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Abstract
In this paper, we propose a set of robust training methods for deep reinforcement learning to transfer learning
acquired in one control task to a set of previously unseen control tasks. We improve generalization in commonly used
transfer learning benchmarks by a novel sample elimination technique, early stopping, and maximum entropy adver-
sarial reinforcement learning. To generate robust policies, we use sample elimination during training via a method
we call strict clipping. We apply early stopping, a method previously used in supervised learning, to deep rein-
forcement learning. Subsequently, we introduce maximum entropy adversarial reinforcement learning to increase
the domain randomization during training for a better target task performance. Finally, we evaluate the robustness
of these methods compared to previous work on simulated robots in target environments where the gravity, the
morphology of the robot, and the tangential friction coefficient of the environment are altered.

1. Introduction
Transfer learning refers to the use of knowledge gained in one or more tasks for new, unseen tasks.
In transfer learning, the source task is the origin of the knowledge, while the target tasks are the test
tasks that are not seen during training. A robot is required to have generalizable skills in real world. For
instance, a bipedal robot is required to be robust against changing ground friction, gravity, and wind con-
dition. Training a robot for all possible scenarios is time-consuming, impractical, and expensive. In order
to develop intelligent systems, we expect robots to adequately and quickly transfer the learned model
to the new target task. One way to learn a transferable model for robot control is deep reinforcement
learning (RL) [1, 2, 3, 4].

We follow a data-driven RL approach to derive generalizable policies for a humanoid and a hopper
robot. Data generation in simulators is inexpensive; hence, learning-based models can learn a diverse
set of behaviors to be transferred to the real world. Accordingly, physics-based simulators can integrate
specifications of real robots such as contact, joint limit, and actuator constraints. To close the domain
gap in RL for transfer, generalization techniques such as domain adaptation are used in training. Our
contributions address this step following the large body of work on robust policy gradient algorithms.
In ref. [5], domain randomization techniques are used in a simulator to increase the robustness of the
policy prior to the transfer to a physical AnyMAL robot. Koenemann et al. used a physics-based simula-
tor, “Multi-Joint dynamics with Contact” (MuJoCo) [6], to transfer skills to a physical humanoid robot
HRP-2 [7]. Many successful applications to the real world [8, 9, 10, 5, 11, 12, 13] use PPO, which
has been evaluated in the humanoid environment of MuJoCo. Other approaches to bipedal locomo-
tion include constrained optimization techniques [14] and conforming to balance criteria like ZMP
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[15]. However, these methods are suitable for humanoids with flat feet and have low generalizability
as discussed in ref. [9].

Physics-based simulator accuracy and computational efficiency are an integral part of learning dex-
terous policies in RL. MuJoCo, a physics engine acquired by DeepMind [6], realizes a rich and accurate
contact model and computes forward and inverse kinematics using the convex Gauss Principle. Active
constraints used in MuJoCo are categorized as equality, friction loss, limit, and contact constraints. In
addition to the constraints specified by the simulator, the requirements of a physical robot can also be
used in policy optimization and reward function as in ref. [5].

Improving generalization in deep RL is a useful strategy for robust transfer of robot skills. However,
assessing generalization in deep RL is challenging due to overfitting. A common method for assessing
generalization is to evaluate a deep RL algorithm in another task. Yet, deep RL algorithms, including the
policy gradient methods such as Trust Region Policy Optimization (TRPO) [16] and Proximal Policy
Optimization (PPO) [17], have been commonly evaluated based on source task performance. In transfer
RL, the best policy in the source task is not necessarily the best and the most robust policy in the
target tasks. Policies trained using hyperparameters tuned for the source task are prone to overfitting in
the target task. However, some hyperparameters (such as the clipping hyperparameter of PPO, which
controls the lower bound for the policy gradient loss) were set to fixed values when evaluating the results
in many studies [18, 19, 20, 21, 22]. The choice of hyperparameters becomes increasingly important
because unregularized deep RL algorithms can underperform by overfitting.

