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1. Introduction

In the last years a lot of work has been concentrated on the study of the behaviour
at infinity of polynomial maps (see for example [27], [28], [3], [4], [29], [13], [15]—
[17], [30], [22], [31], [9], among others). This behaviour can be very complicated,
therefore one of the main ideas was to find special classes of polynomial maps
which have, in some sense, nice properties at infinity. In this paper, we completely
determine the complex algebraic monodromy at infinity for a special class of
polynomial maps (which is complicated enough to show the nature of the general
problem).

Next, we give the precise definitions: LétC"*t! — C be a map given by
a polynomial with complex coefficients (which will be also denotedfhyThen
there exists a finite sét C C such that the map

f|Cn+l_f71(F): CTL+1 - fﬁl(l_‘) — C — F
is a locally trivialC*°-fibration ([18]). We denote by ; the smallest subset of the

complex plane with this property.; contains the sef  of critical values off, but
in general it is bigger. FiXo € C such thatto| > max{|t| .t € I'y}. The complex
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2 R. GARCA L OPEZ AND A. NEMETHI

algebraic monodromy associated with the path ¢y €™, s € [0, 1], is denoted
by
(TF°)*: H*(f*(to),C) — H*(f*(to),C).

This isomorphism is called the monodromy at infinity fofAs we will see later,
(T7°)" is a very delicate invariant of.

On studying topological properties of polynomial maps, one usually imposes
some condition which insures the absence of vanishing cycles ‘at infinity’ for a
suitable compactification of the map(tameness, Malgrange condition,., cf.

e.g. [3] and [30]). From this point of view, a class of polynomial maps which looks
natural to study is the following.

DEFINITION. Apolynomialf € C[X1, ..., X,+1] willbe called &x)-polynomial
if it verifies the following condition

Fort € C — X, the closure irP"* of the affine
*
hypersurfacg f = ¢} is non-singular.

The goal of this article is the computation ]?O)* for (x)-polynomials.
We will assume that > 2. The case = 1 Is completely clarified in [9].

If d =ded f)andf = f4+ fqa_1+ --- is the decomposition of into homo-
geneous components, conditipr) is equivalent to

{z e C"*1 | gradfy(z) = 0, f4_1(z) = 0} = {0},

where grad denotes the gradient vector. The local analogug-pblynomials are
the superisolated singularities, introduced by Luengo in [14]. The local algebraic
monodromy of superisolated surface singularities was determined by E. Artal in
[1].

In the first part [9] of this sequence of papers, the following results are given
(besides others):

(@) A (x)-polynomial f satisfies'; = X, and any fiber off has the homotopy
type of a bouquet of.-dimensional spheres (cf. [7]). In particular, the only
interesting monodromy transformation(is°)", which in the sequel will be
denoted simply by'z°.

(b) The hypersurfac& > C P™ given by f; = 0 has only isolated singulari-
ties, and the monodromy at infinity (actually, the whole topology at infinity)
depends only on the hypersurfa&é®. Thus the study of the monodromy at
infinity of (x)-polynomials is very strongly linked with the study of projec-
tive hypersurfaces with isolated singularities. This link gives results in both
directions (see below the Main Theorem, Corollary 3 and the comments after

it).
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(c) The characteristic polynomial df¢° is computable in terms of the charac-
teristic polynomials of the local monodromies of the isolated singularities of
X (cf. Corollary 2).

(d) On the other hand, the nilpotent partXf° cannot be determined only from
local data attached to the isolated singularitiesXé?, it depends essentially
on thepositionof these singular points.

Part of theglobal informationabout the position of the singular points &f°
is already encoded in its Betti numbers. More subtle invariants are hidden in the
complemenP” — X of X°, orinthe cyclic coverings d® branched along °.

For algebraic surfaces, O. Zariski related this kind of invariants with the defect (or
superabundance) of some linear systems, respectively with some Betti numbers of
cyclic coverings. In the sequel we give the numerical invarianfs Sfwhich will

provide our description df’°.

For X a quasi-projective variety, denote by(X) (respectivelyp,(X)) the
dimension of H4(X, C) (respectively, the dimension of thgh primitive coho-
mology of X). The number, (X*>°) = b,_1(P" — X*°) andp,_1(X*>) =
b, (P" — X*°) are in general global invariants &f>° (Here, ifn = 2, we define
p2(X®) = ba(X>°) — 1). We define a map: 71 (P" — X*°) — Z/dZ as follows.

If n > 2 thenh is just the Hurewicz map (in fact, isomorphism)

71 (P? — X®) — Hy(P" — X*,Z) = Z/dZ.

