JFP 30, e13, 27 pages, 2020. (© The Author(s) 2020. Published by Cambridge University Press 1
doi:10.1017/80956796819000212

Local algebraic effect theories

7ZIGA LUKSIC AND MATIJA PRETNARY

Faculty of Mathematics and Physics, University of Ljubljana, Slovenia
(e-mails: ziga.luksic@fmf.uni-1j.si, matija.pretnar@fmf.uni-1j.si)

Abstract

Algebraic effects are computational effects that can be described with a set of basic operations and
equations between them. As many interesting effect handlers do not respect these equations, most
approaches assume a trivial theory, sacrificing both reasoning power and safety. We present an alter-
native approach where the type system tracks equations that are observed in subparts of the program,
yielding a sound and flexible logic, and paving a way for practical optimisations and reasoning tools.

1 Introduction

Algebraic effects are computational effects that can be described by a signature of primi-
tive operations and a collection of equations between them (Plotkin & Power, 2001, 2003),
while algebraic effect handlers are a generalisation of exception handlers to arbitrary alge-
braic effects (Plotkin & Pretnar, 2009, 2013). Even though the early work considered
only handlers that respect equations of the effect theory, a considerable amount of use-
ful handlers did not, and the restriction was dropped in most—though not all (Ahman,
2017, 2018)—of the later work on handlers (Kammar et al., 2013; Bauer & Pretnar, 2015;
Leijen, 2017; Biernacki ef al., 2018), resulting in a weaker reasoning logic and imprecise
specifications.

Our aim is to rectify this by reintroducing effect theories into the type system, track-
ing equations observed in parts of a program. On one hand, the induced logic allows
us to rewrite computations into equivalent ones with respect to the effect theory, while
on the other hand, the type system enforces that handlers preserve equivalences, further
specifying their behaviour. After an informal overview in Section 2, we proceed as follows:

e The syntax of the working language, its operational semantics, and the typing rules
are given in Section 3.

e Determining if a handler respects an effect theory is in general undecidable (Plotkin
& Pretnar, 2013), so there is no canonical way of defining such a judgement.
Therefore, the typing rules are given parametric to a reasoning logic, and in
Section 4, we present some of the most interesting choices.

' This material is based upon work supported by the Air Force Office of Scientific Research under award number FA9550-17-
1-0326.

https://doi.org/10.1017/50956796819000212 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000212
mailto:ziga.luksic@fmf.uni-lj.si
mailto:matija.pretnar@fmf.uni-lj.si
https://doi.org/10.1017/S0956796819000212

2 7. Luksi¢ and M. Pretnar

e Since the definition of typing judgements is intertwined with a reasoning logic, we
must be careful when defining the denotation of types and terms. Thus, in Section 5,
we first introduce a set-based denotational semantics that disregards effect theories
and prove the expected meta-theoretic properties.

e Next, in Section 6, we extend this denotation to templates and effect theories, and
describe the necessary conditions for the reasoning logic which ensure its soundness
and adequacy.

We conclude by discussing related and future work in Section 7.

2 Overview

2.1 Algebraic effect handlers

We assume the reader is vaguely familiar with algebraic effects and handlers, but we will
elaborate on some of the more intricate parts. For less accustomed readers, a good place
to pick up the basics is the tutorial (Pretnar, 2015). The emphasis will be on the newly
introduced changes to the type and effect system.

At the core of using algebraic effects is the idea that all impure behaviour arises from
calls of primitive operations, for example, print for printing a string or raise for raising an
exception. Any computation either returns a value or makes an operation call op(v; y.c)
where the value v is a parameter of the call, while the computation c is its continuation,
waiting for a result of op to be bound to y.

Suppose, we wish to model non-determinism. For that, we take an operation choose :
unit — bool that non-deterministically produces a boolean after given the unit value ().
We can recover a binary non-deterministic choice from the abbreviation:

c1® défchoose((); y.if y then ¢ else ¢3)

Apart from a select few built-in operations (e.g. printing out to a terminal), an operation
by itself has no meaning. Their meaning is instead determined by a handler consisting of a
set of operation clauses op(x; k) = c,p. For every called operation op, the handler replaces
the call with the handling computation ¢,,, where the parameter of the call is bound to x
and the continuation is captured in a function, which is recursively handled by the same
handler, and bound to %.

A simple example of a non-determinism handler is

pickLeft = handler {
| choose((); k) — k true

}

that makes choose constantly pass true to the continuation &, forcing ¢ @ ¢, to always
pick c¢;. Another example is the handler that collects all the results of a non-deterministic
computation:

https://doi.org/10.1017/50956796819000212 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000212

Local algebraic effect theories 3

collectToList = handler {
| choose((); k) —
do x| « ktrue in

doxp « kfalse in

ret ()q@)Q)

| ret x > ret [x]
}

If the handled computation calls the operation choose, the handler passes both possible
outcomes to the continuation, collects the respective results into lists x; and x,, and returns
the concatenated list. Additionally, the handler includes a clause stating that if the handled
computation returns a value x, the handler should transform it into a computation returning
the singleton list [x].

2.2 Effect theories

Even though handlers determine the behaviour of operations, there are nonetheless some
properties we expect from effects. These are described by a collection of equations called
an effect theory. For non-determinism, the theory consists of equations for commutativity,
idempotency, and associativity of the binary choice operation:

Z1®zp~2p Dz, (comm)
z®z~z, (IDEM)
Z1® (2 ®Dz3) ~ (21 Dzp) D z3 (ASSOC)

We quickly notice that pickLeft does not respect the first equation by constructing a sim-
ple counterexample, for instance, let z; =ret 1 and z; =ret 2. When handling the left
side of the equation, we obtain the result 1 (the left choice) while for the right side of the
equation we get the result 2. Showing that pickLeft respects the last two equations requires
some additional tools and is done in Example 4.2. Similarly, the handler collectToList
respects the last equation but not the first two. The above two handlers are just two exam-
ples of many computationally interesting handlers that do not respect the usually assumed
equations. For this reason, most contemporary work on algebraic effect handlers (Kammar
et al., 2013; Bauer & Pretnar, 2015; Leijen, 2017; Biernacki et al., 2018) assumes trivial
effect theories that contain no equations.

Our proposed solution is to instead annotate computation types with equations that
define the desired effect theory. For instance, consider the function:

chooseFromlList : A 1ist — A!{choose}

that takes a list of values of type 4 and non-deterministically chooses an element from it.
The output type captures not only the type of returned values 4, but also the set {choose} of
operations that may get called in the process. In our proposed system, we further decorate
the output type by stating the desired equations:

chooseFromList : A 1ist — A!{choose}/{(COMM), (IDEM), (ASSOC)}

https://doi.org/10.1017/50956796819000212 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000212

4 7. Luksi¢ and M. Pretnar

Now, by knowing only the type of chooseFromlList, its users can use induction (see
Example 4.3) to show that computations:

do xj « chooseFromlList £1 in (do x < chooseFromlList {, in c)
and
do xp « chooseFromList { in (do x| « chooseFromList {1 in c¢)

are equivalent at type A!{choose}/{(COMM), (IDEM), (ASSOC)} (but not at A!{choose}/D).
Function implementers also benefit from the enriched types, as they can make additional
assumptions on the observed behaviour. For example, by imposing the equation (COMM)
on the output type, they ensure that the order in which they process the list is insignificant,
as it will not be observable on the outside.

Any handler handling a computation with assumed equations must of course respect
them. For example, collectToList transforms a computation of type 4!{choose} into a pure
computation of type 4 1ist, but respects only (ASSOC). This is reflected in its type:

collectToList : A'{choose}/{(ASSOC)} = A4 1ist!0/0

in which the output computation calls no operations, which in turn leads to no possible
equations between them. As the equations in the input type of collectToList do not match
those in the result of chooseFromlList, the type system prohibits us from composing them.
On the other hand, we could apply a handler collectToSet that collects all results into a set
and thus additionally respects (COMM) and (IDEM).