Recent works [23, 24, 25] have proposed regularization techniques for deep RL to avoid overfitting
to a specific task. A common method to improve generalization is domain randomization [23], where
task parameters are randomized during training. Dropout, L2 regularization, data augmentation, batch
normalization, increasing the stochasticity of the policy [26], and the environment were the regulariza-
tion techniques used in ref. [24] to increase target task performance. Similar to ref. [24], Zhao et al.
[25] compared regularization techniques for deep RL such as policy network size reduction, soft actor-
critic entropy regularizer [27], multi-domain learning [23], structured control net [28], and adversarially
robust policy learning (APRL) [29].

Adversarial algorithms are dynamic methods that generate challenging tasks for the agent at each
iteration to improve generalization on unseen target tasks [21]. In refs. [30, 31], adversarial techniques
are implemented by two networks that evolve by competing with each other. More specifically, the dis-
criminator network is optimized to discriminate the real image data from the simulation data, while the
generator network is optimized to generate simulation images that can fool the discriminator. Similarly,
in Robust Adversarial Reinforcement Learning (RARL) [32], a separate adversarial network is optimized
to destabilize the agent during training. Shioya et al. [33] extend RARL by varying the adversary poli-
cies. Bansal et al. [20] used uniform distribution sampling to determine the iteration of the adversarial
humanoid policy from the subset of recent iterations.

In this paper, we propose regularization techniques to improve the performance of target tasks. We
show experimentally that not taking into account the overfitting as well as the different dimensionality of
the robots can lead to inaccurate evaluation. For this reason, we first show that performance on the source
task is not indicative of generalization ability and performance on the target task. Reliable evaluation of
results becomes difficult without regularization, as baselines may underperform.

We propose Strict Clipping PPO (SC-PPO) to discard the samples that lead to overfitting by increas-
ing the lower bound on the policy gradient loss. We apply SC by lowering the clipping parameter in
PPO to extremely small values and prove its effect numerically on a high-dimensional humanoid robot
and a hopper robot in the MuJoCo environment [6]. This regularization technique improves the perfor-
mance of the policy in the target task and provides a competitive benchmark. We evaluate our method
in benchmarks presented in refs. [32] and [34]. We then verify our methods on both novel target tasks
involving transfer to robots with different morphologies and target tasks with a wider range of dynamics
parameters. These novel tasks include tall, short, and delivery service humanoid target tasks, each with
a different center of mass and morphology than the standard humanoid source task.

In transfer RL problems where the environmental dynamics of the target task diverge more from the
source task, we apply early stopping. We show that policy trained in the source task starts to overfit the
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Table I. Target task extrapolation success range.

Task RARL SC-PPO (ours) ACC-RARL (ours) ME-RARL(ours)
Hopper-v2 Torso Mass [2.75,4.5] [1, 6] [1, 7] [1, 9]
Hopper-v2 Gravity [0.5G,1G] [1G,1.5G] [0.5G,1.75G] [0.5G,1.75G]

target task after several policy iterations. In this context, earlier iterations of policies perform well in
comparative analysis because stopping training earlier prevents overfitting the source task. Hence, we
show that recognizing the policy iteration number as a hyperparameter increases the performance of
state-of-the-art algorithms such as PPO and RARL [32].

We compare the generalization abilities of different adversarial training methods, namely entropy
bonuses, advantage estimation techniques, and different curriculum learning methods with RARL. We
integrate an entropy bonus in adversarial RL in Maximum Entropy Robust Adversarial Reinforcement
Learning (ME-RARL) to increase domain randomization. We improve generalization using the
advantage estimation component by including both value function estimator critic networks at each
optimization iteration with Average Consecutive Critic Robust Adversarial Reinforcement Learning
(ACC-RARL). We compare RARL and Shared Critic RARL (SC-RARL) [35] with our methods on
the torso mass [32] and gravity benchmarks, where the hopper is required to hop without falling. The
only difference between SC-RARL and RARL is that in SC-RARL a single critic network is used to
approximate the value function. In ref. [35], no regularization is used, so the generalization capacity is
similar to RARL. In our work, we first regularize all adversarial architectures and then compare their
generalization ability. Table I shows the performance in the target tasks generated by changing the mass
of the torso in the range [1, 9], and the target tasks generated by changing the gravity of the environment
in the range [0.5G, 1.75G]. We use the same source task for training, where the mass of the torso is
approximately 3.53 units and the gravity is G = 9.81. Our methods can successfully extrapolate to the
generated target tasks outperforming RARL in all benchmarks.

