector of
exchangeable RVs.

3. Construction methods and examples

We first present a few methods of constructing exchangeable symmetric Bernoulli RVs.
Alternating between different construction methods, along with the stochastic representation
of eFGM copulas in Corollary 1, will enable us to study the properties of eFGM copulas.

3.1. Construction based on the sum of Bernoulli RVs

We first define the (univariate) RV Nd =∑d
j=1 Ij, with support {0, 1, . . . , d}, representing

the sum of d exchangeable Bernoulli RVs. The relationship between the PMF of (I1, . . . , Id)
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and Nd is

P(Nd = k) =
∑

{i1,...,id}∈{0,1}d

i•=k

P (I1 = i1, . . . , Id = id)

=
(

d

k

)
P(I1 = 1, . . . , Ik = 1, Ik+1 = 0, . . . , Id = 0),

where i• =∑d
j=1 ij; the second equality follows by exchangeability of (I1, . . . , Id).

Let Nd represent the class of PMFs for univariate RVs with support {0, . . . , d} with mean
d/2. In [20, Section 3.2], the authors provide a one-to-one correspondence between the class
of PMFs for d-variate exchangeable Bernoulli random vectors and Nd. This construction is
useful since it identifies the joint PMF of (I1, . . . , Id) only through the PMF of Nd.

3.2. Construction based on a vector of probabilities

One can specify the multivariate distribution of (I1, . . . , Id) by the vector of probabilities
(ζ0, . . . , ζd), where ζ0 = 1 and ζk = P(I1 = 1, . . . , Ik = 1), k ∈ {1, . . . , d} and d ∈ {1, 2, . . . }.
For eFGM copulas, we require ζ1 = 1/2. We recall [37, Theorem 1], which provides a sufficient
condition for the values of ζk, k ∈ {1, . . . , d}.
Theorem 2. Let d ∈ {2, 3, . . . } be fixed, and let ψ(t) be a completely monotone function for
t ≥ 0. If ζk =ψ(k), then P(Nd = k) ≥ 0, for k ∈ {0, 1, . . . , d}.
The relationship between the values (ζ0, . . . , ζd), characterizing the multivariate distribution
of a vector of d exchangeable RVs (I1, . . . , Id), and the values of the components of the vector
of dependence parameters (θ2, . . . , θd) of the eFGM copula is established in the next result.

Corollary 2. Let d ∈ {2, 3, . . . } be fixed. For a given vector (ζ0, . . . , ζd) satisfying the
conditions of Theorem 2 with ζ0 = 1, ζ1 = 1/2, we have

θk = (−2)k
k∑

l=0

(
k

l

)
ζl

(
−1

2

)k−l

=
k∑

l=0

(
k

l

)
ζl (−2)l , k ∈ {2, . . . , d}. (9)

Proof. Expanding the product in (4) yields

θk = (−2)k
E

⎡⎣(
−1

2

)k

+
k∑

l=1

Il

(
−1

2

)k−1

+
k∑

l=2

∑
1≤j1<···<jl≤k

Ij1 . . . Ijl

(
−1

2

)k−l
⎤⎦ .

Since (I1, . . . , Id) are exchangeable random vectors, one has E
[
Ij1 . . . Ijk

]= ζk for all
k-dimensional vectors (j1, . . . , jk) such that 1 ≤ j1 < · · ·< jk ≤ d and k ∈ {2, . . . , d}. �
Since (9) does not depend on d, the first k-dependence parameters from Corollary 2 are

θk =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

4ζ2 − 1, k = 2, d ≥ 2,

−8ζ3 + 12ζ2 − 2, k = 3, d ≥ 3,

16ζ4 − 32ζ3 + 24ζ2 − 3, k = 4, d ≥ 4,

−32ζ5 + 80ζ4 − 80ζ3 + 40ζ2 − 4, k = 5, d ≥ 5.

(10)

Example 1. (Model 3 of [37].) Madsen [37] considered the model ζk = β + (1 − β)αk,
for (α, β) ∈ [0, 1]2 and k ∈ {0, 1, . . . }. With the constraint that ζ1 = 1/2, we have
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α = (1/2 − β)/(1 − β) for β ∈ [0, 0.5], and we have one free parameter β, meaning that the
parameters (θ2, . . . , θd) are entirely determined by β. Inserting these probabilities in (9) yields
θk = β(−1)k + (1 − β)(1 − (1 − 2β)/(1 − β))k, for k ∈ {2, 3, . . . }. The case β = 0 yields the
independence copula, and β = 0.5 yields the extreme positive dependence copula CEPD that
we will describe in Theorem 8.

A more convenient way of specifying the values of ζk for k ∈ {0, 1, . . . } uses Laplace–Stieltjes
transforms. Let us first recall Bernstein’s theorem, originally from [6]; see also Theorem 1a in
[19, Section XIII.4].

Theorem 3. If ψ(0) = 1 and ψ is completely monotone, then ψ is the Laplace–Stieltjes
transform of a strictly positive RV Y; that is, ψ(t) =LY (t) =E

[
e−Yt

]
.

Corollary 3. Setting ζk, k = 0, 1, . . . , d, to ζk =LY (rk), for r> 0, will generate probability
values which satisfy the conditions of Theorem 2. For a symmetric multivariate exchangeable

Bernoulli random vector, we have ζ1 =LY (r) = 1/2, implying ζk =LY

(
k ×L−1

Y (1/2)
)

, for

k = 1, . . . , d.

Remark 1. As shown in [24], the constructions based on Nd from Subsection 3.1 and on the
vector of probabilities (ζ0, . . . , ζd) of the current subsection are equivalent and related through
the relationship

P(Nd = k) =
(

d

k

) d−k∑
l=0

(−1)l
(

d − k

l

)
ζk+l, k ∈ {0, 1, . . . , d}.

3.3. Construction with mixtures

One can also construct exchangeable Bernoulli distributions using mixtures, that is,

P(I1 = i1, . . . , Id = id) =
∫ 1

0
P(I1 = i1|�= λ) × · · · × P(Id = id|�= λ)dF�(λ), (11)

where � is a mixing RV defined on [0,1]. According to (11), conditional on the mixing RV
�, (I1, . . . , Id) are conditionally independent. One must select a distribution for � such that
E (�)= 1/2. From (11), it follows that

ζk = P(I1 = 1, . . . , Ik = 1) =
∫ 1

0
λk dF�(λ) =E

[
�k

]
,

for k ∈ {0, . . . , d}, and

fI1,...,Id (i1, . . . , id) =
∫ 1

0
λi•(1 − λ)d−i• dF�(λ) =E

[
�i• (1 −�)d−i•

]
, (12)

for (i1, . . . , id) ∈ {0, 1}d. Furthermore, for k ∈ {2, . . . , d}, combining (4) and (11), the param-
eters of the copula are defined in terms of the central mixed moments of � as follows:

θk = (−2)k
E�

⎡⎣E
⎧⎨⎩

k∏
j=1

(
Ij − 1

2

)∣∣∣∣∣∣�
⎫⎬⎭
⎤⎦= (−2)k

E

[(
�− 1

2

)k
]

. (13)

Remark 2. Let (I1, . . . , Id, Id+1, . . .) be an infinite sequence of exchangeable symmetric
Bernoulli RVs. Let (I1, . . . , Id) be the first d RVs from that sequence. The famous result
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from de Finetti [12] states that there exists an RV � such that (11) holds. On the other hand,
if we have (11), then (I1, . . . , Id) can be extended to higher dimensions. We will study the
extendability of eFGM copulas in Section 5.