If n = 2, letr denote the number of irreducible componentsX6P, of degrees
di,...,d,. Thenh is defined as the composition

ZT'
m(P? — X®) o Hy(P" — X®,Z) = —— %, 7/dz,
(d1, -, dy)

where« is defined bya[(as,...,a,)] = Za;. The composition of: with the
characterg,: Z/dZ — C* defined byp,(1) = €¥™s/? (for 1 < s < d — 1) provide
one-dimensional flat bundl&s overP™ ! — X°° with monodromy representation
ps o h.

Letj:P" — X — P" denote the inclusion map. It is not difficult to see that
the directimage sheafV, (= R%;,V,) coincides with the extension by zeji/ ,,
s=1,...,d — 1. We define the ‘equivariant defect’ by

3 pn(Xoo) = bnfl(Pn - Xoo) if s = 0,

" bnga(P, V) ifs=1...,d—1
Here,b,+1(P", j« V) is the dimension of the sheaf cohomolaly 1 (P, 5, V,).
This vector space is the’®*/?-eigenspace oH"*1(X}), where X}, is the dth

cyclic covering ofP" branched alongd*> and the action is induced by the natural
Galois action (cf. (2.12), see also Section 2, VIII).
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SetSingX ) = {p1, ..., pr},andletF;, u;, T; be respectively the local Milnor
fiber, the Milnor number and the local algebraic monodralty1(F;,C) —
H" 1(F;,C) of the isolated hypersurface singularity(>°, p;). We will call an
invariantlocal if it can be expressed in terms of the local opera{@ig®_, and the
numbers: andd. We define the following local numerical invariants

X0 = =D pit = (dd U + (=1t

= (=D"(x(P" = X*) —-1)
Xs = xo+ (=1)" for s=1,...,d -1

Now we are ready to formulate our main resulT’lis an operator, |€f,, denote
its restriction to its generalized-eigenspace and let’E, be the number of Jordan
blocks ofT,, of sizel. Set#,, = X;>1# 1. With this notations one has.
MAIN THEOREM
() fa=e*s/d s=0, ...  d-—1,then:

(a) #.L(T})o)a =xs+ Zﬁs - Ei'c:]_#(ﬂ)a-

(b) #o(T7)a = =B, + BE_y#1(Th)a

(©) #11(TP)a = B y#(Ti)a forl > 2.

() If o £ 1, then(T)o = &F_ 10t - (Ti) g1-a, i.€.#(TF%) 0 = SE_1#(T)) gr-a
foralll > 1

COROLLARY 1.

(@) #(T7°)a =0 for 1> n+ 2.

(b) #,41(T7%)a =0 if al#1lora =1

COROLLARY 2 [9, (3.3)]. The characteristic polynomial dFJ?O is given by the
following local formula.

de(A - Id — T§°) =

det\4-1.1d - T;)
(Ad — 1)mi

= (A= 1D (Ad = (@)D /d H

Another byproduct of the main theorem is the following.
COROLLARY 3. If = €¥™s/4 s = 0,...,d — 1, then

23]?:l:/;"-(il—'i)()é -

)
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If Ele#(Ti)a < Xxs, then the lower bound given by Corollary 3 is useless,
but in some cases it gives even the right valugiofFor example, ifn = 2 and
l1,...,lq € C[X,Y, Z] are linear forms defining an arrangement of lineB3such
that no more than two of them meet at a point, tfige= d — 1, and this is exactly
the bound given by Corollary 3 above. From the discussion in [6, p. 161] follows
that if (X, p;) are all nondegenerate singularities (i¥%%, ;#(T;); = 0), then the
defectfy = 0. Also, in Zariski's book [26] we can find similar criteria far= 2.

Notice that our bound gives a sharper criteriort2if ,#,(7;)1 = 0 thengo = 0 (cf.

also Remark 2.30 below). Indeed, it is not difficult to construct examples of isolated
hypersurface singularities whose monodromy admits 1 as eigenvalue but it has no
Jordan block of size one corresponding to eigenvalue 1. For example, the complex
algebraic monodromy of the singularity given by’ + y?)(z¢ + y?) + 2P = 0,

where 2< p < ¢ and gcdp, ¢q) = 1, hasp — 1 Jordan blocks of size two for
eigenvalue 1 but no blocks of size one for 1. Then the procedure described in
[2, (1.1)] gives projective hypersurfaces to which the criterion above applies. For
another corollary of the Main Theorem, see (2.16).