In Section 2, studies on the transfer RL and adversarial learning are provided. The proposed methods
along with the background will be detailed in Section 3. Experimental setup and results will be given in
Sections 4 and 5, respectively. Finally, in Section 6, the conclusion section will include a summary of
our contributions, a discussion of the results, and future directions for research.

2. Problem formulation
We address the forward transfer learning problem in the context of learning control. To learn a set of
robust, generalizable policies from a single source task we use deep RL. In RL, the iterative decision
process of an agent is formulated as a Markov Decision Process (MDP). We characterize the MDPs with
the initial state distribution ρ(s0) : S →R, state transition distribution ρ(st+1|st, at) : S ×A× S →R,
reward function rt : S ×A× S →R, and discount factor γ ∈ (0, 1) by (S , A, ρ(st+1|st, at), rt, ρ(s0), γ ).

Kinematic constraints are provided by the simulator. The pertinent kinematic constraints, including
the joint limit constraints (range) of each actuated joint, used in the humanoid and hopper environments
are provided in Table VII, Appendix A. Detailed information on the constraint model, constraint solver,
and kinematics tree of the default humanoid environment can be found in the MuJoCo Documentation
[36] and Open AI Gym Toolkit [37]. The constraints used in kinetic energy minimization are the friction-
cone constraint, given as a hard constraint, and the non-penetration constraint [6]. Kinetic and kinematic
constraints can also be included in the reward function as in ref. [5]. Our reward function attempts to
realize balance constraints by episode termination upon violation of the balance constraint following the
RL framework. The termination criterion for bipedal locomotion in humanoids depends on the location
of the center of the torso. When the +z location of the center of mass of the robot is below a threshold,
the robot is presumed to fall and the episode is terminated.

Our purpose is to improve the generalization of the state-of-the-art policy optimization methods
in model-free RL where the policy is represented as a neural network. In model-free RL, a policy is
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optimized directly without learning the complex state transition dynamics. To evaluate the generaliz-
ability of these policies, we design a wide range of target control tasks inspired by real-world scenarios.
In particular, we use hopper tasks to compare our methods to RARL [32] and humanoid tasks to compare
our methods to PPO [17].

Similar to the hopper benchmark in ref. [38], we change the tangential friction coefficient of the
ground to generate a target task for the humanoid. Our goal is to transfer the learning experience from
a source task with a ground tangential friction coefficient of 1 to a target task with a ground tangential
friction coefficient of 3.5. Transferring among morphologically different robots with different limb sizes
or torso masses has been a popular multi-task learning benchmark [32, 34, 38]. Accordingly, we generate
three novel target environments: a taller and heavier humanoid robot, a shorter and lighter humanoid
robot, and a delivery humanoid robot that carries a heavy box.

Similar to the multi-task transfer learning experiments in ref. [34], we generate target tasks by altering
the torso mass of the robot and the gravity of the environment. In ref. [39], 4 target tasks were created
by changing the gravity parameters of the environment in the range [0.50G, 1.50G] where G = −9.81.
In our experiments, we use a larger range [0.50G, 1.75G] to discover the range of tasks our method can
solve. Similarly, for the torso mass experiments, we create target tasks by significantly increasing the
range of the torso mass of the robot to [1.0, 9.0] from the range [2.75, 4.5] used in RARL.

3. Background
Before providing the details of our components, we will explain the adversarial and deep reinforcement
algorithms. We build our method on top of RARL algorithm which is characterized as a two-player
zero-sum discounted game. The return of the agent is formalized as follows [32].

R1 = Es0∼ρ,a1∼μ(s),a2∼ν(s)

[
T−1∑
t=0

r1
(
st, a1

t , a2
t

)]
(1)

Actions a1 are sampled from the policy μ of the agent and actions a2 are sampled from the policy
ν of the adversary. s0 is the initial state sampled from the initial state distribution ρ. st is the state
at timestep t, and r corresponds to the reward function. The agent maximizes its return whereas the
adversary minimizes the return of the agent. Thus, the return of the adversary is R2 = −R1 [32].