Remark 3. Using the mixture construction and (13), one can interpret the copula parameters
from the mixing RV. We have θ2 ∝ Var(�), which implies that the variance of the mixing RV
induces the 2-dependence parameters. Then, since θ3 ∝ −E[{�−E(�)}3], we interpret θ3 as
proportional to the negative of the skewness. If the density function of� is symmetric about the
mean (skewness of 0), then θk = 0 when k is odd. When k is even, we have E[{�−E(�)}k] ≥
0, implying θk ≥ 0, so the mixture construction induces positive dependence.

A family of distributions for � will generate a specific family of eFGM copulas. The
following example presents the beta-eFGM family of copulas with � set to follow a beta
distribution.

Example 2. Let �∼ Beta(α, α) for α > 0 with probability density function

f�(λ) = [λ(1 − λ)]α−1

B(α, α)
, 0 ≤ λ≤ 1,

in which case ζ1 = E (�)= 1/2. The only parameter within this example is α; hence it acts as
a genuine dependence parameter, meaning that the vector (θ2, . . . , θd) is entirely determined
by α. The PMF in (11) becomes

fI1,...,Id (i1, . . . , id) = 
(2α)


(α)2


(2α+ d)


 (α + i•) 
 (α + d − i•)
= B (α+ i•, α + d − i•)

B(α, α)
, (14)

where B(a, b) is the beta function 
(a)
(b)/
(a + b); see Chapter 7 of [28] for details.
Note that the distribution of Nd, when (I1, . . . , Id) has PMF (14), is called the beta-binomial
distribution. From (13), the dependence parameters are θk = B(α + 1/2, (k + 1)/2)/B(α +
(k + 1)/2, 1/2) for k = 2, 4, 6, . . . and θk = 0 for k = 3, 5, 7, . . . . We provide a proof in
Appendix A. The beta-eFGM copula is

C (u1, . . . , ud)=
d∏

j=1

uj

⎛⎜⎜⎝1 +

⌊
d
2

⌋∑
l=1

∑
1≤j1<···<j2l≤d

B(α + 1/2, l + 1/2)

B(α + l + 1/2, 1/2)
uj1 · · · uj2l

⎞⎟⎟⎠, (15)

for (u1, . . . , ud) ∈ [0, 1]d, where �y� is the floor function returning the greatest integer smaller
than or equal to y. We have the following representations for the dependence parameters when
k is even:

θk =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

2α+1 , k = 2, d ≥ 2,

3
(2α+1)(2α+3) , k = 4, d ≥ 4,

15
(2α+1)(2α+3)(2α+5) , k = 6, d ≥ 6,

θk =
k/2∏
l=1

2l − 1

2α + 2l − 1
, k ∈ {2, 4, 6, . . . }, d ≥ k. (16)
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For α ↓ 0, we have that �∼ Beta(α, α) converges to a discrete distribution with P(�= 0) =
P(�= 1) = 1/2. The resulting FGM copula becomes the extreme positive dependence copula
CEPD that we will describe in Theorem 8. When α ↑ ∞, we have that�∼ Beta(α, α) converges
to a discrete distribution with P(�= 1/2) = 1. Then E

[
(�− 1/2)k

]= 0 for k ∈ {2, 3, . . . },
and the corresponding FGM copula is the independence copula. One could define the beta-
eFGM copula with the parametrization �∼ Beta(1/α, 1/α) such that the dependence is
monotone increasing with α, leading to a more intuitive ordering of the effect of α on the
overall dependence. However, we opt to keep the current definition since the expressions for
the copula parameters are more convenient.

4. Extreme points of eFGM copulas

In this section, we show that the parameters of any eFGM copula can be expressed as convex
combinations of linearly independent parameters of eFGM copulas. More precisely, in every
dimension d ∈ {2, 3, . . . }, we find the convex hull for the parameters for the class of d-variate
eFGM copulas. We call each vertex in the hull an extreme point, and we seek the extreme
points of Td, which are the extreme points from the set of inequalities in (7). See, for example,
[52, Section 18] for the relationship between convex hulls and extreme points, and [59] for
details on extremal rays of convex cones.

Theorem 4. Mixtures of eFGM copulas are also eFGM copulas.

Proof. Consider a vector of probabilities (λ1, . . . , λn) such that λj ≥ 0 for j ∈
{1, . . . , n} and λ1 + · · · + λn = 1, with the notation that θk,j is the k-dependence param-
eter for the jth copula in the mixture of eFGM copulas. Consider the parameters
(θ2,1, . . . , θd,1), . . . , (θ2,n, . . . , θd,n). A convex combination of eFGM copulas has parame-
ters θk =∑n

j=1 λjθk,j, k ∈ {2, . . . , d}. One must then verify that the constraints in (7) remain
satisfied; indeed,

1 +
d∑

k=2

∑
1≤j1<···<jk≤d

θkεj1 . . . εjk = 1 +
d∑

k=2

∑
1≤j1<···<jk≤d

n∑
m=1

λmθk,mεj1 . . . εjk

=
n∑

j=1

λj

⎛⎝1 +
d∑

k=2

∑
1≤j1<···<jk≤d

θk,mεj1 . . . εjk

⎞⎠
for {ε1, . . . , εd} ∈ {−1, 1}d. Since λj ≥ 0 for j ∈ {1, . . . , n}, every summand above satisfies (7),
implying that (θ2, . . . , θd) also satisfies (7). �
Remark 4. Theorem 4 can be understood probabilistically as follows. Let Uj be a random
vector whose dependence structure can be expressed as an eFGM copula with parame-
ters (θ2,1, . . . , θd,1) and (θ2,2, . . . , θd,2). Construct a new random vector U3 with FU3 (u) =
(1 − α)FU1 (u) + αFU2 (u), for 0 ≤ α ≤ 1 and u ∈ [0, 1]. Then the dependence structure of U3
is given by an eFGM copula with parameters θk,3 = (1 − α)θk,1 + αθk,2, for k ∈ {2, . . . , d}.

The authors of [20] show that the class Nd is a convex polytope generated from a finite
number of extremal points. They also provide expressions for these extremal points, but let us
first set up some notation. Denote by nd the number of extremal points in Nd. In Corollary 4.6
of [20], the authors show that

nd =
{

(d + 1)2/4, d is odd,

d2/4 + 1, d is even.
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Let (j∧1 , j∨2 ) = ((d − 1)/2, (d + 1)/2) if d is odd, and (d/2 − 1, d/2 + 1) if d is even.
Furthermore, define the one-to-one correspondence between the index j ∈ {1, . . . , nd} and
every combination of the pairs (j1, j2) ∈ {0, 1, . . . , j∧1 } × {j∨2 , j∨2 + 1, . . . , d} with

j =
⎧⎨⎩1 + j1 + (j∧1 + 1)(j2 − j∨2 ),

j1∈{0,...,j∧1 },
j2∈{j∧2 ,...,d},

d2/4 + 1, d is even.
(17)

The following proposition provides the expressions for the PMFs for the degenerate or two-
point distributions that make up the extremal points of Nd. In particular, (17) provides
a correspondence between the index j ∈ {1, . . . , nd} and the pair (j1, j2) ∈ {0, 1, . . . , j∧1 } ×
{j∨2 , j∨2 + 1, . . . , d}.
Proposition 1. The PMFs corresponding to the extreme points of Nd are given by

P(Njd = k) =

⎧⎪⎪⎨⎪⎪⎩
j2−d/2
j2−j1

, k = j1,
d/2−j1
j2−j1

, k = j2,

0, otherwise,

(18)

for every combination of j1 ∈ {0, 1, . . . , j∧1 } and j2 ∈ {j∨2 , j∨2 + 1, . . . , d}. If d is even, the set of
extreme points also contains the one-point distribution at k = d/2.