The proposed type system offers greater flexibility over assuming a global effect the-
ory (Plotkin & Pretnar, 2013), as in one part of a program, we can assume arbitrary
equations that the locally used handlers respect, but still use computationally interesting
handlers that respect other equations in a different part.

Another flexibility that the type system offers is transforming one effect theory into
another. For example, take an operation yield : int — unit that is used to model inte-
ger generators. Using it, we design a handler that transforms a non-deterministic integer
computation into a generator of all possible results:

yieldAll = handler {
| choose((); k) k true; k false
| ret x > yield(x; _.ret ())

}

In the choose clause, we first resume the continuation by passing it true, yielding all out-
comes in the process, and repeat the process for false. Whenever a computation returns
a value x, we instead call yield with a trivial continuation.

This handler respects none of the non-deterministic equations stated above, so its
immediate type is

yieldAll : int!{choose}/0 = unit!{yield}/0.
But if we assume that the order of yield calls does not matter:

yield(x; _yield(y; _.c)) ~yield(y; _.yield(x; _.c)) (YIELDORDER)

https://doi.org/10.1017/50956796819000212 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000212

Local algebraic effect theories 5

the handler respects the commutativity of choose and can be given a type:
yieldAll : int!{choose}/{(COMM)} = unit!{yield}/{(YIELDORDER)},

as we show in Example 4.3. If we next have a handler that respects (YIELDORDER), for
example,

sumYieldedValues : unit!{yield}/{(YIELDORDER)} = int!0/0,
and a computation ¢ in which we assume (COMM), we can compose them as:
with sumYieldedValues handle (with yieldAll handle c),

with the type system ensuring that equations are preserved at appropriate places. Again, we
can use the Equation (COMM) and rewrite ¢ into an equivalent computation, all by knowing
only the type and not the exact definition of handlers above it.

While the equations look simple, they are expressive enough to state even more intricate
properties. Consider integer generators with an operation next:unit — int option. A
call of the operation next either generates the next element Some 7 of the generator or
returns None if the generator has finished generating the sequence. We expect that after
such a call, all further calls should result in None. We can specify such behaviour with the
equation:

next((); y.if (y == None) then next((); y'.z)") else zNone) ~ next((); y.z None)

where the variable z stands for an arbitrary computation, dependent on a value of type
int option. To see that this equation describes the desired behaviour, consider any ill-
behaved handler that passes None to the continuation on the first call of next and Some n on
the second one. Handling the left-hand side first passes None to y, leading to the second call
of next, which is handled by passing Some # to y” and further on to z. Handling the right-
hand side, however, resumes by passing None to z, resulting in a different computation. In
any other case (if the handler passes Some # in the first call or None in the second one),
both sides proceed by handling z None.

3 Language
3.1 Term syntax

Our working calculus (Figure 1) is based on the fine-grain call-by-value (Levy et al., 2003)
approach, which differentiates between pure values v and effectful computations ¢, which
might return a value or call an operation. For clarity, we keep the calculus minimal, though
it could easily be extended with additional value types such as integers, type sums and
products, or recursive function definitions, which we discuss in Section 7.2.

For a cleaner development later on, we define an independent syntactic sort of operation
clauses h which are joint with a return clause only when constructing the handler value.
This deviates slightly from most of the contemporary work on handlers (Leijen, 2017;
Hillerstrom & Lindley, 2016; Forster ef al., 2017; Saleh et al., 2018) and is more similar
to the original treatment in Plotkin & Pretnar (2009, 2013). In practice, we treat operation
clauses % as a set of operations with uniquely assigned handling computations and write
them as {op(x; k) = coplop-

https://doi.org/10.1017/50956796819000212 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000212

6 7. Luksi¢ and M. Pretnar

valuesv = x variable
|0 unit constant
| true|false boolean constants
| funxec function
|

handler (ret x — ¢,;h) handler

computations ¢ 1= if v then c| else ¢) conditional
| vim application
| retv returned value
| op(v;y.c) operation call
| dox<cyincy sequencing
| withvhandlec handling

operation clauses i 0| hu{op(x; k) cop}

Fig. 1. Syntax of terms.

if true then c| else ¢y ~ () if false thenc| else ¢y ~
’
Cc] ™~ Cl
(fun x > ¢) v~ c[v/x] dox<—c1inc2~>dox<—ciinc‘2
do x «retvinc~ c[v/x] do x « op(v; y.c1) in ¢y ~ op(v; y.do x « ¢ in ¢p)
c~c’

with v handle ¢ ~> with v handle ¢’

with (handler (ret x ¢;h)) handle (ret v) ~ ¢ [v/x]

(op(x; k)= cop) € h

with (handler (ret x — c,;h)) handle (op(v; y.c))
~> Cop[v/x,(fun y > with (handler (ret x — c,;/)) handle c¢)/k]

Fig. 2. Operational semantics.

To improve readability, we sometimes use syntactic sugar. When sequencing, we
replace computations of form do _ « ¢| in ¢; with cy; ¢;. When writing handler clauses,
we often use the separator | instead of commas, to achieve the familiar ML pattern
matching look.

3.2 Operational semantics

Operational semantics, given in Figure 2, remains largely the same as in our previous
work (Bauer & Pretnar, 2015; Kammar & Pretnar, 2017) except for a different presentation

https://doi.org/10.1017/50956796819000212 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000212

Local algebraic effect theories 7

(value) type A,B 1= unit unit type
| bool boolean type
| A-C function type
| C=D handler type
computation type C,D = Al!X/E
signatureX = 0|XU{op:A — B}
value contextI' = ¢&|T,x:A

template context Z

e|Z2,7:A— %

template T == zv applied template variable
| if vthenT) elseT, conditional template
| op(v;y.T) operation call template
(effect) theory & = 0 |EU{Z+T) ~ T}

Fig. 3. Syntax of types.

of operation clauses. Computations continue to evaluate until they either return a value or
call an operation. At that point, we propagate the operation by pushing the remaining parts
of the computation inside the operation continuation. This way we ensure that the operation
eventually reaches a handler, while at the same time correcting the continuation.

In line with our previous work (Bauer & Pretnar, 2015; Kammar & Pretnar, 2017), the
presented handlers are deep (Kammar et al., 2013), meaning that they continue to handle
any operations called in the potentially resumed continuation. For the sake of a slightly
simpler type system, we choose to switch to closed handlers (Kammar et al., 2013), which
get stuck on operation calls with no corresponding operation clauses. Our type system will
prevent such cases, though it is straightforward to extend the semantics to open handlers,
where unhandled operations are implicitly propagated outwards, or add propagating cases
op(x; k) — op(x; y.ky) that do that explicitly.

3.3 Type syntax

Continuing the separation between values and computations, the type syntax (Figure 3)
distinguishes between value types A, B, often referred to simply as types, and computation
types C,D. In addition to the type of the returned value 4, a computation type A!X/E
captures the signature X of operations that might be called during evaluation and, the main
novelty of this paper, a set of equations, called a (effect) theory £, which describes which
computations we consider equivalent at a given type.

Operation calls exhibit answer-type polymorphism in the sense that they prescribe only
the type that the continuation expects, but not its return type. Equations between operations
have to be similarly polymorphic, so we describe them with a pair of templates T (Plotkin
& Pretnar, 2013). A template pair is then instantiated to a pair of computations by replacing

https://doi.org/10.1017/50956796819000212 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000212

8 7. Luksi¢ and M. Pretnar

all template variables with appropriate function values. In particular, given a function value
J; for each free template variable z; appearing in a template 7', we recursively define the
computation 77 f;/z;]; by:

Gzl =5y
(if v then 77 else 13)[fi/z]; = if v then T1[f;/z]; else T1[fi/z];

(op(v; y.TOLfi/z)i = op(v; y.T[f;/2]))

Since templates have to be polymorphic in the result type, we have to restrict their con-
structors to a small answer-type polymorphic subset, though one which proves to be
sufficient for many interesting and common effect theories.