2. Proof of the main theorem

I. The main construction and two exact sequences

Let f:C"*1 — C be a polynomial map which satisfies the conditien By [9,
(2.6)], we can assume thgtis of the formf,; + zg;ll, wheref, is homogeneous
of degreel (and no singularity ofX *° is on the hyperplane, ., = 0). Set (cf. [9,
Sect. 5])

X ={([z],t) € Pl x D t(falzay ...y xne1) + xomgll) = xg},

whereD denotes a disk of sufficiently small radius in the complex plane with center
atthe origin. Thenthe map X — D given byr([z],¢) = tinduces alocally trivial
C°°-fibration overD — {0} with projective fibers, these are exactly the projective
closures of the fibers gf. Moreover, if we denote by the algebraic monodromy
H"(f1(to)) — H"(f 1(to)) of the projective closurg —1(tp) associated with
the paths — to €™ (s € [0, 1], |to| sufficiently large), then the monodromy of

7 overdD (with its natural orientation) is exactly—1. Theorem (4.6) in [9] says
basically that the knowledge @f is equivalent to that oT]?O.

(2.1) THEOREM [9, (4.6)].

(a) Foranyx # 1, (T]?O)a =T,.
(b) Fora = 1 one has

(I) #1(T]Cc>o)1 = bn(Xoo) +pn71(Xoo) — #11.
(ii) #2(TF°)1 = #1T1 — by (X ™).
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(III) #l+1(T}>O)1 =#T, forl > 2.

The big disadvantage of the mayis that its central fibex—1(0) is non-reduced.
For this reason we consider the following construction (semi-stable normalization,
cf. e.g. [24, (2.1)]): LetD’ again be a disc of small radius and consiétdp’ — D
given byd(t) = t¢. Then the normalizatiof” of X x5 D' can be identified with

X' ={([z],t) € P x D' | fa(z1,...,%ns1) + tzozl ] = 2§}

Now 7": X" — D' (w([z],t) = t) induces a locally trivialC*>-fibration over
— {0} with algebraic monodromy —%: H" ((7')~%(to)) — H"((")(to)).
Notice that now botkx” and the central fibeky = (') ~1(0) have only isolated

singularities: SingY’) = Sing X*°) x {0}. In fact, the central fiber is théfold

cyclic covering ofP* branched along{*°, in particular if we set SingX() =

{ph,...,p;}, then the isolated singularitigsXy, p;) are thedth suspensions of

the singularitieg X*°, p;)¥_; and the mapr’ provides smoothings of them. Let

F (respectively??) be the Milnor fiber of( X, p) (respectively, the monodromy

H"(F]) — H"(F}) corresponding to the smoothing giventy, 1 < ¢ < k. Then

the exact sequence of vanishing cycles is

k
0— H"(Xp) — H"(X]) — @ H"(F]) » P""(Xp) — 0, (2.2)

)
=1

where X| = (7')~Y(t) (for some fixedt # 0) and P"+1(X}) is the primitive
cohomology KeH"+1(XE) — H"1(X])] (for details see [9, (10), (5.3)]).

Our second exact sequence is given by the generalized invariant cycle theorem
proved in the Appendix of [9]

0 — H"(X{) — Ker((T%)y —1d) — @H?;}l -0, (2.3)

(we recall thatH?pT}l(X’) denotes cohomology with supports ip.}, i.e

ng}l(x ) = H"Y(&', X' —{p})). Both sequences are exact sequences of mixed

Hodge structures and there is a natural monodromy action on them, which at the
level of H(X}) is T~%. The main point of the paper is the construction of an action
on these exact sequences which at the levall®{X}) is T-1. More precisely:
we would like to understand the monodromyngfout this map has a non-reduced
central fiber, which makes the study difficult. Then we go to the normalization of
thed-fold coveringr, which is#/, and we lift the monodromy af to the level of
7.

First, notice thatr’: X’ — D’ has a natural Galois action of the cyclic group

Z/dZ overm: X — D, thatis, we have a commutative diagram

https://doi.org/10.1023/A:1000544925377 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000544925377

ON THE MONODROMY AT INFINITY OF A POLYNOMIAL MAP, II 7
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Dl

X

Dl
where if we set = €¥"/¢_the horizontal ma@’ — D' is given byt — t£~1 and
GisgivenbyG([zo: - - zni1],t) = (zo:---: $n+1]at§_l)'

Now we lift the geometric monodromy of (over D — {0}) to the level of
m': X' — D'. Fix a pointto € D' — {0}, consider the circl&?, = {z € D":|z| =
to}, and taket’ = (n')~1(S%). The fibrationg’ — S7 is still denoted byr’, its
monodromy transformation i5—?. Take a local trivialization over the positive arc
[to, to€] i.e., a diffeomorphisnk such that the following diagram commutes

h
[0,1/d] x Xi (") ~*(ardto, to€])

(s,@)>to €70

7! (25)
St

Then the geometric monodromy afcan be identified at the level af with
the composition

Xéo h(1/d,-) XéoggXéo- 2.6)

This lifting construction can be extended ovefras follows: SinceX}y = (') ~1(0)
has only isolated singularities, it is possible to construct a flow

¢

[0,1] x X’ X'
idx ! i
0,1] x D’ z D,

such that the above diagram is commutativ, ) = t €™, and¢(s, =) = = for
anyz € X, (see, for example, [5]). Now consider the composition ¢(1/d, -)
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overD’

b(1/d,) .

g x (2.7)

D'

This will be called the ‘lifted geometric monodromy’. In the next subsections
we will determine the isomorphisms induced by it on the vector spaces which
appear in the exact sequences (2.2) and (2.3). Obviousl§f,"dtX ;) the induced
‘lifted geometric monodromy’ is exactly .