Proof. See [20, Proposition 4.5]. �
It follows that any PMF in Nd can be expressed as a convex combination of the nd extreme

points, that is,

P (Nd = k)=
nd∑

j=1

λjP
(
Njd = k

)
, k = 0, . . . , d, (19)

where Njd corresponds to the RV associated with the jth extreme point of Nd, j ∈ {1, . . . , nd},
and (λ1, . . . , λnd ) is a vector such that λm ≥ 0, m ∈ {1, . . . , nd}, and λ1 + · · · + λnd = 1.

From each extreme point in (18), one can extract an associated extreme point for the depen-
dence parameters of eFGM copulas; the solutions solve the dual problem of finding the extreme
points in the set of inequalities in (7). In other words, there is a one-to-one correspondence
between the extreme points of Nd and the extreme points of Td. For d = 2, the eFGM copula
parameters corresponding to the extreme points of T2 are −1 and 1.

Figure 1(a) presents the coordinates (p0, p1, p2) of the extremal points of N3; the last value
is not free since p3 = 1 − p0 − p1 − p2. The convex hull forms a geometric kite on a plane.
In Figure 1(b), we present the kite from (a) along with the kite’s inscribed circle, which has
a radius of 1/3. In Figure 1(c) we present the extreme points of T3, which also form a kite,
but not a scaled version of the kite in (b). The coordinates associated to the extreme point
(θ2, θ3) = (0, 1) are presented in bold.

Figure 2(a) presents the convex hull of PMFs (p0, . . . , p4) generated by the extreme
points of N4. Each coordinate represents a point (p0, p1, p2, p3) since p4 is not free; we have
p4 = 1 − p1 − p2 − p3. We represent the coordinates inside a tesseract defined by the Cartesian
product [0, 1]4, to represent the coordinates in four dimensions. (We use a tesseract designed
by Claude Bragdon; see [53] for details.) The convex polytope generated by the extreme points
of N4 corresponds to a pyramid with a kite base, called a kite pyramid, with the most negative
dependence case at the apex. Figure 2(b) presents the extremal points of T4 within the cube
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(a) (b) (c)

FIGURE 1. Convex hull of admissible eFGM copula parameters for three dimensions.

[ − 1, 1]3, given with dotted lines for scale. The shape of T4 is also a kite pyramid. Finally, we
present the dependence parameters associated to the extreme points of N10 in Table 1. Rows 22
and 27 (in bold) represent respectively the extremal positive and negative dependence within
the class of 10-variate FGM copulas, as we will show in (24).

Remark 5. The representation as a convex combination of extreme points is not unique, mean-
ing there may be different sets of weights λ1, . . . , λnd which yield the same eFGM copula
parameters. For example, let d = 3; then one recovers the independence parameter vector (0, 0)
with 2−1(0, 1) + 2−1(0,−1) and 3/4(−1/3, 0) + 4−1(1, 0).

Exact methods of computing the extremal points of eFGM copula parameters not only are
useful for understanding the properties of eFGM copulas, but also provide methods for solving
problems within applications. For instance, we have from (7) that eFGM copula parameters
must satisfy a set of 2d inequalities. The computational cost of verifying these inequalities can
be prohibitive; indeed, the complexity of doing so is exponential in time. However, one may
compute the extremal points of the eFGM copula in quadratic time. Then verifying whether a
set of parameters lies within the convex hull generated by the extremal points of eFGM cop-
ula parameters is a linear feasibility problem, which can be solved via linear programming
(see, for instance, [10, Chapter 29] for an introduction to linear programming). In particu-
lar, if one can find a vector (λ1, . . . , λnd ) such that θk =∑nd

j=1 λjθk,j for k ∈ {2, . . . , d}, then
(θ2, . . . , θd) ∈ Td. Hence, the extreme points of eFGM copula parameters enable a membership
testing algorithm in polynomial time, as opposed to exponential time.

5. Extendability of eFGM copulas

We now address the question of the extendability of eFGM copulas. We start by studying
the class of trivariate eFGM copula parameters that can be extended to k-variate eFGM copulas
for k> 3. In that case, we may visualize the admissible set of parameters (θ2, θ3) graphically.
We then present a characterization of infinitely extendable eFGM copulas.

Let Td,k be the subset of Td that can be extended to a valid element of Tk, where d ≤ k (in
our analysis of extendability, we will always assume that d ≤ k). In other words, for any vector
(θ2, . . . , θd) ∈ Td,k, there exists (θd+1, . . . , θk) such that (θ2, . . . , θd, θd+1, . . . , θk) ∈ Tk. We
have that

Td,k ⊂ Td,k−1 ⊂ · · · ⊂ Td,d+1 ⊂ Td,d = Td, (20)
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TABLE 1. Extremal points of the set of parameters T10 associated to N10.

θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10

1/9 2/9 11/63 8/63 11/63 2/9 1/9 0 1
1/15 2/15 1/21 –4/105 –17/525 –2/75 –13/75 –8/25 3/5
1/45 1/15 –1/105 –4/63 –1/105 1/15 1/45 0 1
–1/45 1/45 –1/63 –2/63 1/35 1/15 –1/15 –4/15 1/3
–1/15 0 1/105 0 1/105 0 –1/15 0 1
1/3 1/3 5/21 2/7 1/3 5/21 5/21 4/7 –3/7
11/45 8/45 1/45 0 –1/45 –8/45 –11/45 0 –1
7/45 1/15 –1/15 –2/45 1/75 –1/75 17/225 12/25 –1/5
1/15 0 –1/15 0 1/15 0 –1/15 0 –1
–1/45 –1/45 –1/63 2/63 1/35 –1/15 –1/15 4/15 1/3
5/9 1/3 1/3 4/9 1/3 1/3 5/9 0 1
19/45 2/15 1/21 4/63 –13/105 –22/105 –29/315 –24/35 1/7
13/45 0 –1/15 0 –1/15 0 13/45 0 1
7/45 –1/15 –1/15 2/45 1/75 1/75 17/225 –12/25 –1/5
1/45 –1/15 –1/105 4/63 –1/105 –1/15 1/45 0 1
7/9 2/9 5/9 4/9 1/3 2/3 1/9 8/9 –1/9
3/5 0 1/5 0 –1/5 0 –3/5 0 –1
19/45 –2/15 1/21 –4/63 –13/105 22/105 –29/315 24/35 1/7
11/45 –8/45 1/45 0 –1/45 8/45 –11/45 0 –1
1/15 –2/15 1/21 4/105 –17/525 2/75 –13/75 8/25 3/5
1 0 1 0 1 0 1 0 1
7/9 –2/9 5/9 –4/9 1/3 –2/3 1/9 –8/9 –1/9
5/9 –1/3 1/3 –4/9 1/3 –1/3 5/9 0 1
1/3 –1/3 5/21 –2/7 1/3 –5/21 5/21 –4/7 –3/7
1/9 –2/9 11/63 –8/63 11/63 –2/9 1/9 0 1
–1/9 0 1/21 0 –1/21 0 1/9 0 –1

which follows from the observation that a k-variate FGM copula evaluated at
C(u1, . . . , ud, 1, . . . , 1) is a d-variate FGM copula. Our interest lies in studying the relation-
ship between Td,k and Tk—in particular, in studying the set of d-variate copula parameters
that can be extended to a k-variate copula but not to a (k + 1)-variate copula, i.e. the set
Td,k \ Td,k+1.