We use PPO to update actor-critic networks of the agent and the adversary in RARL experiments.
Actor network determines the actions the agent takes, whereas the critic network estimates the value
function used for the advantage function estimation. Advantage function estimates how rewarding it is
to take the action in the state compared to the value of that state. We use a particular loss function,
namely Clipped PPO Loss, LCLIP [17] that optimizes the parameters θ of the actor policy network as
follows.

LCLIP(θ ) = Êt

[
min

(
πθ(at | st)

πθold (at | st)
Ât, clip

(
πθ(at | st)

πθold (at | st)
, 1 − ε, 1 + ε

)
Ât

)]
(2)

Generalized Advantage Estimator (GAE) [40] Ât is used to optimize the actor network. If the
advantage Ât is negative then the probability ratios below 1 − ε are clipped and if the advan-
tage is positive, then the probability ratios above 1 + ε are clipped. Gradient flow does not occur,

and the samples are discarded if the probability ratio
πθ(at | st)

πθold (at | st)
is clipped and the expression(

clip

(
πθ(at | st)

πθold (at | st)
, 1 − ε, 1 + ε

)
Ât

)
is minimum. πθ(at | st) is the current policy being optimized

whereas πθold (at | st) is the previous policy. ε is the clipping parameter that controls the lower bound
on the Clipped PPO Loss. Open AI Baselines framework and most of the literature has been using the
clipping parameter of 0.2 for continuous control tasks [17, 20, 21, 22, 41, 42].
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Figure 1. Proposed architecture and procedures for transfer RL.

4. Method
The proposed regularization framework for obtaining generalizable policies is outlined in Fig. 1. The
protagonist controls the actuators of the robot. Actor-critic models are trained using trajectories collected
from the source task. The trajectory data consist of states, actions, next states, and rewards. During the
training of the protagonist (I), the policy parameters are stored in the policy buffer (III) to be used in
the generated unseen target environments (IV). Section 4.1 describes the policy buffer used to obtain
generalizable policies for transfer. For strict clipping (SC), only the protagonist actor-critic model is
trained (I) on the source task environment using the SC parameter ε. Section 4.2 provides the component
SC, which prevents policy updates when training samples improve the source task objective above a
threshold. A low threshold stabilizes the training and regularizes the source task loss function.

The protagonist (I) is trained with the adversary (II). The adversary controls the 3-dimensional
destabilizing forces acting on the robot’s body segment. The critic models are initialized and trained
separately in all adversarial techniques following the representation in the diagram, except for the
shared critic method. βpro, aprotagonist, rprotagonist, and βadv, aadversary, radversary are the model-specific entropy
parameters, actions, and rewards of the protagonist and adversary actor models, respectively. More pre-
cisely, the entropy parameters control the stochasticity of the corresponding actions. Details on how the
agent is encouraged to explore the environment, how different deep RL architectures are used, and how
incremental learning is employed to avoid overfitting are discussed in Section 4.3.

4.1. Policy buffer
Policies trained with different hyperparameters show different control patterns. We propose a policy
buffer to store these policies that are trained with the same loss function but with different hyperparam-
eters. We add the iteration number to the hyperparameter set for transfer RL benchmarks. In simulated
experiments, we show that it is possible to extract a comprehensive set of policies capable of exhibiting
various skills from a single source task.

Our method is inspired by the early stopping regularization technique that is frequently used in super-
vised learning. Similar to supervised learning, in the transfer RL setting, snapshots of policy parameters
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taken at different steps have different performances in the target task. We train policies with different
hyperparameters and take snapshots of the corresponding policies at each optimization iteration at pre-
determined intervals and save them in the policy buffer. Previous works trained single policies for a
constant number of iterations in the source task. In contrast, we evaluate multiple policies from the
buffer to determine the iteration number where the model starts to overfit.

Our aim here is to generate successful policies for a range of target tasks that are represented by task
parameters such as gravity, friction, mass, and center of mass of the robot. Overfitting is predominant
in cases where the target tasks deviate significantly from the source task. Inspired by the validation
dataset idea used in early stopping regularization for supervised learning, we propose designing a proxy
validation tasks set. Given source and target task parameters and the policies learned in the source task,
we form proxy validation tasks between source and target tasks with parameters closer to the target task.
Expected rewards of the policies trained with different hyperparameters are informative in finding the
generalizable policies from the buffer.