The action on the spacég! (X)) can be determined as follows. Sinpe, z) =
z for anyz € X, the isomorphismp(1/d,-) restricted toX} is the identity.
Therefore, the action o/ ?(Xy) is induced by the Galois actiofi: X; — X,
G([xo: - zps1]) = [€x0, ..., zns1]. This action will be denoted bg?.

Il. The action ore*_; H"(F!)

If p: H — H is a linear map, we will denote hy(yp): H®" — H®' the linear
map defined by, (p)(z1, ..., %) = (¢(x;),z1,...,2;1). Then we have:

(2.8) THEOREM.
(a) If S(F;) denotes the suspensionigfthen we have a homotopy equivalence
F! ~\/, 1 S(F;), therefore an isomorphisiH™ (F!) ~ H" (F;)®-1)
(b) Under the isomorphism above, the ‘lifted monodromy actionF8H F}) is
cd—1(T3).
Proof. Part (a) was proved already in [9, (5.3)], but it follows also from our
discussion here. For (b) we use a similar construction as in [loc. cit.]. The map-

germ(X’',pl) LN (D', 0) can be identified with

Vi i={(y0,y,):9i(y) + tyo = y5} — (D', 0)
whereyo andy = (ya,...,y,) are local affine coordinateg,(= z;/xn 11, i =
0,...,n), g; is the local equation ofX*°,p;) C (P",p;) and~, is given by
i (yo,y,t) = t. The Galois action op; is G (yo, y,t) = (yof,y, & 1). Asin the
global situation (2.5), consider the (local) locally trivial fibrations inducedrfy
& = (r))"Y(SL) N Y; —% S, with fiber F/. Consider the local trivializations
over the positive arfto, toé]
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h;
0,1/d] x Fj ()~ (ardto, to])

~

(s,@)—>tg €70 {4
st
Then the ‘lifted geometric action’ oA := (%) ~1(to) is the composition

hi(l/dr')

(7)) " (to) (7h) "L (tot) —E (n}) ~X(to), (2.9)

which will be denoted/. We will prove that this geometric action inducgs 1 (7;)
at the cohomology level.

Remark|t is not difficult to see thath!)? is the monodromy of.. In [9] this is
identified withcy_1(T¢) =~ [cq_1(T})]%

Asin |9, (5.3)], consider the isolated complete intersection singularity given by
Vi 25 D' x D', (yo,y,t) = (t,y0). The discriminant ofp is A = {tyo = yd}
andy is a locally trivial fibration oveD’ x D' — A with fiber F;.

Forto e™¥ ¢ S%, the intersection points of the ling = to €/} with the
discriminant{tyo = yd} of  are

q0(8) = (to €™7,0) and g;(8) = (to &7, T/ ),
forj =1,...,d — 1. We will use the following notations

1;(8) = segmentqo(5),4;(B)]  (in {to €™} x D),

B= [J I(B)cD' xD,
BE[0,]]

r;(8) = middlepoint of [;(8) = (to €7,  4<y/to mili+A)/d-1),

Itis obvious that, for all 1< j < d— 1,4 (g;(8)) is contractible angp1(r;(3))
is exactly F;. Thereforep1(1;(3)) can be identified with the suspensiS{F;)
ande1(1(8)) ~ V, 1 S(F).

The inclusionB C Stlo x D' admits a strong deformation retract which

can be lifted. Consider the tord = Stlo X 5(11/2) -y which contains the points
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ri(B). By the identification of i/ = () 1(to) = ¢ ({to} x D’) with
©~1(1(0)) ~ V4_1S(F;), the homology ofF is generated by a wedge of sus-
pensions of cycles which lie above the pointf0), 1 < j < d—1. When we move

t on the positive arto, tof], then these points move on the pfihl/d] — T given
by 8 — r;(). We denote these paths by, with endpoints-;(0) andr;(1/d), i.e.

. L 1
1(s) = (to @7, R @rIl), s o).

The local trivialization oved;v; corresponds th;(1/d, -) in (2.9) (we will explain
this identification more precisely later). Next, we identify the Galois action with
some local trivialization over some paths.