Let us examine what we mean by the previous statement, by observing T3,k for k ∈
{3, 4, . . . , 8}. Note that one can find T3 in Figure 1(c). The convex hull generated by T3,4
corresponds to Figure 2(b) but ignoring the coordinate θ4. The subset T3 \ T3,4, represented
in diagonal red lines in Figure 3, corresponds to parameters (θ2, θ3) ∈ T3, but for which there
does not exist a θ4 such that (θ2, θ3, θ4) ∈ T4. Equivalently, the orange checkerboard area cor-
responds to pairs (θ2, θ3) that can be extended to 4-variate eFGM copulas but not to 5-variate
eFGM copulas. In general, we obtain the set T3,d from the convex hull generated by the
parameters (θ2, θ3) from the extremal points in Td.

The set Td,∞ corresponds to the d-variate eFGM copula parameters that are infinitely
extendable. That is, if (θ2, . . . , θd) ∈ Td,∞, then, for any dimension k> d, there exist
parameters (θd+1, . . . , θk) such that (θ2, . . . , θd, θd+1, . . . , θk) ∈ Tk,∞ ⊂ Tk. Since infinitely
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(a)

(b)

FIGURE 2. Convex hull of admissible eFGM copula parameters for four dimensions.

extendable eFGM copulas admit a de Finetti representation, it is possible to specify T3,∞. It
is proved in Appendix B that the area inscribed between the functions θ3 = ±θ2(1 − θ2) for
0 ≤ θ2 ≤ 1 generates the pairs of admissible T3,∞; we also represent this area in violet dots in
Figure 3.

We have characterized the set of copula parameters (θ2, θ3) that are infinitely extendable.
This brings up the more general problem of infinite extendability; see [39] for an overview.
In particular, the following theorem characterizes the class of infinitely extendable eFGM
copulas.
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FIGURE 3. Extendability of trivariate eFGM copulas.

Theorem 5. Let U be a d-variate infinitely extendable random vector with eFGM dependence.
Then there exists an RV � such that C = FU admits the representation

C(u) =
∫ 1

0

d∏
k=1

{
(1 − λ)uk(2 − uk) + λu2

k

}
dF�(λ). (21)

Proof. From the construction of eFGM random vectors in (8), we have that for U to be
infinitely extendable, it is necessary for I to also be infinitely extendable. It follows that I
admits a de Finetti representation as in (11); hence one may write

C(u) =E

[
d∏

k=1

uk
(
1 + (−1)Ik uk

)]=
∫ 1

0
E

[
d∏

k=1

uk
(
1 + (−1)Ik uk

) |�= λ

]
dF�(λ).

From the conditional independence of I on � and the linearity of expectation, the copula
becomes

C(u) =
∫ 1

0

d∏
k=1

(
uk

(
1 +E

[
(−1)Ik |�= λ

]
uk
))

dF�(λ).

Evaluating the (univariate) expectation and simplifying yields the desired result. �
Let us interpret the results of Theorem 5. Conditionally on�, the copula C can be expressed

as the product of univariate CDFs, which is not surprising thanks to de Finetti’s representation
theorem. Each univariate CDF corresponds to a mixture of the CDFs of U[1] and U[2]. For a
given value of �= λ, we have that if λ< 0.5 (λ> 0.5), then the CDF of each margin is more
likely to be that of U[1] (of U[2]). The random mixture in the CDF of U in (21) is the same as
the one in the PMF of I in (11), emphasizing the fact that the random vector I determines the
dependence structure of the underlying FGM copula.

6. Dependence ordering

6.1. Supermodular order

In this section, we aim to compare the strength of dependence between two random vectors
V and V′ whose multivariate CDF is an eFGM copula. We will do so with dependence stochas-
tic orders. The supermodular order is a valuable tool for comparing d-variate vectors of RVs
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with respect to the degree (strength) of dependence among their components. The supermodu-
lar order has been applied in a wide spectrum of fields, such as economics, applied probability,
operations research, and statistics, in particular, to compare the dependence among risks within
a portfolio of insurance policies or among assets in a financial institution’s portfolio. It is also
used in the analysis of dependence properties and the estimation of copulas. In Sections 3.8
and 3.9 of [44], the authors provide an excellent introduction to the supermodular order. See
also Section 6.3 of [13] and Section 9.A of [58]. Applications for ordering of actuarial risks can
be found in Section 8.3 of [44] and Section 6.3 of [13]. The supermodular order allows one to
identify the extremal positive dependence structures in the supermodular sense within a Fréchet
class with fixed marginals, leading to the most positive dependence among random vectors.
Also, one may derive results about other important orders from the supermodular order. Over
the last two decades, there has been increasing interest in supermodular games in the fields of
economics and operations research (see, for example, [2, 3, 60]). Supermodular functions and
their mirror images, submodular functions, also appear in various branches of discrete math-
ematics and have numerous applications in computer science and optimization. As examples
of results closer to those of the present section, the author of [62] gives sufficient and neces-
sary conditions for the supermodular order of multivariate elliptical random vectors. In [4], the
authors extend the ordering conditions to elliptical distributions that characterize the stronger
supermodular ordering established for Gaussian distributions by [43]. As an application, they
obtain several results on risk bounds in elliptical classes of risk models with fixed marginals.
See also [8, 57, 61] for characterizations of the supermodular order for multivariate Marshall–
Olkin exponential distributions, Gaussian copulas, and the family of Archimedean copulas.

The supermodular order is defined in terms of supermodular functions. A function φ : Rd →
R is said to be supermodular if

φ(x1, . . . , xi + ε, . . . , xj + δ, . . . , xd) − φ(x1, . . . , xi + ε, . . . , xj, . . . , xd)

≥ φ(x1, . . . , xi, . . . , xj + δ, . . . , xd) − φ(x1, . . . , xi, . . . , xj, . . . , xd)

holds for all (x1, . . . , xd) ∈R
d, 1 ≤ i< j ≤ d, and all ε, δ > 0. Examples of super-

modular functions are φ(x1, . . . , xn) = x1 + · · · + xn, φ(x1, . . . , xn) = min (x1, . . . , xn), and
φ(x1, . . . , xn) = h(x1 + · · · + xn), where h is a convex function. Other examples are provided
in Section 6.D of [40]. In economics, operations research, and machine learning, one is inter-
ested in optimizing a submodular function −φ, where φ is a supermodular function (see, for
example, [3]).

Definition 2. (Supermodular order.) We say (V1, . . . , Vd) is smaller than (V ′
1, . . . , V ′

d) under
the supermodular order, and we write (V1, . . . , Vd) �sm (V ′

1, . . . , V ′
d), if E {φ(V1, . . . , Vd)} ≤

E
{
φ(V ′

1, . . . , V ′
d)
}

for all supermodular functions φ, given that the expectations exist.

The supermodular order satisfies the nine desired properties for dependence orders as men-
tioned in Section 3.8 of [44]. Ordering random vectors according to the supermodular order is
desirable since it implies stochastic ordering results for the sum or functions of the components
of those vectors of RVs.