3.4 Type checking

It should come as no surprise that the proposed type system is intricate. Types contain
templates, which then further contain terms and types, and to top it all off, both terms
and types are split into mutually dependent value and computation sorts. This forces us to
mutually define judgements for:

e ['+v: A, which states that in context I" the value v has a type 4,

e I'+c: C, which states that in context I" the computation ¢ has a computation type C,

e I'th:X = D, which states that in context I" clauses / cover operations listed in
using computations of type D,

e I'+h:X = Drespects £, which states that in context I and with respect to the sig-

nature X, clauses / are well defined, meaning they handle computations equivalent

under £ into equivalent computations of type D,

+ A : vtype, which states that the value type A4 is well formed,

+ C: ctype, which states that the computation type C is well formed,

+ X : sig, which states that the signature X is well formed,

+ I : ctx, which states that the value context I' is well formed,

F Z : tctx, which states that the template context Z is well formed,

I'; Z+ T : £, which states that in contexts I' and Z, the template T is well formed with

respect to the signature X,

e & : X, which states that equations £ are well formed with respect to the signature X.

Even though the forthcoming rules have to be treated as a single definition, we structure
them into smaller, more digestible chunks.

First, Figure 4 lists the usual typing rules for values and computations. Aside from the
decoupling of operation clauses, most of the rules closely follow our previous work (Bauer
& Pretnar, 2014; Pretnar, 2015; Kammar & Pretnar, 2017). The main difference is the
addition of equations, which are in all but one case simply tacked onto the computation
type. For example in sequencing do x « ¢; in ¢;, we require that ¢; and ¢, have not only
matching signatures, but also equations.

The rule for typing handlers is more interesting. If a handler is given a type 4!X/€ = D,
we must first check that the return clause maps values of type 4 to computations of type D.
Next, all operations in £ must have appropriate operation clauses that handle them with

https://doi.org/10.1017/50956796819000212 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000212

Local algebraic effect theories 9

Well-typed values T +v:A (where+ I :ctx and + A:vtype)

(x:A)eT
I'kx:A I't():unit I'+ true:bool '+ false:bool
Ix:Arc:C Ix:Avrcr:D I'th:X = D respects &
Frfunx—c:A—>C I'+ handler (ret x > ¢,;h):AlX/E = D

Well-typed computations T+ c:C (where +T':ctx and + C:ctype)

I'+v:bool I'tep:C I'tey:C I'vitA—C I'ryvy:A I'tv:A
I'if v thency else ¢p:C F'rviv:C I'tretv:AlZ/E

(op:Agp = Bop) €X TFv:Ag I,y:Boptc:AlZ/E
I'+Fop(v;y.c):AlZ/E

Tre:AIZ/E Tox:Arcy:BIX/E rrviC=D Tre:C

l'tdox« ¢y incy:B!Z/E I' - with v handle c:D

Fig. 4. Typing judgements for terms.

Well-typed operation clauses T+ h:Z = D (where v I':ctx, + X:sig and + D :ctype)

I'rh:X=D [x:Agp.k:Bop = D+ cop:D opgx
r-0:0=D0D T FhU{op(x; k)= cop}:(2U{op:Agp = Bop}) = D

Well-defined operation clauses I' - h:X = D respects & (where+&E:Zandl'-h:2 = D)

Given in Section 3.

Fig. 5. Typing judgements for operation clauses.

computations of type D, well defined with respect to equations £. All of this is captured
by the judgement I'+ /4 : X = D respects &, given in Figure 5. There are different choices
one can consider in defining this judgement, though all impose the same typing rules,
captured by the auxiliary judgement I'+ /4 : X = D. We present a few interesting choices
of resulting logics £ in Section 4.

Rules that ensure well-formedness of types, signatures, and contexts are given in
Figure 6 and are routine. The most interesting one is the rule for the computation type
A'Y /&, which requires the theory £ to be well formed with respect to the signature X.

We treat templates and equations in Figure 7. The rules for templates follow the cor-
responding rules for computations, while equations are well formed with respect to the
signature X if all their templates are well formed. Template variables in template contexts Z

https://doi.org/10.1017/50956796819000212 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000212

10 7. Luks$i¢ and M. Pretnar

Well-formed value types + A:vtype

FA:vtype F C:ctype + C:ctype + D:ctype

Funit:vtype F bool:vtype FA — C:vtype +C = D:vtype

Well-formed computation types + C:ctype

FA:vtype b X:sig FEX
FAIZ/E:ctype

Well-formed signatures + X:sig

FX:sig FA:vtype + B:vtype opEx

F0:sig FXU{op:A — B}:sig

Well-formed context + T :ctx and template context v Z:tctx

FT:ctx x¢l FA:vtype

FQ:ctx FI,x:A:ctx FQ:tctx

F Z:tctx Z¢Z F A:vtype

FZ,7:A — *x:tctx

Fig. 6. Well-formedness judgements for types.

are labelled with the type 4 — * as they can be replaced with functions of type 4 — C for
an arbitrary computation type C.

Theorem 3.1 (Safety).
Progress. If +c:A/Z/E, then either

e there exists a computation ¢’ such that ¢ ~ ¢’, or

e cis of the form ret v for some value v, or

e cis of the form op(v; k) for some op € X.
Preservation. If +c:A4!'X/€ and c~> ¢, then +¢’ : A!Z/E.

Proof Both parts can be shown with a routine structural induction. O

4 Logics

We now consider different possibilities for the definition of I' + 4 : £ = D respects £. The
trivial choice is to take the empty relation, resulting in a logic £y in which no handlers
can be typed. At the other extreme, we can take the logic Lgy with the unwieldy set of

https://doi.org/10.1017/50956796819000212 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000212

Local algebraic effect theories 11

Well-typed templates T;Z+ T:X (where +-T:ctx, - Z:tctx, and + X:sig)

F'rv:A (z:A—>)€l I'+v:bool IZvTp:X2 2 T5:2
IiZFzv:2 I7Zrif vthen T else Tp: X

(op:A—>B)eX I'rv:A ILy:B;Z+T:2
IZvop(v; y.T):X

Well-formed theories + &E:X (where + X:sig)

FE:X 2+ T2 I2+Ty:%2
FO:XZ FEU{ZFT) ~Th}:X

Fig. 7. Typing judgements for templates.

all possible combinations of '+ 4 : X = D and + £ : X that yield a well-defined denotation
(cf. Definition 6.4). In between, there are a few interesting logics on which we focus.

4.1 Free logic Lfiee

The simplest one of these is the logic L. in which well-typed operation clauses respect
only the empty set of equations:

+h:2=D
I'th:X = Drespects

This corresponds to the conventional approach to handlers in which we ignore equations
and accept any well-typed handler. Note that we could replace @ with an arbitrary set of
tautologies such as I'; Z+ T~ T. The same principle applies in general, as we may replace
any set of equations with an equivalent one.

4.2 Equational logic L.,

We next consider a simple equational logic Lcq, which allows us to prove that operation
clauses indeed respect a given theory. In addition to the type rules, which are the same
as in Section 3.4, L4 includes the I'+ /1 : ¥ = D respects £ relation and typed equational
judgements I' - vi =4 v, for values and I' - ¢; =¢ ¢ for computations. Most of these addi-
tional rules are well known: reflexivity, symmetry, transitivity, substitution, congruences
for each construct, and Bn-equivalences. More interesting are the rules given in Figure 8.

The first rule allows us to use equations we have in computation types. Any instantia-
tion of templates 71 ~ 73 in £ produces an equivalence between computations at any type
A'Y/E. This rule is a generalisation of the rule present in the original logic for algebraic
effects (Plotkin & Pretnar, 2008), except that the effect theory is local rather than global.