Consider the paths;: [0,1/d] — T defined by

7i(s) = (to @TYD=9) 1 a-y/fs @mil(=1/d=D+(A/d(d=D)+s)),

which connects;_;(1/d) andr;(0).

argument of yp

— .
7 the points 7;(8)

argument of g

IS L o

Notice that the Galois actiofyo, v, t) — (yof,y, 1) induces

Gt (Tj—l (%)) = 7 Y(rj-1(0)).
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Consider the isomorphism (up to isotopy) given by the local trivializatiop of
above the oriented path

Trjip (le (2)) ¢ H(rj-1(0)).

Fact. The composition

o Hr-10) S 7 (1 (7)) 5 003200 (2.10)

is isotopic to the identity.

Proof of the fact.Consider the map: D’ x D' — D’ given by d(¢t,y0) =
yd —tyo (one hag ~1(0) = the discriminant of). First notice thas(r;_1(1/d)) =
d(rj(0)). Therefore, the composition (2.10) can be identified with

a0, 0) 2 07 (5 (1,1 (5)) ) ™ o600

where the first map is the identity — y (the second component 6f) andﬁj
is the trivialization ofg; above the loop — d(7x(s)), (s € [0,1/d]). Now, it is
easy to verify that(7;(s)) can be written in the forni - e27(a+ds) A, where
|A| > |B|. Therefore the loop — (74 (s)) is isotopic to zero inD’ — {0}. So,
:I'vrj (and hence Tro G~ too) is isotopic to the identity. O

The above fact shows that the Galois acti®can be replaced by the local trivial-
ization above the pathg; } ;.

Sinceh(1/d, ) in (2.9) corresponds to the local trivialization abdvg }; and
the Galois action to the local trivialization aboye; } ;, then the composed map
in (2.9) corresponds to the trivialization aboyg 1 o ,};. Now we identify the
fibers ofy above the points

74-1(0), 741 (%) ,71(0), 71 (%) soeosTa-1(0), g2 <§> ;

via the paths

Vd—1, T4 Y15 T2, V2, T35 - - -, Vd—2- (2.11)
The fiberF} is

So Hrg-1(0)) V S H(r1(0)) V- - V Sp Y (ra_2(0))
and the ‘lifted monodromy action’ is induced by

S(T1074-1)« VS(T2091)% V- -+ V S(Tg—1 0 Y4—2)+-
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But this (because of the identification of fibers via the paths in (2.11)) is exactly
the isomorphisne;_1(Q), where@ is the monodromy o above the loop

l=74_10T 071070 - 073_20 Tg_1.

The loop! in the complement of the discriminant gf is homotopic tos
(to, €™ ( “Vt0/2)), s € [0, 11. The linking number of this (second) loop with
{yo = 0} is one, and with{yd~* = to} is zero. Therefor€) = T;, in particular the
maph) induced byG o h;(1/d,-) is cq_1(T;). O
lll. The action onH?pT}l(X’)

In this subsection we prove that the ‘lifted action’ prf_}l(X’) is trivial. Let K}
be the link of(X”, p}) = {g:(v) + tyo — yd = 0} (we use the same notations as in
I). The map

" {gi(y) +tyo—y§ =0t = D', (yo,y,t) >t

gives an open book decompositionfof. Let K; = {t = 0} C K! be the link of
t, then arg= arg(t): K — K; — St is aC>-locally trivial fibration. Consider the
flow ¢: [0, 1] x K} — K’ such that

(@) If z € {t = 0} = K;, then¢(s, z) = z for anys.
(b) If z & K;, then argep(s, z)) = € arg(s).

The wanted geometric action is the composed map

Now ¢(1/d,-) is isotopic to the identity via the flow(s,-), s € [0,1/d]. The
Galois action is isotopic to the identity as well. To see this consider the isotopy

(37 (yoayat)) = (yo(s),y(s),t(s))

— (@, (¢ — gl 2y Loy

If s =0, then(yo(0),4(0),%(0)) = (vo,y,1), if s = 1 then(yo(0),y(0),%(0)) =
(yol, y, t& 1) = G(yo,y,1).

IV. The exact sequences revisited
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We summarize the results of the subsections I-IlI: One has the following two exact
sequences, with the ‘lifted monodromy action’:

k
0 — H™(Xp) — HMX)) — @QH"(F) — P"*(Xy) —0

i=1
N i
k

0 — H™Xp) — HY X)) — PH"(F) — P"*(X) —0

=1

and (E.2):
0 — H™(X}) — Ker(T"¢—1d) —— @H”“ —0
G 71 Identity
0— H"(Xy) — Ker(T=%—1d) — @H"“ — 0

The Main Theorem will follow from these exact sequences and from some
mixed Hodge-theoretical arguments.

We end this subsection with some facts about the Galois aGtiofi * (X)) —
H*(X}), wherep: X; — P" is thedth cyclic covering branched alon§>° (cf.
8.