6.2. Supermodular ordering within eFGM copulas

The following theorem from [7] uses the one-to-one correspondence between the family
of d-variate FGM copulas and the family of d-variate symmetric Bernoulli distributions to
characterize the supermodular order within the family of d-variate FGM copulas with the
stochastic representation.
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Theorem 6. Let (I1, . . . , Id) and (I′
1, . . . , I′

d) be two symmetric multivariate Bernoulli dis-
tributed random vectors. Let (U1, . . . ,Ud) and (U′

1, . . . ,U′
d) be two random vectors

constructed with the representation in Corollary 1, respectively using the random vec-
tors (I1, . . . , Id) and (I′

1, . . . , I′
d). If (I1, . . . , Id) �sm (I′

1, . . . , I′
d), then (U1, . . . ,Ud) �sm

(U′
1, . . . ,U′

d).

From Theorem 6, if one wants to derive the supermodular ordering between (U1, . . . ,Ud)
and (U′

1, . . . ,U′
d), it suffices to establish the supermodular ordering between (I1, . . . , Id) and

(I′
1, . . . , I′

d). We need to recall the definition of the convex order before establishing the
supermodular ordering between the two vectors of symmetric Bernoulli exchangeable RVs
(I1, . . . , Id) and (I′

1, . . . , I′
d).

Definition 3. (Convex order.) Let X and X′ be RVs with finite means. We say that X is smaller
than X′ under the convex order, and we write X �cx X′, if E[ϕ(X)] ≤E[ϕ(X′)] for all real convex
functions ϕ such that the expectations exist.

For the special case of constructions with mixtures presented in Section 3.3, we have the
following ordering property.

Proposition 2. Consider two random vectors (I1, . . . , Id) and (I′
1, . . . , I′

d) with PMFs con-
structed with mixtures as in (11) with respective mixing RVs � and �′. If ��cx �

′, it follows
that (I1, . . . , Id) �sm (I′

1, . . . , I′
d) and (U1, . . . ,Ud) �sm (U′

1, . . . ,U′
d).

Proof. Given the representation in (11), we can use either Proposition 4.1.iii of [14] or
Theorem 2.11 of [11] to deduce that ��cx �

′ implies (I1, . . . , Id) �sm (I′
1, . . . , I′

d). Then the
second inequality follows from Theorem 6. �
Example 3. Let �∼ Beta(α, α) and �′ ∼ Beta(α′, α′); then we have that ��cx �

′ when 0<
α′ <α <∞ (see Table 1.1 of [44]). When the representation in (11) is used with a beta RV, the
dependence between the components of (U1, . . . ,Ud) increases as α decreases and tends to 0.

Example 4. Let Y ∼ Gamma(1/α, 1/α) and Y ′ ∼ Gamma(1/α′, 1/α′), with 0<α <α′ <∞.
Let also �= exp (−Yk) and �′ = exp (−Y ′k′), where k =L−1

Y (0.5) and k′ =L−1
Y′ (0.5). Then

we have that ��cx �
′. Constructing (I1, . . . , Id) and (I′

1, . . . , I′
d) with the representation

in (11) and respective mixing RVs � and �′, we have (I1, . . . , Id) �sm (I′
1, . . . , I′

d) and
(U1, . . . ,Ud) �sm (U′

1, . . . ,U′
d).

Since we have not seen the proof that��cx �
′ within the context of Example 4, we provide

one in Appendix D. In the remainder of this section, we aim to identify the extremal negative
and positive structures in the sense of the supermodular order within the family of eFGM
copulas.

Theorem 7. Let (I−
1 , . . . , I−

d ) be a vector of symmetric Bernoulli RVs with PMF

P(I−
1 = i1, . . . , I−

d = id) =

⎧⎪⎪⎨⎪⎪⎩
(r + 1 − d/2)

(d
r

)−1
, i• = r,

(d/2 − r)
( d

r+1

)−1
, i• = r + 1,

0 otherwise,

(22)

where r ≤ d/2 ≤ r + 1. Also define (I+
1 , . . . , I+

d ) as the vector of symmetric Bernoulli RVs with
PMF

P(I+
1 = i1, . . . , I+

d = id) =
{

1/2, i• ∈ {0, d},
0 otherwise.

(23)
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For all vectors of exchangeable symmetric Bernoulli RVs (I1, . . . , Id), we have

(I−
1 , . . . , I−

d ) �sm (I1, . . . , Id) �sm (I+
1 , . . . , I+

d ).

Proof. The relationship in (22) follows from (7.22) of [28] with π = 1/2, which identifies
this PMF as the most negative dependence for exchangeable Bernoulli RVs. Theorem 7 of
[21] shows that (22) is also the lower bound under the supermodular order. The joint PMF in
(23) corresponds to the joint PMF when the exchangeable and symmetric Bernoulli RVs are
comonotonic, which also coincides with the PMF derived from the Fréchet–Hoeffding upper
bound with symmetric Bernoulli marginals. �

We note respectively the extreme negative dependence (END) and extreme positive
dependence (EPD) eFGM copulas such that the following holds:(

UEND
1 , . . . ,UEND

d

)�sm (U1, . . . ,Ud)�sm
(
UEPD

1 , . . . ,UEPD
d

)
, (24)

for all random vectors (U1, . . . ,Ud) with CDF FU1,...,Ud = C in the eFGM family of copulas.
The EPD eFGM copula, provided in [7, Theorem 5], is recalled in the following theorem.

Theorem 8. The FGM copula associated with the vector of comonotonic RVs (I+
1 , . . . , I+

d )
is the EPD eFGM copula CEPD. The dependence parameters are θk = (1 + (−1)k)/2; that is,
θk = 1 when k is even, and θk = 0 when k is odd. The expression for CEPD is given by

CEPD (u1, . . . , ud)=
d∏

j=1

uj

⎛⎜⎜⎝1 +

⌊
d
2

⌋∑
k=1

∑
1≤j1<···<j2k≤d

uj1 · · · uj2k

⎞⎟⎟⎠, (u1, . . . , ud) ∈ [0, 1]d.

(25)

The case j1 = 0 and j2 = d in (18) leads to the EPD FGM copula. The lower bound within
the family of d-variate eFGM copulas under the supermodular order is defined in the following
theorem; the proof is provided in Appendix C.

Theorem 9. The copula constructed with the vector of RVs
(
I−
1 , . . . , I−

d

)
is the END copula,

denoted by CEND. The dependence parameters (θ2, . . . , θd) for the END copula CEND are
given by

θk = 2F1

(
−

⌊
d + 1

2

⌋
,−k, 2

⌊
d + 1

2

⌋
, 2

)
= (1 + (−1)k)

2


(k + 1)

(

1
2 −

⌊
d+1

2

⌋)
2k


(
k
2 + 1

)


(

k+1
2 −

⌊
d+1

2

⌋) .