4.2. Strict clipping
To train the aforementioned policies, we use policy gradient algorithms. In literature, hyperparameter
tuning of the RL component is commonly overlooked and a fixed set of hyperparameters is used when
integrating the RL component into the transfer domain.

Gradient clipping in Eq. (2) is generally used to discourage catastrophic displacement in the param-
eter space. In our work, we additionally propose that it can be used for regularization in transfer RL. In
particular, we propose a new regularization technique for PPO, namely SC to avoid overfitting by con-
straining the gradient updates. During training, SC-PPO allows more source task samples to be discarded
which would otherwise lead to overfitting. SC-PPO is used to further decrease the gradient movement
in the policy parameter space in favor of generalization. This is achieved by decreasing the clipping
parameter used in PPO by one or less order of magnitude. We prove that this method is superior to the
unregularized RARL baseline in multiple transfer learning benchmarks.

4.3. Regularization in adversarial reinforcement learning
Introducing an adversary to destabilize the agent using multidimensional simulated forces has generated
successful results in continuous control tasks in RARL. However, we experimentally prove that unregu-
larized RARL performs worse than regularized PPO. In contrast to prior work, we acknowledge policy
iteration as a hyperparameter in all our comparisons. Thus, we compare our methods in an adversar-
ial framework by forming a policy buffer and extracting the most generalizable policies to increase the
robustness of the algorithm. More specifically, we regularized critic networks, increased exploration,
and integrated curriculum learning in an adversarial RL framework.

4.3.1. Average consecutive critic robust adversarial reinforcement learning (ACC-RARL) (I)
Similar to actor networks, critic networks are function approximators that are prone to overfitting. We
propose ACC-RARL, which computes advantage estimates using the mean of the critic outputs. Critics
are optimized with their actor pair consecutively. We aim to decrease overfitting by using double critic
networks with different random initializations and reuse the previous model by including the output
of the previously updated critic in the advantage estimation. The temporal difference residual of the
approximate value function with discount γ at timestep t corresponds to δt. The temporal difference
residuals of the protagonist and the adversary in ACC-RARL are shown as follows.

δpro
t = (−Vpro(st) + Vadv(st)

)
/2 + rt + γ

(
Vpro(st+1) − Vadv(st+1)

)
/2

δadv
t = −δpro

t

(3)

where Vadv, Vpro correspond to the critic network of the adversary, and the critic network of the protagonist
respectively.

https://doi.org/10.1017/S0263574722000625 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722000625


Robotica 3817

4.3.2. Maximum entropy robust adversarial reinforcement learning (II)
Entropy bonus is used for exploration by rewarding the variance in the distribution of the action prob-
abilities. We incorporate an entropy bonus H[π pro] for the protagonist and an entropy bonus H

[
π adv

]
for the adversary in the reward functions. Updated reward functions of the adversary Rt

(
π adv

θ

)
and the

protagonist Rt

(
π

pro
θ

)
are given

Rt

(
π adv

θ

) = Êt

[
Ractor

t

(
π adv

θ

) − Rcritic
t

(
π adv

θ

) + βadvH
[
π adv

]
θ (st)

]
Rt

(
π

pro
θ

) = Êt

[
Ractor

t

(
π

pro
θ

) − Rcritic
t

(
π

pro
θ

) + βproH [π pro] θ (st)
] (4)

where π adv
θ

, π
pro
θ , and β correspond to the policy of the adversary, policy of the protagonist, and the

entropy coefficient respectively. Increasing exploration at the cost of decreasing source task performance
increases the generalization capacity of the algorithm. However, we acknowledge that adjusting the
stochasticity of the environment while avoiding detrimental impact on learning is challenging. Adding
an entropy bonus to the loss function of the adversary increases the domain randomization, affecting the
performance of both the protagonist and the adversary. We compare the ME-RARL algorithms: entropy
regularized RARL (ERARL) and entropy regularized ACC-RARL (EACC-RARL) in more challenging
hopper morphology and gravity benchmarks where SC-PPO is not sufficient.