One has thatH?(Xy,C) = HI(P", Rp*CX/) = Hq(P”,p*CX,) and the
restriction Ofp*CX/ to the complement o > is a flat bundle. Its correspond-

ing monodromy representation is given by the composed mép" — X*°) — LN

Z/dz - Aut(z?) (see Section 1 for the definition bf, wherer(1) := 0:Z/dZ —
Z/dZ is the permutation (z1,...,xq) = (T4, 21, ..., Tq_1)-

But also the Galois action is induced bySo, we have a direct sum decompo-
sitionp,Cy; = Cpr & ®?=1j.V, such thaté|c,., is the identity and|;-v, is the

multiplication by¢$ = e2is/d. Therefore
(HY(Xp);G7) = (Hq (P") (EBHq "GV > 695) (2.12)

V. The proof of the main Theorem, case= 1

Consider the exact sequence (E.2) with its actions. Since the (generalized) 1-
eigenspace df —* on Ker(T'—¢ — Id) is exactly KefT'~! — 1d), the decomposition
(2.12) provides the following exact sequence

0— H"(P") — Ker(T"1 - 1d) — @Hﬂ“ x') = 0. (2.13)
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This is again an exact sequence of mixed Hodge structures. Now, it is on the one
hand clear that the weight é™(P") is » and, on the other hand

dim Gr,” 1,4 H?Ji}l()(') =#(T;)1 (forl e Z),
(see [9, (5.5)]). Since the weight filtration dfi"(X/) is the monodromy weight
filtration of 7! centered at, one has dim G}, ,Ker(T! — Id) = #/(T" ).
This shows that

o= @mne (o, e
Now notice that

Pn-1(X*) = pn(X*) = xo, (2.15)
(see, for example (2.29), or [6, Chapter 5, (3.7) and (4.4.ii)]). Hence the result
follows from (2.1), (2.14) and (2.15). O

(2.16) Remark Using the exact sequence of vanishing cyclesx6f C P", by
standard mixed Hodge theoretical arguments, one can prove that the dimensions
dim Gr”_,P"~1(X*) (I > 1) are equal to the numbers on the right-hand side

of the equalities in the Main Theorem, case= 1. Hence, the Main Theorem
gives

#(Tf°)1 =dim Gn, P"~}(X>) forl e Z,
wherelW denotes the weight filtration.

VI. The proof of the main Theorem, casé=1,a # 1

First notice that the Galois actiofi: X); — X{, is an algebraic map, therefore
G7: H1(Xg) — HY(X() preserves the weight filtration. Sinég* (P", 5, V,) is the
&5-eigenspace af? (cf. 2.12), it has a natural induced weight filtration (actually, it
has a natural mixed Hodge structure). Nowdet 27s/¢ = ¢5for1 < s < d—1.
Then by (E.2) one has

H™(P",j,V,) = Ker(T™! — a). (2.17)
In particular, forl > 1 one has
#(T Yo = dim G H™(P", j.V,). (2.18)

Actually, (2.18) together with (2.1) already determ(ﬂ?o)a, but this is not exactly
the assertion of the Main Theorem, we want some more information about the right-
hand side of (2.18).
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Consider the exact sequence (E.1). Using (2.17) one has

0o— Ker(T'l —- a) —_— H"(Xé)a_’ {@H"(Fi')]a —_— H"+1(Pn,j*V3) — 0
o J T "o l [@®cq—1(Ti)]e o

0 — Ker(T~! —a) — H™X))o— [@H(F!)]e — H""'(P",j,V,) — 0.

By [19], the weight filtration ofH"(X/),, is the monodromy weight filtration of
(T~1), centered at, thus the quotient™(X!) /Ker(T~! — «) has a (polarized)
mixed Hodge structure with weight filtration equal to the monodromy weight
filtration of the clasg7,, 1] of (T1), centered at + 1. On the other hand,
H"+1(X}) is pure of weight: + 1 ([24]) andG™** preserves the weight filtration,
henceH"+1(P", j,V,) is pure of weight: + 1 (cf. (2.12)). These two facts show
that the weight filtration of®H™(F})], is the monodromy weight filtration of
(@cd 1(T};)) - Now comparing the dimensions of the primitive cohomologies of
[T, and(cq 1(T})). One has

#Z(Tfl)a = —dim H"+1 ,j* Z#l Cq— 1
(2.19)
#l+l a—z#l Cd 1 a forl > 2.
Sincead = 1 anda # 1, (cq_1(T}))a = (T}),-1. Therefore

k
#Z(Til)oe =—0s + Z#l(Ti)a—la

=t (2.20)
#Ho1(T™ Y, = Z#l a1 forli>2

Sincefy s = Bs (s =1,...,d — 1), parts (Ib,Ic) follow from (2.20) and (2.1.a).
In order to prove (la) (i.e., to computq(#“;’o)a = #,T,) notice that from (2.18)
one has