(26)

Corollary 4. An alternate representation for the k-dependence parameters in Theorem 9 for d
odd is

θk =

⎧⎪⎨⎪⎩
− 1

d , k = 2, d ≥ 3,
3

(d−2)d , k = 4, d ≥ 7,

− 15
(d−4)(d−2)d , k = 6, d ≥ 11,

θk =
k/2∏
l=1

1 − 2l

d − 2l + 2
, d ≥ 2k − 1,

while for d even the k-dependence parameters are

θk =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− 1

d−1 , k = 2, d ≥ 4,

3
(d−3)(d−1) , k = 4, d ≥ 8,

− 15
(d−5)(d−3)(d−1) , k = 6, d ≥ 12,

θk =
k/2∏
l=1

1 − 2l

d − 2l + 1
, d ≥ 2k.
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TABLE 2. Extreme negative dependence copula parameters.

d θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 θ11 θ12

2 –1
3 –1/3 0
4 –1/3 0 1
5 –1/5 0 1/5 0
6 –1/5 0 1/5 0 –1
7 –1/7 0 3/35 0 –1/7 0
8 –1/7 0 3/35 0 –1/7 0 1
9 –1/9 0 1/21 0 –1/21 0 1/9 0
10 –1/9 0 1/21 0 –1/21 0 1/9 0 –1
11 –1/11 0 1/33 0 –5/231 0 1/33 0 –1/11 0
12 –1/11 0 1/33 0 –5/231 0 1/33 0 –1/11 0 1

Remark 6. The dependence structure within the random vector (I−
1 , . . . , I−

d ) introduced in
Theorem 9 corresponds to complete mixability; see [51] for details.

Remark 7. Table 2 presents the values of (θ2, . . . , θd) of the END eFGM copula, CEND, for
d ∈ {2, . . . , 12}. Although the parameters follow some pattern, it is not obvious from the values
that this corresponds to the dependence parameters inducing the most negative dependence
within the family of eFGM copulas. We offer a few observations on the patterns exhibited by
the parameters of the END eFGM copula. First, (26) gives the same values for consecutive
values of d ∈ {3, 5, 7, . . . } and (d + 1) ∈ {4, 6, 8, . . . }. Then, we always have θk = 0 for k odd.
One also notices alternate signs for k even; that is, θk is negative for k/2 ∈ {1, 3, 5, . . . } and
positive for k/2 ∈ {2, 4, 6, . . . }. Since θ0 = 1 and θ1 = 0 for every FGM copula, one notices
that the magnitude of the END dependence parameters θk is symmetric, decreasing for k< d/2
and increasing again for k> d/2. Also, θk → 0 as d → ∞ for k �= d, and the k-dependence
parameters θk depend on d.

Remark 8. The term (1 + (−1)k)/2 in (26) implies that θk = 0 for k ∈ {3, 5, 7, . . . }, which is
also the case for the EPD eFGM copula. As noted in [7], the dependence parameters for odd
indices k do not contribute to the overall strength of dependence.

7. Sampling and estimation

7.1. Sampling

In [7], an efficient stochastic sampling method is proposed based on the stochastic represen-
tation of FGM copulas. In Algorithm 1, we leverage the representation based on the convex set
Nd from Subsection 3.1 to sample observations from eFGM copulas efficiently. Note that when
the PMF of Nd is an extreme point of Nd, sampling is faster since the vector of probabilities
(p0, . . . , pd) will have at most two non-zero values. Also, for subfamilies of eFGM copulas
based on mixtures as in (11), one may sample Ñd from line 1 of Algorithm 1 by first sampling
�̃, then sampling Ñd from a binomial distribution with d trials and success probability �̃.

https://doi.org/10.1017/apr.2023.19 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2023.19


Exchangeable FGM copulas 223

Algorithm 1. Stochastic sampling method for eFGM copulas

7.2. Estimation difficulties with the FGM family of copulas

The main difficulty in estimating the parameters of an FGM copula is that they must respect
the constraints in (7). For this reason, the method of moments is unlikely to provide a set of
parameters that satisfy the 2d constraints. The paper [48] makes an attempt to estimate the
parameters of FGM copulas by estimating the parameters one at a time and using the sim-
plex algorithm to constrain the valid parameter set after each parameter is estimated. However,
this method does not scale well to high dimensions and will provide different parameter val-
ues if the order of parameter estimation changes. In the following subsection, we provide an
algorithm that guarantees that the resulting parameters satisfy (7).

7.3. Maximum likelihood estimation

The likelihood of a set of mobs independent observations of identically distributed ran-
dom vectors (u1m, . . . , udm), for m ∈ {1, . . . ,mobs}, for the stochastic representation of eFGM
copulas is

L(θ2, . . . , θd) =
mobs∏
m=1

∑
{i1,...,id}∈{0,1}d

fI1,...,Id (i1, . . . , id)
d∏

l=1

[
1 + (−1)il (1 − 2uml)

]
. (27)

Maximizing (27) is feasible but is computationally inconvenient since one needs to apply
the system of constraints in (7). Another approach involves using the representation from
Section 3.1, estimating the parameters pk, k ∈ {0, . . . , d}, under the constraints

∑d
k=0 pk = 1,∑d

k=0 kpk = d/2, and pk ≥ 0, k ∈ {0, . . . , d}. With this representation, one estimates d − 1
parameters and the procedure admits a unique solution, but we have not found an efficient
algorithm to perform this optimization.

Instead, we use the construction based on Section 4, which defines eFGM copula parameters
as convex combinations of parameters from extreme points of the PMFs in Nd. The main
advantage of this construction is that the likelihood is expressed as a finite mixture of nd points.
We can use an expectation-maximization approach to optimize the likelihood, which lets us
estimate parameters in higher dimensions than we have observed in the literature with FGM
copulas. The disadvantage of this approach is that the solution using the convex combinations
of extreme points is not unique, as stated in Remark 5. This non-identifiability is not an issue
(from a modeling perspective) if we convert the estimated parameters back to the values of
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(θ2, . . . , θd), although such a method may not be statistically efficient. Using the eFGM copula
representation from Section 3.1, we find that the likelihood is

L(θ2, . . . , θd) =
mobs∏
m=1

d∑
k=0

P(Nd = k)
1(d
k

) ∑
{i1,...,id}∈{0,1}d

i•=k

d∏
l=1

[
1 + (−1)il (1 − 2uml)

]
. (28)

If we replace (19) into (28), the likelihood becomes

mobs∏
m=1

d∑
k=0

nd∑
j=1

λjP
(
Njd = k

) 1(d
k

) ∑
{i1,...,id}∈{0,1}d

i•=k

d∏
l=1

[
1 + (−1)il (1 − 2uml)

]
. (29)

Rearranging (29) yields

mobs∏
m=1

nd∑
j=1

λj

d∑
k=0

P
(
Njd = k

) 1(d
k

) ∑
{i1,...,id}∈{0,1}d

i•=k

d∏
l=1

[
1 + (−1)il (1 − 2uml)

]=
mobs∏
m=1

nd∑
j=1

λjξmj,

(30)
where

ξmj =
d∑

k=0

P
(
Njd = k

) 1(d
k

) ∑
{i1,...,id}∈{0,1}d

i•=k

d∏
l=1

[
1 + (−1)il (1 − 2uml)

]
; (31)

this does not depend on the parameters λj, j ∈ {1, . . . , nd}, so it can be computed once at the
beginning of the optimization procedure. Using Lagrange multipliers to impose constraints on
the parameters λj, j = {1, . . . , nd}, the log-likelihood to maximize is

J (λ1, . . . , λnd , μ) =
mobs∑
m=1

ln

⎛⎝ nd∑
j=1

λjξmj

⎞⎠+μ

⎛⎝ nd∑
j=1

λj − 1

⎞⎠ . (32)

We find the Lagrange multiplier μ= −mobs and

mobs∑
j=1

ξjt∑nd
l=1 λ̂jξjl

= mobs =⇒ λ̂t =
∑mobs

j=1
λ̂tξjt∑nd

l=1 λ̂lξjl

mobs
, t ∈ {0, . . . , nd}. (33)

In Algorithm 2, we propose an iterative algorithm to estimate the weights λ̂1, . . . , λ̂nd .