When instantiating the two templates in an equation, we need to ensure that the final
terms are of equal types. This is ensured by the following lemma.

https://doi.org/10.1017/50956796819000212 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000212

12 7. Luks$i¢ and M. Pretnar

Inheriting equations from the effect theory

((xi:Ai)i;(Zj:BjH*)jl—Tl~T2)€6 I'kvitA; I+ fj:Bj —AlZ/E
Cr(Tfj/zi]pil xidi =ars e LS/ 251/ xili

Checking when a handler respects an equational theory

'vrh:X=D
I'th:X = D respects 0

T'+h:X= Drespects & [,(x;:A)i(fj:Bj = D)j v Tlh[fj/lj]j EQTzh[fj/Zj]j
't h:Z = Drespects EU {(xl-:A,-)i;(zj By =) rT1 ~ T2}

where for h = {op(x; k) = cop}op We define:
w0 i/l = fiv
(if v then T} else Tz)h[fj/zj]j =1if v then T]h[fj/zj]j else Tg[fi/zj]j
op(v: y.T)'[f;/211; = coplv/x.(fun y = T"[£;/271)/k]

Fig. 8. Non-standard rules of the logic Leq.

Lemma 4.1. Suppose, we have a well-typed template (x;:A4;);; (zj:Bj—wk)].I—T:Z
and values T'vv;:A; for each i and T'v f;:B;— C for each j. Then, we have
T (T fi/zpvifxili: C.

The last two rules describe when a handler respects an effect theory and are similar to
the rules present in the original treatment of handlers (Plotkin & Pretnar, 2009, 2013), but
adapted to local effect theories. The first of the two rules treats the empty theory as before
and the second allows us to extend the theory with a single equation between templates.
Lemma 4.1 again guarantees that equations in the hypotheses are well typed.

To show how rules of L.q can be used in practice, let us return to the running examples
from Section 2.

Example 4.2. Recall the definition of the handler:

pickLeft = handler {
| choose((); k) — k true

}
We wish to show that it has the type:

pickLeft : int!{choose}/{(IDEM), (ASSOC)} = int!0/0

https://doi.org/10.1017/50956796819000212 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000212

Local algebraic effect theories 13

We first focus on the Equation (IDEM):
z:unit — x+ choose((); y.if ythenz () elsez())~z()

To show that pickLeft respects (IDEM), we must prove that for any f :unit — int!0/0
(recall this type is obtained by instantiating * with the right-hand side of the handler type)
it holds that:

(choose((); y.if y thenz () else z)V [f[z]= 1y (z)Y £z,
We rewrite both sides according to definition of (_)?* L[£ /2] to the formula:
(funyr> if ythenf () elsef ()) true Eint!(b/(z)f O)
Using S-laws, the left side first simplifies to
if true thenf () elsef ()

and then further to f () which concludes the proof.
The proof for (ASSOC), while requiring more space to write out, is no more difficult. For
the left side, we rewrite (z; ® (22 @ 23))P' K [f,)z, /> /22, /23] tO

(funyt> if ythenf] () else (fun)’— if)’ then f5 () else f3 ()) true) true
which can be simplified to f; (). The same process is repeated for the right side of the
equation.

Example 4.3. Recall the definition of the handler:
yieldAll = handler {
| choose((); k) — k true; k false
| ret x > yield(x; _.ret ())
}
We wish to show that it can be given the type:
yieldAll : int!{choose}/{(COMM)} = unit!{yield}/{(YIELDORDER)},
where the Equations (COMM) and (YIELDORDER) are
Z]:unit — *,zp ;unit — *F
choose((); y.if y thenz| () else z; ()) ~ choose((); y.if y thenz; () elsez; ())
and
X:int,y:int;z:unit — *+yield(x; _yield(y; _z ())) ~yield(y; _yield(x; _.z ()))

respectively.
To show that yieldAll respects (COMM), it is enough that we prove that for any functions
f1,/2 :unit — unit!{yield}/{(YIELDORDER)} it holds that:

(choose((); y.if y thenz () else z ()Y ““![f, /21, f/2]

=unit! {yield}/ {(YIELDORDER))

(choose((); y.if y thenz; () else z; (N)Y"““IIfi /21, f3/z,].

https://doi.org/10.1017/50956796819000212 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000212

14 7. Luks$i¢ and M. Pretnar

Using the definition of yieldAll, the left-hand side can be rewritten to the sequence of
computations:

(funy > if ythenf] () elsef; ()) true;
(funy if y then f] () elsef; ()) false.

which is B-equivalent to f; (); f> (). We repeat the process for the right-hand side to obtain
the equation:

S1Osf20) Eunit!{yiela,'}/{(YIELDORDER)}f2 O:/1 O.

At this step, we postpone the remainder of the proof to Example 4.4, as L is unfortunately
not powerful enough to finish it. A crucial piece missing is the principle of computational
induction (Plotkin & Pretnar, 2008; Bauer & Pretnar, 2014), which captures the inductive
structure of computation types A!X/E.

4.3 Predicate logic with induction Lpeq

In order to state induction in our logic, we need to extend our judgements with hypotheses
and universal quantifiers. We now extend the logic to a first-order predicate logic Lpreq.
In addition to equations, the formulae ¢ include logical connectives and quantifiers over
value types:
formulae ¢, ::=vi =4 v, value equation

| c1=cc2 computation equation

| T truth

| L falsity

| 1 Ay conjunction

| o1 V¢ disjunction

o=y implication

| Vx:A. ¢ universal quantification

| Ax: 4. ¢ existential quantification
We type formulae in a context I' and extend judgements with hypotheses to ones of the
form I' | W + ¢, where ¥ is a set of formulae ¢, ..., ,. In addition to the rules of Leq
(extended with hypotheses), the logic Lpreq includes the standard rules for logical connec-
tives and quantifiers, which we omit (cf. Plotkin & Pretnar, 2008; Pretnar, 2010), and a
principle of induction, on which we focus now.

The principle of induction states that a property holds for all computations of type

A'Z/€, if it holds for all computations that return a value of type 4, and for all compu-
tations that call an operation op € ¥ under the induction hypotheses that it holds for all

possible continuations. For a schema producing a formula ¢(c) for any computation c, the
induction is stated as:

I'Yre:42/E [Lx:A|YFe(retx)
[F,x:Aop, k:Bop = AZ/E Y, (Vy: Bop. p(ky)) F plop(x; y.ky))]

FIYFoe()

op:Agp—Bop €L

https://doi.org/10.1017/50956796819000212 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000212

Local algebraic effect theories 15

Example 4.4. Using induction, we may finally complete the proof started in Example 4.3.
Recall we were left at proving:

S1O:20=p2 00 0.

where we abbreviate D = unit!{yield}/{(YIELDORDER)}. We wish to show with induction
that in D any two computations commute. To prove this, we first show that a single call of
yield commutes with any computation in D, so we take ¢;(cy) to be:

yield(x; _.c1); c2 =p cy; yield(x; _.cp).

In the proof, we include hints on what rule we used (for instance, “g for ; and op” means
we used the S-law dealing with sequencing and operations). We first prove the base case
forc; =ret ():

yield(x; _.ret ()); ¢

=p yield(x; _.(ret (); ¢2)) (B for ; and op)
=p yield(x; _.c2) (B for ; and ret)
=p ret (); yield(x; _.cz) (B for ; and ret , other direction)

Next, we take ¢; = yield(y; _.k ()) and prove the induction step using the hypothesis:
yield(x; _k ()); c2 =p k (); yield(x; _.c2).
We proceed as:

yield(x; _yield(y; _k ())); ¢

=pyield(y; _yield(x; _.k ())); c2 ((YIELDORDER) holds in D)
=p yield(y; _yield(x; _.k ()); c2) (B for ; and op)
=p yield(y; _.k (); yield(x; _.c2)) (induction hypothesis)
=pyield(y; _.k ()); yield(x; _.c2) (B for ; and op, other direction)

We now show that any two computations in D commute. For that we take ¢, (c;) to be
C1;¢2 =p 25 C1.