#HT 1), = dim H"(P", j,V,) (2.21)

and from (2.20)

k
ST =B+ Y HT)a-1. (2.22)
i=1

1>2
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Therefore
#(T™1Y), = dim H”(P",j*v )

+dim H"(P", 5,V Z#

Now (la) follows from this identity and the following result:

(2.23) PROPOSITIONFor s = 1, ...,d — 1 one has:

(a) dmH?(P",j.Vs) =0 for g #n,n+ 1.
(b) dim H™(P", j,V,) — dim H"“(P",j*v ) = Xs-

(Forthe definition of s, see the introductionIn particular, the Euler characteristic
of (P",.Vs) is local.
Proof. The first part follows from (2.12), becau®$(X;) = 0if ¢ # n,n + 1.
The second part will be proved (together with some other relations) in subsection
VI, (2.29).

VII. The proof of the main theorem, casé # 1

Consider the exact sequence (E.1). Sit¢8“¢ =Id, the generalized-eigenspaces
are

(H"(X})a, (T <<@H" ) (®cq— 1(T))>. (2.23)

By (2.1), 7, = (T5°)a- Also, if IT; (A — ;) is the characteristic polynomial @f,
thenIL;(X4~1 — ¢;) is the characteristic polynomial of_1(7;). Therefore, ifa

is an elgenvalue ofy_1(T;), thenad™! = = ¢, for some¢; and the unipotent (or
nilpotent) part ok4—1(7;). and(T;)¢; can be identified. This ends the proof of the
Main Theorem.

VIII. The relation with the Milnor fiber of;: C"*1 — C

Consider the homogeneous singularfy C"** — C with one-dimensional sin-
gular locus, letF" be its Milnor fiber. It is well-known that its (reduced) homology
is concentrated idf,, (') andH,,_1(F'). Leth,: Hy(F) — H,(F) be the algebraic
monodromy off4, whereq = n — 1, n. In this subsection we identify our local and
global invariants with numerical invariants given by the transformatigns, A, .
We recall that in the case = 2, the Milnor fibre of a homogeneous singularity
with one-dimensional singular locus was studied in [8].

Recall that we denoteg: X, — P" the dth cyclic covering branched along
X, Thenp~1(X ) can be identified withY * and X}, — p~1(X ) with F. This
gives a cyclic (unramified) covering’ — P" — X with fiberZ /dZ. By duality
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(see, e.g., [23, Thm 19, p. 297Pi,(F) = H? (X}, p~ (X)), therefore the
exact sequence of the p&ix}, p~1(X°)) reads as follows

0 — P (X®) — H,(F) — P™X{) — PMX*®) — H, 1(F) —P"*1(X}) -0
lId lh;l lG" lId lh;ll lGnH

0_>Pn—1(Xoo) —»Hn(F) ——-»Pn(X(l)) _’P"(XOO) —_— n——l(F) —»Pn—H(X(I))_)O

In the above diagram, we have also inserted the corresponding Galois actions.
The Galois action 0X} = { fq(z1,...,Tns1) = 28} iS[zo: -+ Tpia] = [Ex0:
- pga]. Ifon X4 — p~1(X>°) we take affine coordinateg = z;/zo, 1 < i <
n + 1, then the induced action (g1, ..., ynt1) — £ 2(y1, ..., Yns1). Thisis the
inverse of the geometric monodromy of the Milnor filzér
Now, if we consider the generalized eigenspaces of the Galois action in (2.26),
one has the following identifications

(Hn(F), hyt) 21 = (P"(Xg), G™) 1
(Hn-1(F), hity) 21 = (PPTH(XG), G" M) (2.27)

' -1

dim Hy, (F)1 = pn_1(X®) and  dimH,_1(F)1 = pa(X>).

We recall (cf. (2.12)) thatP9(X}), G9)z1 = (@ZTHI(P", j.V;), ®7_1€%). In
particular, all our global invariants are equivalent to the characteristic polynomial
of hy,_1,1.e.8s = rankH,,_1(F), (0 < s < d — 1). Now let us consider the zeta
function of f;: C"*1 — C. This is basically given in [21]

det()\ -ld — hn) . _ (_1)n+1 d_ ((d—l)”+1+(—l)”)/d
deOh1d—h, ~ 7Y (A" -1)
k d-1 .
< [T = 1) = T (A — mis/dyxs, (2.28)
=1 s=0

Now, (2.28) and (2.27) give

pn—l(Xoo) _pn(Xoo) = X0,
dim H*(P", j.V) —dim H"*Y(P" j,Vs) = xs (s=1,...,d — 1)

This proves (2.15) and (2.23.h).