7.4. Simulation study: random parameters

To illustrate the estimation procedure, we perform a simulation study and attempt to
estimate the corresponding parameters of eFGM copulas. We use Algorithm 1 to sample obser-
vations and Algorithm 2 to estimate the parameters λj, j ∈ {1, . . . , nd}. However, we compare
the resulting values of θk, k ∈ {2, . . . , d}, to identify unique parameters.

In this study, we consider estimation based on known uniform margins; in cases with
unknown margins, one should compute pseudo-observations based on the ranks of the empiri-
cal distribution function (using the semiparametric method of [23] or information from margins
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Algorithm 2. MLE estimation as a combination of extreme points

of [29]). We consider dimension d = 10 and sample multivariate observations (u1m, . . . , u10m)
for m ∈ {1, . . . , 10 000}. We then estimate the parameters θk, k ∈ {2, . . . , d}. To the best of
our knowledge, this is the first study estimating the parameters of FGM copulas for 10 dimen-
sions, since both the stochastic representation and the exchangeability assumption simplify the
parameter space.

We repeat the simulation and estimation 100 times with the same set of randomly generated
parameters (but satisfying (7)) and present the results in Figure 4. The coordinate represents
the true parameter, and the box-plot presents the range of estimates across the 100 replications.
We present the main estimation diagnostic statistics in Table 3. Even when the true value of
the parameters is close to zero, there is little variation in the parameter estimates. For example,
the value of θ2 is 0.0667, which induces weak dependence (Spearman’s correlation coefficient
between each pair of marginals, that is, ρS(Uj1,Uj2 ) for 1 ≤ j1 < j2 ≤ d, is only 0.0667/3),
but the interquartile range is only 0.006, making the estimates significantly different from 0,
on an empirical basis. Only the parameter θ10 has a real value outside of the interquartile
range of estimated values. This is not surprising: estimation of θ5 is based on 10!/5!/5! =
252 different 5-tuples for each observation, while θ10 is based on a single 10-tuple. However,
as discussed in [7], the k-dependence parameters for k close to d have less impact on the
overall dependence: for the multivariate extensions of Spearman’s rho presented in [46], the
contribution of 10-dependence parameters is 1/310, while that of 2-dependence parameters is
1/32.

One can obtain a more accurate estimate of the parameter θ10 by increasing the dimension.
For instance, if we consider d = 13, then we have 13!/10!/3! different 10-tuples for each obser-
vation; hence the estimate of θ10 is more accurate. We present the box-plot of the estimation
for d = 13 in Figure 5. Note that θ10 is accurately estimated, as are the first values (θ2, . . . , θ7).
We conclude that the most important parameters are adequately estimated.

7.5. Simulation study: extremal points

In the first simulation study, we considered an arbitrary set of parameters for (θ2, . . . , θd).
In this study, we will consider a set of parameters corresponding to an extremal point of Td. In
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TABLE 3. Estimation statistics for the simulation study.

θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10

Real
parameter

0.0667 0.1407 0.0709 0.0085 0.0442 0.0874 –0.0133 –0.1067 0.8667

1st quadrant 0.0640 0.1362 0.0669 0.0013 0.0274 0.0543 –0.0566 –0.1669 0.6840
Median 0.0676 0.1390 0.0709 0.0089 0.0406 0.0716 –0.0307 –0.1278 0.7443
Mean 0.0671 0.1392 0.0718 0.0091 0.0391 0.0722 –0.0305 –0.1288 0.7439
3rd quadrant 0.0699 0.1431 0.0759 0.0150 0.0509 0.0927 –0.0006 –0.0915 0.8211
Interquartile

range
0.0060 0.0069 0.0090 0.0137 0.0235 0.0383 0.0560 0.0755 0.1371

Standard
deviation

0.0052 0.0052 0.0071 0.0106 0.0174 0.0266 0.0373 0.0527 0.1031

FIGURE 4. Box-plot of estimates for the simulation study.

this context, the parameters (λ1, . . . , λnd ) are identifiable from Algorithm 2. We let the dimen-
sion d vary in {5, 10, 15, 20} and the number of observations mobs vary in {100, 500, 1000}.
For a fixed d, we sample observations from the parameters generated by selecting j = 1 from
the extremal points in (17). We are interested in the ability of our algorithm to recover the
correct extremal point. In Figure 6, we present the estimated parameter associated with the
extremal point j = 1. We note that for d = 20, we have nd = 101; the panel mobs = 100, d = 20,
is therefore overdetermined, yet the algorithm recovers non-zero values of λ̂1 for over 75% of
the replications. As expected, increasing the number of observations generally increases the
frequency of identifying the correct extremal point.

One drawback of the algorithm is that convergence of (29) may take many steps. A
faster algorithm would attempt to formulate the problem as a convex optimization problem
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FIGURE 5. Box-plot of estimates for the simulation study with d = 13.

to leverage algorithms constructed for that purpose. Future works will involve studying the
asymptotic or non-asymptotic properties of the estimator generated by Algorithm 2 and scaling
the algorithm to higher dimensions.

8. Conclusion

In this paper, we have considered the class of eFGM copulas, including their construc-
tions and properties. Thanks to the one-to-one correspondence between FGM copulas and
symmetric multivariate Bernoulli RVs, we can leverage the extensive literature on symmetric
exchangeable Bernoulli RVs to study eFGM copulas. We obtain extreme points of eFGM cop-
ulas, then study the extendability of eFGM copulas. We compare random eFGM vectors under
the supermodular order, which has important implications for practical applications of copulas.

As mentioned in the introduction, FGM copulas are the simplest case of Bernstein copulas,
the latter in d dimensions having the expression

C(u) =
m1∑

j1=0

· · ·
md∑

jd=0

α

(
j1
m1
, . . . ,

jd
md

)
Pj1,m1 (u1) . . . Pjd,md (ud), (34)

where Pv,m(u) = (m
v

)
uv(1 − u)m−v and α is a d-variate copula, for (m1, . . . ,md) ∈N

d. When
m1 = · · · = md = 1, we obtain the FGM copula. Bernstein copulas being much more flexible
than FGM copulas, it would be interesting to extend the results from the current paper to the
family of exchangeable Bernstein copulas. The subfamily of exchangeable Bernstein copulas
has the additional constraint that α be an exchangeable copula and m1 = · · · = md. That analy-
sis will require more background; in particular, one would need to extend the results of [20] to
exchangeable multinomial distributions (see [25] for a construction). For this reason, we defer
this analysis to future works. However, we can identify one extremal point of exchangeable
Bernstein copulas corresponding to the EPD. The analogue to the EPD FGM copula within
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FIGURE 6. Histograms of the predicted λ̂1 within the simulation study.
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the class of Bernstein copulas occurs when α is the comonotonic copula, leading to the EPD
Bernstein copula

C(u) =
m∑

j1=0

· · ·
m∑

jd=0

min

(
j1
m
, . . . ,

jd
m

)
Pj1,m(u1) . . . Pjd,m(ud)

= 1

m + 1

m∑
k=0

d∏
l=1

Iul(k + 1,m + 1 − k),

where Ix(a, b) is the regularized incomplete beta function.

Appendix A. Proof of parameters for exchangeable beta

We require the following lemma, often used to prove Legendre’s duplication formula.

Lemma 1. The following integral representation of the beta function holds:

B(a, b) = 2
∫ 1

0
x2a−1(1 − x2)b−1 dx.