4.3.3. Curriculum learning (III)
Curriculum learning focuses on discovering the optimal arrangement of the source tasks to perform
better on the target task. We utilize curriculum learning by randomizing the adversary policy iterations
from different sets of advancement. We compare the target task performance of protagonist policies
trained with adversaries randomly chosen from the last predefined number of iterations. We use χ to
denote the fraction of the latest iterations of adversaries recorded up to the current iteration. Adversaries
loaded from and recorded to the buffer during curriculum training become less capable and more incon-
sistent as the training progress and χ decreases. In consequence, we intend to show how a variety of
design decisions during training affects the target task performance in the pursuit of developing novel
regularization techniques and more reliable benchmarks.

5. Results
After detailing source task training implementations in Sections 5.1 and 5.2, we provide results of our
methods SC-PPO in Section 5.3 and ACC-RARL, maximum entropy RARL in Section 5.4 using various
target tasks. The hyperparameters used in source task training are given in Table IX, Appendix B. We
report on the expected mean and standard deviation of the rewards obtained from 32 randomly seeded
identical environments for each target task.

5.1. Humanoid environment
The policy network trained for the 24-DoF humanoid task takes a 376-dimensional state vector as input
and outputs the mean vector of a diagonal multivariate Gaussian distribution. An action corresponding
to a 17-dimensional torque command is sampled from the corresponding output distribution. At each
timestep, the MuJoCo physics simulator executes the torque commands and the result of the execution
is used to generate the 376-dimensional next state vector. The reward function of the humanoid envi-
ronment and the episode termination conditions, including the balance constraint, are provided in Figs.
16 and 17, Appendix C. The average reward per episode and standard deviations of the policies trained
with 4 different sets of hyperparameters are shown in Fig. 2(b).

The learning curves obtained using SC in the source tasks are shown in Fig. 2(b) with clipping hyper-
parameters 0.01, 0.025, and 0.01 decaying learning rate and clipping. The default clipping parameters
are 0.01 for SC-PPO, and 0.1 for PPO in all humanoid experiments, unless explicitly specified. Learning
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(a) (b)

Figure 2. (a) Humanoid running in the source environment. (b) Learning curves of SC-PPO and PPO
on standard humanoid source task.

(a) (b)

Figure 3. (a) Hopping action, and (b) learning curves of ACC-RARL, SC-RARL, RARL, SC-PPO on
standard hopper source task.

curve obtained with the hyperparameters suggested in OpenAI Baselines for the Humanoid environment
are represented by the red curve.

5.2. Hopper environment
Hopper environments are used to compare regularized adversarial methods with RARL. The reward
function of the Hopper environment is provided in Appendix D. SC-PPO was trained using α = 0.0003,
ε = 0.05, b = 2048, and the adversarial algorithms were trained with α = 0.0003, ε = 0.3, b = 512.
Source task learning curves of PPO and RARL trained with different critic architectures are shown
in Fig. 3(b).

Results in hopper tasks are consistent with the humanoid experiments. To analyze the effect of
different architectures on the generalization capacity, we compare three different critic architectures:
separate double critic networks used in RARL, single critic network in Shared Critic Robust Adversarial
Reinforcement Learning (SC-RARL) and ACC-RARL. The policies trained with different variations of
RARL perform similar to SC-PPO in hopper morphology tasks in the range of 1–6 and hopper gravity
tasks in the range of 1G–1.5G.
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Table II. Delivery humanoid environment.

Body Unit Mass
Delivery Box 5
Right Hand 1.2
Torso 8.3
Total Body without Delivery Box 40.0

(a) (b) (c) (d)

Figure 4. (a) Standard humanoid source task with 3 torso components, (b) short humanoid target
task with 2 torso components, (c) tall humanoid target task with 4 torso components, and (d) delivery
humanoid target task.

5.3. Regularization via PPO hyperparameter tuning
5.3.1. The morphology experiments
The morphological target tasks are created for inter-robot transfer learning. The short, tall, and delivery
humanoid target tasks in Figs. 4(b), (c), (d) are generated from the standard humanoid source task in
Fig. 4(a).