We again first show the base case for ¢; = ret () using the S-equivalence for sequencing
and return

ret (); c2=pcy=pcy; ret ()

We then show the induction step for ¢; = yield(y; _.k ()) with the hypothesis k (); c2 =p

SH Ok
yield(x; _k ()); ¢
=pyield(x; _.k (); ¢2) (B for ; and op)
=p yield(x; _.co; k() (induction hypothesis)
=p yield(x; _.c2); k() (B for ; and op, other direction)
=p co; yield(x; _k () (p1(k ()) from previous proof)

https://doi.org/10.1017/50956796819000212 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000212

16 7. Luks$i¢ and M. Pretnar

5 Denotation of types and terms

We have presented a type system in which well-formed types depend on well-typed terms
and vice versa. To avoid circularity when defining the denotational semantics of such types
and terms, we proceed in two stages. First, we define a denotation of types that is indepen-
dent of effect theories. This allows us to further define the denotation of well-typed terms,
which similarly does not take effect theories into an account. In Section 6, we then equip
each type with an equivalence relation that stems from the effect theory and show that the
term denotations are well defined with respect to it.

5.1 Semantics of types
To value types 4 (and computation types C), we assign sets [4] (and [C]) as follows:
[unit] = {x} [bool] = {ff, tt}
[4—Cl=[4]1—-[C] [€C=D]=[Cl—[D]
[A'Z/E7 = [Z11A41

where for X = {op : 4., — Bop}op, we define [X] to be the free functor mapping a set X to

the inductively defined set [X]X containing:

1. inget(a) for eacha in X
2. ingy(a; k) for each op : 4., — B,y € Z, each a € [4,,]] and each « € [B,,]| — [Z]X

Note that handlers are interpreted by ordinary functions and £ does not play a role in the
denotation of A!1X/E.

Next, an interpretation H of a signature X over a set Y is a family of functions H,, :
[Aopll X ([Bopll = Y) — Y for each op : 4oy — B,y € Z. We define the set interpy (Y) of
all interpretations by:

interpy (N =[] ol X ([Bopl > V) =¥
op:Aop—Bop€X

For any signature X and set X, we define a fiee interpretation Fy s € interps ([Z].X) by:
(FX,Z)op(a)(K) = inop(a; K)

Next, for any interpretation H : interps(Y), we can /ift a function f : X — Y to a function
lifty /: [X]X — Y, defined recursively by:

lifts £ (inget (x)) = £ (x),
lifte £ (ingp (x5 €)) = Hop (x5 lifty f 0 &).

5.2 Semantics of well-typed values and computations
Well-typed terms
'rv:4 and I're:C

https://doi.org/10.1017/50956796819000212 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000212

Local algebraic effect theories 17

are interpreted as maps
[Crv:AL:ITT - [4]1 and [Tre:Cl: 01— [C1,
where I is defined component-wise:
[ell={x}
[T,x:A] =[TTx[A4]

The definition proceeds by recursion on the derivation of the typing judgement. When no
confusion can arise, we abbreviate the denotations to [v] and [c].
Given an environment 1 € [I"']], the rules for base values are

[T+x;:Alln=n; [TF():unit]ln =%
[T+ false:bool]np =ff [T+ true:bool]n=tt

while for functions, we have
[TF(funx—c):A—=Cln=Aac[A] . [I,x:A+c:Cl(n,a)

In order to define the denotation of handlers, we must first treat operation clauses. A set
of well-typed clauses I' - 4 : £ = D is defined as a map:

[TrA:Z=D]:[I'] - interps(ID1)
where
[T+ {op(x; k) = coplop : 2= Dln =
{dae Aol . Ak € [Bop = D1 . [T, x: Aop, k : Bop = D+ cop : D1, a, K)}op:A,,,,—>BO,,ez

A denotation of a handler is just the lifting of its return clause to the interpretation given
by the operation clauses:

[T +handler (ret x> cp5 h) 1 AI1X/E = Dln = liftyuy, (Aa € [4] . [1(n, a))

In contrast to the original denotational semantics of handlers (Plotkin & Pretnar, 2013),
effect theories do not affect the denotation of types, so all handlers receive a denotation.
The denotation of computations is more or less structural:

[T+cp:Clp if [TFv:bool]n=tt,

[T+if v thency elsecy:Clnp=]
- [T+c:Clp if [T+v:boolln=ff
[CEviva:Cllp =T Fvi:4— Clp)ITFv2:A4ln)

Returned values and operations of type A!X/E are interpreted by appropriate constructors
of [Z1[A4]:

[Trretv:AZ/En =inge ([T +Fv:Aln)

[T+op(v; y.c):AZ/EDn =
ing, ([T'Fv:Adgplln; Ab e [Bopll . [T,y : Bop Fc: AIZ/EN (7, b)).

https://doi.org/10.1017/50956796819000212 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000212

18 7. Luks$i¢ and M. Pretnar

The denotation of sequencing is obtained by lifting the continuation of the second sequent
to the free interpretation and applying it to the first sequent:

[Trdox<«cyincy:B'Z/En =
liftry ;s (Aa € [A] . [T, x:Avrcy: BIZ/EN(, a)) ([T +cy - AIZ/EDn).
Finally, since handlers are ordinary functions, handling is just application:

[T Fwithvhandlec:Dln=([T+v:C=DIn)([T'+c:Cln)

5.3 Relation to operational semantics

Before we proceed, we first ensure that the presented denotational semantics is sound with
respect to the operational semantics.

Proposition 5.1. Ifrc:Candc~>c’, thenrc’':Cand [Fc:Cll=[Frc" : C].

Proof The fact that ¢’ has the same type follows from type preservation in Theorem 3.1,
while the proof of the second part proceeds by an easy induction on the derivation of
c~ (.]

As expected, our denotational semantics is also adequate with respect to the operational
semantics.

Lemma 5.2 (Adequacy). If [+ c:bool/Q/0] = inget ([F v :bool]) then c ~* ret v.

Proof As our language features no recursion, Theorem 3.1 implies that there is some
sequence of steps ¢ ~* ret v’. From Proposition 5.1, it follows that [c] = inge¢ ([v']),
thus [[v] = [v']. Because distinct boolean values receive distinct denotations, we have
v=v'soc~*retv. |

If our language featured recursion, we would instead follow the adequacy proof pre-
sented in Bauer & Pretnar (2014), as our operational and denotational semantics are a
simplification (we omit instances and subtyping) of the ones given there.

We define a computation context C as a computation with a number of holes () (possibly
under binders) into which one may plug a computation ¢ to obtain a computation C{c). A
context C is a ground computation context for I' and C if for all computations I' - c: C, we
have + C{c) : bool1!0/0.

Computations ' ¢: Cand I'+ ¢ : C are contextually equivalent, writtenasI'+-c = ¢’ : C
if for all ground computation contexts C for I' and C we have C(c) ~* ret true if and
only if C{c¢’) ~* ret true. We similarly define '+ v = v’ : 4 for values.

Corollary5.3. If[T+c:Cll=[T+c" :Cl, thenT rc=c":C. If[Trv:A] =T +v' : 4],
thenTrv=v A

https://doi.org/10.1017/50956796819000212 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000212

Local algebraic effect theories 19

Proof The proof is a folklore application of adequacy. Assume that C{c) ~»>* ret true.
By Proposition 5.1, [C{c)] = in,et (tt). However, denotational semantics is structural, thus
[C{c)] = [C{c’)], which by Lemma 5.2 implies C{c’) ~»* ret true. The proof for values
is identical. m]

6 Denotation of effect theories and logics

Having provided a sound denotational semantics that disregards effect theories, we proceed
by equipping it with relations that reflect the theories.

6.1 Semantics of templates

We first turn our attention to templates, which are the basic building blocks of equations.
As template variable contexts Z are polymorphic in the type of computations, we interpret
them as functors [Z]], defined by:

[elY ={x}
[Z,z:4— *]Y =[Z]Y x Y14

We overload the notation and write [I'] for the constant functor that maps any set Y to the
set [T'] as defined in Section 5.2,

An interpretation H : interps (Y) can interpret operations of £ as well as any template
using them. For a well-typed template I'; Z+ T': X, we recursively define [[;Z+ T : =17
(ITT x [Z])Y — Y (often abbreviated to [7]%) as:

T2z (v) : 217 (: 0) = GilvIm)

[T ;) 5 if [vln=tt

[T217 ;) 5 if [vln=ff

[T ZFop(v; y.T) : 217 (1 {) = Hop(IvIn, Ab € [Boy 1 . [T17 (., b; 0))

[T;Z+if v then T} else TZ:Z]]H(n;g“):{

Lemma 6.1. Take any sets X, Y, any interpretation H : interps(Y), any function f : X —
Y, and define ¢ = liftyf : [Z1X — Y. Then, the following diagram commutes

(I x zDA=1x S Yy <z y
l[[T]]F” lurn”
[=1x ¢ Sy

In fact, all functions ¢ : [2]X — Y for which the diagram commutes are lifts of some
functionf : X — Y.