Proof. Using the definition of the beta function, B(a, b) = ∫ 1
0 ua−1(1 − u)b−1 du, and

substituting u = x2 yields the desired result. �
We now prove the formulas in Example 2. From (13), we obtain

θk = (−2)k
E�

[(
�− 1

2

)k
]

= (−2)k
∫ 1

0


(α+ α)


(α)
(α)
λα−1(1 − λ)α−1

(
λ− 1

2

)k

dλ. (35)

Using the substitution λ= (1 + v)/2, it follows that

θk = (−1)k
(2α)


(α)2
4−α

∫ 1

−1
2
(

1 − v2
)α−1

vk dv. (36)

Let us solve the integral in (36). One notices that 2
(
1 − v2

)α−1
vk is an even function for

k ∈ {2, 4, 6, . . . } and an odd function for k ∈ {1, 3, 5, . . . }, so the integral equals

∫ 1

−1
2
(

1 − v2
)α−1

vk dv =
{

2 × ∫ 1
0 2

(
1 − v2

)α−1
vk dv, k ∈ {2, 4, 6, . . . },

0, k ∈ {1, 3, 5, . . . }. (37)

Therefore, we have θk = 0 for k = 1, 3, 5, . . . . When k is even, applying Lemma 1 to (37) with
a = k+1

2 and b = α and simplifying, we obtain

θk = 2 × 4−α 
(2α)


(α)2



(

k+1
2

)

(α)



(
α+ k+1

2

) = 2 × 2−2α
22α−1


(
α + 1

2

)
√
π



(

k+1
2

)


(
α + k+1

2

) ;

the final equality follows using Legendre’s duplication formula (see, for example, [1]).
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Appendix B. Infinite extendability of trivariate eFGM copulas

Since parameters in T3,∞ are infinitely extendable, this implies that the underlying copula
admits a de Finetti representation as in (11). It follows from (13) and Remark 2 that there

exists an RV � such that θk = (−2)k
E

[(
�− 1

2

)k
]

. To find the admissible range of θ2 and

θ3, it suffices to find the admissible range of the second and third moments of an RV � with
support [0,1]. The moment spaces generated by such constraints are derived in the theorem of
[15], which states that

0 ≤E[�] ≤ 1;

E[�]2 ≤E[�2] ≤E[�]; (38)

E[�2]

E[�]2
≤E[�3] ≤ E[�2](1 −E[�2]) +E[�](E[�2] −E[�])

1 −E[�]
. (39)

Substituting E[�] = 1/2, we have from (38) that 0 ≤ Var(�) ≤ 1/4 (see also [50] for this
result), which implies that 0 ≤ θ2 ≤ 1. Then, for a fixed value of E[�2], we have from (39)
that

2E[�2]2 − 3

2
E[�2] + 1

4
≤E

[(
�− 1

2

)3
]

≤ −2E[�2]2 + 3

2
E[�2] − 1

4
,

which, upon simplifying, yields the moment space constraint

−θ2(1 − θ2) ≤ θ3 ≤ θ2(1 − θ2).

Appendix C. Proof of supermodular lower bound

C.1. A lemma

In this appendix, we identify the copula parameters corresponding to the lower bound for
eFGM copulas under the supermodular order from Theorem 9. The following result will be
useful.

Lemma 2. We have

θk = (−2)k
E

⎡⎣ k∏
j=1

(
Ij − 1

2

)⎤⎦=E
[
(−1)I1+···+Ik

]
.

Proof. Since I takes values 0 or 1, one substitutes 1 − 2I = (−1)I and simplifies. �

C.2. Dependence parameters for even dimensions

Let N−
d = I−

1 + · · · + I−
d ; then we have P(N−

d = d/2) = 1. Consider the vector containing
the first k elements of (I−

1 , . . . , I−
d ), denoted by (I−

1|d, . . . , I−
k|d), and the RV N−

k|d = I−
1|d + · · · +

I−
k|d. From Lemma 2, we have

θk =E

[
(−1)I−1|d+···+I−k|d

]
=E

[
(−1)N−

k|d
]

.

One can interpret the PMF of N−
k|d as the probability of selecting without replacement j ones

from k samples from an urn containing d/2 ones and d/2 zeroes. Then

P(N−
k|d = j) =

(
d/2

j

)(
d/2

k − j

)/(
d

k

)
, j ∈ {0, . . . , k}, (40)
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which is the PMF of a hypergeometric distribution. From [30, Section 6.3], the (descend-
ing) factorial moment generating function for a hypergeometric distribution X of a successes,
b failures, and n picks is E

[
(1 + t)X

]= 2F1(−a,−n; − a − b; − t). Substituting t = −2 yields
the desired result. The second equality in (26) follows from the identities 2F1(a, b; c; z) =
2F1(b, a; c; z) and

2F1(−n, b; 2b; 2) = n!2−n−1(1 + (−1)n)
(b + 1/2)

(n/2)!
((n + 1)/2 + b)
, n ∈N.

C.3. Dependence parameters for odd dimensions

For d odd, we have P(N−
d = (d − 1)/2) = P(N−

d = (d + 1)/2) = 1/2. By symmetry of
Pascal’s triangle, both binomial coefficients of (22) are equal, so the PMF is equal over all
cases where N−

d equals (d − 1)/2 or (d + 1)/2. Therefore, for d odd, we have

P(N−
k:d = j) = 1

2

( d−1
2
j

)(
d − d−1

2
k − j

)/(
d

k

)
+ 1

2

( d+1
2
j

)(
d − d+1

2
k − j

)/(
d

k

)
, j ∈ {0, . . . , k},

(41)
which is the average of the PMF of hypergeometric distributions with (d + 1)/2 ones, (d − 1)/2
zeroes, and k picks, and (d − 1)/2 ones, (d + 1)/2 zeroes, and k picks. The two cases are
symmetric (with ones and zeroes swapped), so one can define the RV N−

k:d
′ which follows a

hypergeometric distribution with (d + 1)/2 ones, (d − 1)/2 zeroes, and k picks; then, similarly
to the even case, we have

E

[
(−1)N−

k:d

]
= 1

2
E

[
(−1)N−

k:d
′]+ 1

2
E

[
(−1)k−N−

k:d
′]=

(
1

2
+ 1

2
(−1)k

)
E

[
(−1)N−

k:d
′]

.

Applying the factorial moment generating function once again yields the desired result.

Appendix D. Proof of the ordering in Example 4

Our goal is to compare the RVs � and �′ under the convex order when 0<α <α′ <∞.
Notice that both RVs are continuous and have support on the open interval (0, 1). Define the
transform ρX(x) = d

dx ln fX(x) and let γ (x) = ρ
�

′ (x) − ρ�(x) for x ∈ (0, 1). A sufficient condi-
tion for ��icx �

′ from [27] is that there exists a c such that γ (x) is negative for x ∈ (0, c) and
positive for x ∈ (c, 1). We have that

ρ�(x) = 1

x

(
1 − α

α ln x
+ 1

kα
− 1

)
.

One may verify that lim
x→0+ γ (x) = −∞ and lim

x→1− γ (x) = ∞. One may further verify that d
dxγ (x)

is strictly positive for x ∈ (0, 1). It follows that γ (x) satisfies the sufficient condition of [27], and
we have��icx �

′. Since E[�] =E[�′], we also have (see [44, Theorem 1.5.3]) that��cx �
′,

as required.
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