(2.30)RemarkBy (2.27) and Corollary 3 one has (fer=0,...,d — 1)

k

dlm Hn—l(F)eZTris/d = ﬁs < Z#l(ﬂ)eZTrls/d
i=1
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Similar restrictions can be found in [20, (5.4) and Sect. 9].

(2.31) Remark(The relation withm,_1(P" — X°°)). Here we present the con-
nection between the present paper and [12], more precisely, between the defects
Bs (0< s <d—1)andrm, 1(P" — X*°).

First, assume that = 2. DenoteG = m1(P" — X*°), G' = [G,G], and
G" = [G',G']. Then 0— m(F) — G — Z/dZ — 0 is an exact sequence,
actuallyr1(F) = G'. Therefore H1(F) = G'/G", and it has a natural action of
Z/dZ. By (2.27) one has:

, .

pomrank((2) 0Q) ¢ ame m0 o1
G o

Now, assume that > 2. From the coveringd"w — P" — X* and Hurewicz

Theorem one has:y (P" — X*®°) = Z/dZ, 1y(P" — X*°) =0if1l < ¢ <n—1,

andm,_1(P* — X*°) = m,_1(F) = H,_1(F). Hence by (2.27)

Bs = rankm,_1(P" — X*°) @ Q)q; a=e¥ld  s=0 ... ,d-1,

where the action of1(P" — X*°) onm,_1(P" — X*°) is the natural one.

3. Examples

I. Zariski’s plane sextics

Setd = 6 and letfs € C[X;Y’; Z] be a form defining a plane sextic R with

six cusps and no other singularities. Then= 8 andys; = 9fors = 1,...,5.
Moreover (since the characteristic polynomial of the local monodromy of a cusp
singularity ist? — ¢t + 1), 3, = 0if s = 0, 2, 3, 4. Our main theorem gives:

(@ Ifa® #1, then(7'7°), has only one-dimensional Jordan blocks, éhgh), =
ldes if @ = €%, 0 € {&, & 1 12 1. 1. 8,82} (ie., if o® = €2/C for
s = 1ors = 5anda® # 1). OtherwisgT}°), = 0.

(b) (T7°)ezris/s has only one-dimensional blockssit= 0, 2, 3,4. The number of
themis 8ifs=0and 9ifs = 2,3, 4.

(€) (T§°)eris/s has only one and two-dimensional blockssif= 1 or s = 5.
The number of one-dimensional blocks is+2/3,, and the number of two-

dimensional blocks is 6- ;.
Now, by the identification (2.27) and [6, Thm 2.9] one ligs= 1, (s = 1,5) if
the cusps are on a conic afigd = 0 otherwise.
II. Nodal hypersurfaces

Assume thaf; defines a hypersurface R¥ with only nodal (i.e.A1) singularities,
let &k denote the number of nodes. It follows from the Main Theorem that the
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maximal size of a Jordan block GTJ?O is two. The numberg, can be computed
using [6, VI, Thm (4.5)] and (2.27).

If dn is even, setS = C[Xy,...,X,41], ¢ = (dn/2) —n — 1, and letsS,
denote the homogeneous component of degiaeS. If 3 C X denotes the set
of nodes of{f; = 0}, let 5,(¥) = {h € S, | h;x, = 0}, and defedtS, (X)) =
k — codimg, (S4(X)).

From the Main Theorem we get the following possibilitiesﬂ??:

(a) nis odd,d is odd.

Heres, = 0 for all s. ThusTJS>O has no Jordan blocks of size two, i.e. it is of
finite order.
(b) n is odd,d is even.

In this cases; = 0 for s # d/2 andT'¢° can have Jordan blocks of size
two only for eigenvalue-1, the number of them iszﬂ?),l =k — a2 =
k — defectS, (X)) = codimg, (S,(X)).

(c) nis even.

In this case,5; = 0 for s # 0 andfy = p,(X°). It follows that Ty

can have Jordan blocks of size two only for eigenvalue 1, a@i@#), =

k — pn(X*°) = k — defectS,(¥)) = codimg, (S,(X)). This number, in
general, is not zero. For example, the defegs§(X)) = [o of the recently
constructed quintic hypersurface it with £ = 130 nodes [25] is 29 [loc.
cit., p. 864]. The quintic constructed by Hirzebruch [11] has 126 nodes and
defectfy = 25. Actually, there are quintics iB* with 118 nodes and defect

18 < o < 19 [10].

We recall that, as proved by Artal in [1], the Jordan block structure of the local
monodromy of a superisolated singularity givenfgw fq+1+ -+ € C[X, Y, Z]
depends also on the position of the singularities of the projective curve given by

fa=0.
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