From Lemma 6.1, it follows that the free interpretation Fyy of a template I'; Z+ T : X
yields a natural transformation « : ([T'] X [Z])) o [Z] = [Z], given by:

ay=[I;2r T:2]Fxe

https://doi.org/10.1017/50956796819000212 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000212

20 7. Luks$i¢ and M. Pretnar

6.2 Semantics of theories

With denotation of templates in place, we can focus on effect theories. We remedy the
absence of theories in the denotations [4] and [C] by defining a family of relations ~4 on
[4] and ~c on [C]. We also extend relations to contexts, and for I'=x; : 41, ..., x, 1 4,,
we define the relation ~r on [I'] by:

(ai,...,ap) ~r(ajy,...,a,) & aj~4g ayA...Nay,~y4,a,
For value types, the relations are defined by:

e The relations on [[bool] and [unit] are identities.
e For a function type A —» C and f, f’ : [4 — C]|, we define

[~ascf &= (Va,d’ €[Al.a~4a = f(a) ~c f'(a"))
e Fora handler type C= D and &, /" : [C = D], we define
h~coph' & (V1 € [Cl.t~ct' = h(t) ~ph' (1))
For the computation type C = A!X/&, we define the relation ~¢ on the set [4!Z/£] to be

the smallest transitive and symmetric relation closed under the following rules:

o Ifa~,d,then ing.(a) ~als/e inget(a’).
e For any operation op : A,y = Bop € L, if a~y4,, a’ and f ~p, ¢ f” then also:

inop(a;f) ~C inop(a/;f/)'

e For all equations I'; Z+ 71 ~ T> in &, where I' = (x; : 4;); and Z = (z; : B; — *);, we
say that if all a; ~4, a] and all f; ~3j_>gfj’ then:

[T5Z+ Ty S1U02 (@), (f)) ~c [T3 2+ Ta : S17002 (@), (f)))

The last rule ensures that all equations in the effect theory £ are reflected in the relation ~¢,
while all other definitions just propagate them structurally.

Lemma 6.2. Let C=A/X/E and D=BIZ/E. If g ~4_.p g’, then for every t ~c t' it holds
that:

(IiftF[A]]‘):g)(t) NQ (IiftF[A]],):g,)(t,)

Proof We shorten liftr,, . to lift and [T;Z+ T:X]Fz to [T] for clarity. Since ~c
is defined to be the smallest relation closed under the given rules, we can proceed by
induction on # ~¢ t':

1. First, consider inyet (@) ~¢ inget(a”) Where a ~4 a’. By definition of lift, we obtain
(Iiftg) (inrer (@) = g(@) and (liftg")(inyes(a’)) = g'(a’). Because g~4opg’s we
know that the functions map related arguments to related images.

2. Next, take ingy(a;f) ~cingy(a’;f’) for op: Aoy — Byy € X where a~y,, a’ and
S ~B,,~cf’. We know that (liftg)(iny,(a; /) = inyy(a, liftg o f) (and similarly for
g’). By induction, liftg o f is related to liftg” o /7, and so we obtain the desired result
that in,, (a, liftg o f) ~p ingp(a’, liftg’ o f”).

https://doi.org/10.1017/50956796819000212 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000212

Local algebraic effect theories 21

3. Finally, we have the interesting case where ¢ ~c ¢’ comes from an instantiation of
an equation I'; Z+ T1 ~ T € €, where we denote I' = (x; : 4;); and Z = (z; : B; — *);.
That means that there exist a; ~4, a; and f; ~p,c];.’ for which

t= 1M1, () ~ 1" =L@, ().

From Lemma 6.1, we have (liftg) ([T11((a)i, (f))) = [T11((a:);, (liftg o f;);) and
similarly for 7>. By induction hypotheses, we get liftg o f; ~ liftg’ o jj»/ as before,
thus:

[T 1((ai, (liftg o f);) ~ [T2 ((af), liftg” o £7))).

concluding the proof.
m]

We can easily adapt Lemma 5.2 to consider equivalent computations, with ~__ 114,
being the identity relation.

Lemma 6.3 (Adequacy). If [+ c:bool/0/0] ~ inget ([+ v :bool]]), then c ~* ret v.

Generalising Corollary 5.3 is trickier, however. Recall that the typing relation depends
on the information about which handlers respect which effect theories. If we state that all
handlers respect all theories, we can quickly produce a counterexample of a handler that
maps equivalent computations into non-equivalent ones. In order for our relations to make
sense, the reasoning logic £ needs to respect effect theories.

6.3 Soundness of a logic
Definition 6.4. A4 logic L is sound if (I' - h : £ = D respects &) implies that for any:
(xi:A)i; (zj:Bj—)i+ T ~Th €€,
any n ~rn’, any a; ~4, a, and any f; ~B/._>ij’, we have

IT; ZF Ty S0V ((@)is () ~p IT5 ZF T - SIVV ((a))is ()

Not every logic is sound. For example, take any logic that contains
F RpickLesi - {choose} = (int!0/0) respects {(COMM)}

where Ayicirer are the operation clauses of pickLefi handler, and take fi = f{ = A % .inget (1)
while f, = f2’ = A % .iNge (2). We end up with inge (1) and inge¢ (2) which are not equiva-
lent under ~int10/0-
Proposition 6.5. If a logic L is sound, then for any n ~r n’, we have

o I'tv:Adimplies[T+v:Aln~4[T+v:Aln’

o I'tc:Cimplies [T'+c:Clp~clI'+c:Cln'.

Proof The majority of the proof proceeds with structural induction on the typing
derivation, with the only non-trivial cases being sequencing and handlers.

https://doi.org/10.1017/50956796819000212 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000212

22 7. Luks$i¢ and M. Pretnar

Recall the denotation of sequencing:
[T +dox «ci in ¢y : Dy = liftr,,, (Aa € [A] . [e21(n, @) ([e11n).
By induction, we know that [c1 |7 ~c [c1]ln” and [e211(57, @) ~p [e211(57’, a’) for any a ~4
a’, which further implies that (da € [4] . [c21(7, @) ~4=p (Aa € [A] . [c2lI(n’, a)). We

conclude by applying Lemma 6.2, which states that lifts of related functions are related.
The other interesting case in the proof are the handlers. Recall the definition for handlers:

[T +handler (ret x - c,; h) : AIX/E = Dln = liftpyep (Aa € [A1 . [1(n, @)

where we define the meaning of handler cases [I'+/%: X = DJ(n) € interps ([D]) as the
family of functions:

{Aa € [4gp]l . Ak € [Bop = DI - [eap 1,0, 00} 0y 5 s

We abbreviate the denotation of the handler as /(n) := liftpayep (Aa € [AT . [e (7, @)).
We must prove that A(r) satisfies the requirements for the relation on handler types, that
is, for any f ~¢ ¢’ it must hold that il(?])(l‘) ~Qiz(r]’)(t’).

Because ~¢ is the smallest relation closed under the given rules, we proceed by induc-
tion on t ~¢c ¢'. The cases where the relation is structural are largely the same as in proof of
Lemma 6.2. The interesting case is the case of equivalence due to equations.

Suppose that the relation ¢ ~¢ ¢’ arises from the equation I'; Z+ T ~ T, € £, where we
denote I' = (x; : 4;); and Z = (z; : B; — *);. That means that there exist a; ~4, a; and f; ~5,¢
j;' for which

t=MTi0 @i, () ~t = 1T20a)s, (f))-
By Lemma 6.1, we have the equality:
R (LT Dc (@i () = LT 1YV (@@ () o 7))

and similarly for 75.
By induction hypotheses we get (77) o Ji~B—D h(n’) o jj.’, so by the assumption on logic
soundness, we have by Definition 6.4:

IT; z e Ty X0V ((@p)is (h() o)) ~p [T ZF To - VW7 ((af)is (') o f))

which concludes our proof. O

Theorem 6.6. Assume a logic L is sound. Then, we have

’

o if[T+c:Clnp~clI'+c":Cln’ holds for anyn ~rn’, thenl'rc=c": C;
e if[Trv:Aln~4 [T +v' :Alln’ holds for any n ~rn’, then T Fv = v’ 1 A.

Proof The proof is an adaptation of Corollary 5.3. First, assume that C(c) ~" ret true.
By Proposition 6.5, we have [C{c)] ~ [C{c)], and by Proposition 5.1, we have [C(c)] =
inget (tt). Using a inductive proof similar to one for Proposition 6.5, we can show that the
denotational semantics is structural with respect to equivalence and so [C{c)] ~ [C{c")].
We conclude by applying Lemma 6.3. The proof for values is identical. O

https://doi.org/10.1017/50956796819000212 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000212

Local algebraic effect theories 23

6.4 Examples of sound logics

The logics Ly, Liree, and Ly presented in Section 4 are indeed sound. Next, consider the
equational logic, given in 4.2. In addition to soundness, we see that all terms shown to be
equivalent under the logic are also equivalent with respect to the semantics.

Theorem 6.7. The equational logic L., is sound and we have

o [fTrv=yvithen [THv:Aln~4 [TV :Aln’.
o lfTrc=cc’ then[T+c:Clp~c[I'rc":Cln’

Proof The proof proceeds by induction on the derivation of typing and equality judge-
ments. Note that we cannot simply apply Proposition 6.5 because of the mutual dependence
between typing judgements and equality judgements; however, we can follow the structure
of its proof. Most cases are immediate apart from inheritance from the effect theory, which
amounts exactly to the definition of ~ 43¢, and handler validation, which follows from the
assumption that L, is sound. O

Composing Theorems 6.6 and 6.7, we then get
Corollary 6.8. IfT'-vi=4vo, then vy =vy:A. IfT+ci=ccy, thenT'kep=c): C.

In order to show that Lpeq is sound, we need to define the denotation of formulae. We
interpret each formula ¢ in a context I as a relation on [I']], defined by:

nlvi =4 v2ln” & [Trvi Al ~c [T Fvy: Ay’
nlecir=celln’ = [Tre:Clp~clT+e:Cly’
nlTly" < n~rn’
nlily’ < 1
nller Apalln” = lleiln’) A (nllg21n")
nllerVeln’ = mleiln") v nlie2ln’)
nle=yln" = leln)= Olyin’)
nlVx: 4. ¢lln’ & Va~4d’. (n,a)lell(n’,a")
nl3x:A4. ¢lln’ & Ja~4d’. (7, 0) el (', a")

Like in proof of Theorem 6.7, we proceed by an induction on the judgement derivation
and show soundness of Lpeq. Most cases are identical to L¢q or follow from the defining
properties of logical connectives and quantifiers. Soundness of induction follows straight
from the inductive structure of computation types (Plotkin & Pretnar, 2008; Pretnar, 2010;
Bauer & Pretnar, 2014).

Theorem 6.9. The equational logic Lpyeq is sound and if U | Y1, . .., + @ holds, then for
any n and i’ such that nl[y A - - - Ay lln’, we have nlleln’.

https://doi.org/10.1017/50956796819000212 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000212

24 7. Luks$i¢ and M. Pretnar

7 Conclusion

7.1 Related work

Equational reasoning about monadic effects. Simple equational reasoning is one of
the better properties that pure functional programs enjoy. As suggested in the seminal
paper on monads (Moggi, 1991), this approach can be extended to functional programs
that use monadic effects. Further examples of such reasoning can be found in Gibbons &
Hinze (2011). In addition to equations over pure programs, reasoning about effectful pro-
grams employs equations describing propagation of operation calls, monadic axioms, and
equations describing primitive effectful operations. All three kinds of equations are fully
supported in our approach (the first is an axiom, the second is derivable with induction,
and the third corresponds to inheritance from effect theories), allowing us to use the same
techniques with the additional flexibility of locally varying the effect theory.

Algebraic effects and dependent types. Another approach to reason about effectful pro-
grams through richer type annotations is to employ dependent types (Brady, 2013; Ahman,
2017, 2018). In fact, Ahman (2018) is the only research work on handlers besides the orig-
inal one that considers non-trivial effect theories. Its aim is similar to ours, though the
implementation differs. The biggest difference is in the representation of handlers: depen-
dent typing allows the operation clauses to be encoded in types, so any algebra for the
theory has a matching type, whereas in our approach, only the free ones do.

Program optimisations. Effect theories allow us to rewrite programs into equivalent but
more efficient ones. For example, idempotence of a non-deterministic choice operation
allows us to skip repeated computations, while commutativity allows us to change the
order of evaluation, enabling further optimisations. A survey of such transformations can
be found in Kammar & Plotkin (2012). Even though the development was done in the
context of a global effect theory, its results are easily adapted to our work. Though we
understand that our work is far from reaching practical type-driven optimisations, we hope
that it might prove to be useful in further development.

7.2 Future work

Language extensions. For the sake of a clearer presentation, we have limited our working
calculus to the smallest possible fragment that already exhibits the novel features of the
type system. Extending the language with additional value types such as sums or products
is simple, one just needs to take care to extend the template syntax with additional value
destructors. Similarly, one can extend the language with recursive functions, though in
this case one must switch the denotational semantics from the category of sets to one of
domains and adapt the logics to divergence (Bauer & Pretnar, 2014).

Subtyping. A sensible extension is the addition of structural subtyping as in Bauer &
Pretnar (2014), Saleh et al. (2018). We only need to modify the rules for computation
types since the addition of equations only affects computations. The simplest version is
to allow A!X/E < A’1X'/E" whenever A < A’, every operation in X appears in X’ with a

https://doi.org/10.1017/50956796819000212 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000212

Local algebraic effect theories 25

greater type, and when the theory £’ entails all the equations in £ (we may always consider
more computations to be equivalent). The exact logic that allows such reasoning can be
considered in future work. A simpler variant is to check that every equation in £ appears
in £’ as well, though this approach is limited due to non-canonicity of the set of equations.

Formalisation. Similar to our previous work (Bauer & Pretnar, 2014; Kammar & Pretnar,
2017; Forster et al., 2017; Saleh et al., 2018), we wish to mechanise our formalisation
in a proof assistant. From the past experience, we expect the proof of Theorem 3.1 to
proceed smoothly, but expect bigger problems with proofs that depend on denotational
semantics (e.g. Corollary 6.8). For that reason, we plan to look at purely syntactical treat-
ments of contextual equivalence (McLaughlin et al., 2018) that are more amenable to
mechanisation.

Practical implementation. We plan on implementing the proposed system in the Eff pro-
gramming language (Bauer & Pretnar, 2015). The user would annotate computation types
with the desired equations, and the system would ensure they are respected. There are mul-
tiple interesting implementations to consider, such as dispatching the proofs to an SMT
solver (de Moura & Bjerner, 2008), generating proof assistant templates that a user must
complete with proofs, or using a QuickCheck (Claessen & Hughes, 2000) like tool, used to
detect errors by running the given handler on random examples generated from equations
and comparing the results on both sides.

Polymorphism. Another aspect to consider in the practical implementation is the interac-
tion with the currently implemented polymorphic core language (Saleh ef al., 2018) where
one may consider functions that are polymorphic both in the type and signature of an
operation, for example,

map Ve, B,0.(a = Blo) = (@ list — B list!o)!0

Since we want such functions to preserve the equivalences between computations, it would
be natural to consider polymorphism in all the components of a computation type, which
would allow us to assign a type such as:

map Na, B,0,e(a — Blo/e) = (a list — B listlo/e)!0

Additional examples. All of the examples currently presented are kept minimal for
clarity. By implementing the system, we plan on producing larger and more complex exam-
ples, showcasing the usefulness of our proposed system. Extending the system with some
form of subtyping will also make examples more composable.

Acknowledgments

We would like to thank Danel Ahman, Bob Atkey, Andrej Bauer, Jeremy Gibbons,
Ohad Kammar, Oleg Kiselyov, Gordon Plotkin, Alex Simpson, Tom Schrijvers, Nicolas
Wu, all other participants of Dagstuhl seminars 16112 Bauer et al. (2016) and
18172 Chandrasekaran et al. (2018), and the anonymous referees for all their helpful
insights and suggestions.

https://doi.org/10.1017/50956796819000212 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000212

26 7. Luks$i¢ and M. Pretnar

Conflicts of Interest

None.

References

Ahman, D. (2017) Fibred Computational Effects. Ph.D. thesis, School of Informatics, University of
Edinburgh.

Ahman, D. (2018) Handling fibred algebraic effects. PACMPL 2(POPL), 7:1-7:29.

Bauer, A. & Pretnar, M. (2014) An effect system for algebraic effects and handlers. Log. Methods
Comput. Sci. 10(4), 1-29.

Bauer, A. & Pretnar, M. (2015) Programming with algebraic effects and handlers. J. Log. Algebr.
Meth. Program. 84(1), 108—123.

Bauer, A., Hofmann, M., Pretnar, M. & Yallop, J. (2016) From theory to practice of algebraic effects
and handlers. Dagstuhl Rep. 6(3), 44-58.

Biernacki, D., Pirég, M., Polesiuk, P. & Sieczkowski, F. (2018) Handle with care: Relational
interpretation of algebraic effects and handlers. PACMPL 2(POPL), 8:1-8:30.

Brady, E. (2013) Programming and reasoning with algebraic effects and dependent types. In
Morrisett, G. & Uustalu, T. (eds), ACM SIGPLAN International Conference on Functional
Programming, ICFP’13, Boston, MA, USA, September 25-27, 2013. ACM, pp. 133-144.

Chandrasekaran, S. K., Leijen, D., Pretnar, M. & Schrijvers, T. (2018) Algebraic effect handlers go
mainstream. Dagstuhl Rep. 8(4), 104—125.

Claessen, K. & Hughes, J. (2000) Quickcheck: A lightweight tool for random testing of haskell pro-
grams. In Odersky, M. & Wadler, P. (eds), Proceedings of the Fifth ACM SIGPLAN International
Conference on Functional Programming (ICFP’00), Montreal, Canada, September 18-21, 2000.
ACM, pp. 268-279.

de Moura, L. M. & Bjerner, N. (2008) Z3: An efficient SMT solver. In TACAS. Lecture Notes in
Computer Science, vol. 4963. Springer, pp. 337-340.

Forster, Y., Kammar, O., Lindley, S. & Pretnar, M. (2017) On the expressive power of user-defined
effects: Effect handlers, monadic reflection, delimited control. PACMPL 1(ICFP), 13:1-13:29.
Gibbons, J. & Hinze, R. (2011) Just do it: Simple monadic equational reasoning. In Chakravarty, M.
M. T., Hu, Z. & Danvy, O. (eds), Proceeding of the 16th ACM SIGPLAN International Conference
on Functional Programming, ICFP 2011, Tokyo, Japan, September 19-21, 2011. ACM, pp. 2-14.

Hillerstrom, D. & Lindley, S. (2016) Liberating effects with rows and handlers. In Chapman, J. &
Swierstra, W. (eds), Proceedings of the 1st International Workshop on Type-Driven Development,
TyDe@ICFP 2016, Nara, Japan, September 18, 2016. ACM, pp. 15-27.

Kammar, O. & Plotkin, G. D. (2012). Algebraic foundations for effect-dependent optimisations. In
Field, J. & Hicks, M. (eds), Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2012, Philadelphia, Pennsylvania, USA, January
22-28,2012. ACM, pp. 349-360.

Kammar, O. & Pretnar, M. (2017) No value restriction is needed for algebraic effects and handlers.
J. Funct. Program. 27, €7.

Kammar, O., Lindley, S. & Oury, N. (2013) Handlers in action. In Morrisett, G. & Uustalu, T. (eds),
ACM SIGPLAN International Conference on Functional Programming, ICFP’13, Boston, MA,
USA, September 25-27, 2013. ACM, pp. 145-158.

Leijen, D. (2017) Type directed compilation of row-typed algebraic effects. In Castagna, G. &
Gordon, A. D. (eds), Proceedings of the 44th ACM SIGPLAN Symposium on Principles of
Programming Languages, POPL 2017, Paris, France, January 18-20, 2017. ACM, pp. 486—499.

Levy, P. B., Power, J. & Thielecke, H. (2003) Modelling environments in call-by-value programming
languages. Inf. Comput. 185(2), 182-210.

McLaughlin, C., McKinna, J. & Stark, I. (2018) Triangulating context lemmas. In Andronick, J. &
Felty, A. P. (eds), Proceedings of the 7th ACM SIGPLAN International Conference on Certified
Programs and Proofs, CPP 2018, Los Angeles, CA, USA, January 8-9, 2018. ACM, pp. 102—114.

https://doi.org/10.1017/50956796819000212 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000212

Local algebraic effect theories 27

Moggi, E. (1991) Notions of computation and monads. /nf. Comput. 93(1), 55-92.

Plotkin, G. D. & Power, J. (2001) Adequacy for algebraic effects. In Honsell, F. & Miculan, M. (eds),
Foundations of Software Science and Computation Structures, 4th International Conference,
FOSSACS 2001 Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2001 Genova, Italy, April 2—6, 2001, Proceedings. Lecture Notes in Computer
Science, vol. 2030. Springer, pp. 1-24.

Plotkin, G. D. & Power, J. (2003) Algebraic operations and generic effects. Appl. Categorical Struct.
11(1), 69-94.

Plotkin, G. D. & Pretnar, M. (2008) A logic for algebraic effects. In Proceedings of the Twenty-
Third Annual IEEE Symposium on Logic in Computer Science, LICS 2008, 24-27 June 2008,
Pittsburgh, PA, USA. IEEE Computer Society, pp. 118—129.

Plotkin, G. D. & Pretnar, M. (2009) Handlers of algebraic effects. In Castagna, G. (ed), Programming
Languages and Systems, 18th European Symposium on Programming, ESOP 2009, Held as Part
of the Joint European Conferences on Theory and Practice of Software, ETAPS 2009, York,
UK, March 22-29, 2009. Proceedings. Lecture Notes in Computer Science, vol. 5502. Springer,
pp- 80-94.

Plotkin, G. D. & Pretnar, M. (2013) Handling algebraic effects. Log. Methods Comput. Sci. 9(4),
1-36.

Pretnar, M. (2010) Logic and Handling of Algebraic Effects. Ph.D. thesis, University of Edinburgh,
UK.

Pretnar, M. (2015) An introduction to algebraic effects and handlers. Invited tutorial paper. Electr.
Notes Theor. Comput. Sci. 319, 19-35.

Saleh, A. H., Karachalias, G., Pretnar, M. & Schrijvers, T. (2018) Explicit effect subtyping.
In Ahmed, A. (ed), Programming Languages and Systems - 27th European Symposium on
Programming, ESOP 2018, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings. Lecture Notes
in Computer Science, vol. 10801. Springer, pp. 327-354.

https://doi.org/10.1017/50956796819000212 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000212

	Local algebraic effect theories
	Introduction
	Overview
	Algebraic effect handlers
	Effect theories

	Language
	Term syntax
	Operational semantics
	Type syntax
	Type checking

	Logics
	Free logic Lfree
	Equational logic Leq
	Predicate logic with induction Lpred

	Denotation of types and terms
	Semantics of types
	Semantics of well-typed values and computations
	Relation to operational semantics

	Denotation of effect theories and logics
	Semantics of templates
	Semantics of theories
	Soundness of a logic
	Examples of sound logics

	Conclusion
	Related work
	Future work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