The total body weights of the short and tall humanoid target tasks differ from the humanoid source
task by the exclusion and inclusion of the upper waist respectively. The tall humanoid task is more
challenging than the short humanoid task because it is harder to balance heavier upper body mass where
the center of mass is higher from the ground. The threshold for termination is higher for the tall humanoid
and lower for the short humanoid because of the different locations of the center of mass.

Masses of the relevant body parts for the delivery humanoid are given in Table II. Considering the
total body mass of 40, a box with a unit mass of 5 constitutes a challenging benchmark. Our purpose is
to create a horizontal imbalance by enforcing the humanoid to carry the box only by the right hand.

The comparison of the target task performances of policies trained with clipping parameters
ε = 0.1 and ε = 0.01 is provided in Fig. 5(a), (b) and (c). High average reward per episode obtained
after 1200th iteration with SC-PPO ε = 0.01 shows that humanoid learns transferable general character-
istics of forward locomotion from the source task. In contrast, all iterations of the policies trained with
clipping parameter ε = 0.1 failed in all target tasks. Early stopping regularization technique alone is not
sufficient because the short and tall humanoids cannot stand still using the earlier iterations of the policy
trained with clipping parameter ε = 0.1.

The reduction in the performance after the 1200th iteration in Fig. 5(c) supports the method of resort-
ing to the earlier policy iterations. This concavity suggests that overfitting occurs and early stopping is
an effective regularization technique.

The same policy iteration (1200th) trained with SC-PPO can be successfully transferred to short, tall,
and delivery humanoid tasks as shown in Fig. 5(a), (b) and (c). Evaluation of the best source task policies
in the target tasks assesses our claim that source task performance is not indicative of the generalization
capacity. Thus, all transfer RL methods should account for regularization first.
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(a)

(b)

(c)

Figure 5. Performance of SC-PPO and PPO on (a) shorter and lighter humanoid target task, (b) taller
and heavier humanoid target task, and (c) delivery humanoid target task.
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Table III. Comparison of SC-PPO and PPO in target
friction environment.

Clip Iteration Average reward per episode
0.01 1500 8283 ± 24.3
0.1 300 1078 ± 336.4

Figure 6. Performance of SC-PPO and PPO on target environment with tangential friction 3.5 times
the source environment.

5.3.2. The friction environment
Our aim in this experiment is to evaluate our methods in transfer learning benchmarks where the envi-
ronment dynamics are changed. We generate a target task by increasing the ground friction coefficient
in MuJoCo environment. The humanoid sinks due to high tangential friction but can still run following
the regularized policies trained with SC-PPO.

The best jumpstart performances for each clipping parameter are given in Fig. 6. For instance, the last
iteration of the policy with a SC-PPO parameter ε = 0.01 has an average target task reward of 8283 with
24.3 standard deviation as provided in Table III. In contrast, the best-performing policy in the source
task has a target task performance which assesses our claim that source task performance on transfer RL
is not indicative of the target task performance. These results show that agent trained using our methods
learns generalizable skills for environments with changing dynamics.

5.3.3. The gravity environments
Our aim in these experiments is to evaluate our methods in a different set of target tasks where environ-
ment parameters are changed. Similar to the friction experiments, we generate gravity target tasks in the
range of 0.5G–1.75G where G = −9.81 is the gravity of the source task.

When the last iteration of the policy trained with SC-PPO ε = 0.025 is used in the target task with
gravity = −4.905 (0.5GEarth), the humanoid in Fig. 7(a) can run. Performance of SC-PPO is slightly bet-
ter than early stopping for this target task. Similarly, in the target task with gravity = −14.715 (1.5GEarth),
the humanoid needs to resort to the previous snapshots of the policy trained with SC-PPO ε = 0.025
as plotted in the Fig. 8(a). The bipedal locomotion pattern in the simulated target environment with
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Figure 7. Performance of SC-PPO and PPO on target environment with gravity = −4.905 (0.5GEarth).

Figure 8. Performance of SC-PPO and PPO on target environment with gravity = −14.715 (0.5GEarth).

gravity = −14.715 (1.5GEarth) when the humanoid jumpstarts with the 600th policy trained with clipping
parameter ε = 0.025 is shown in Fig. 8(b).

Gravity benchmarks for the humanoid indicate that snapshots of different policies should be used for
the target task with gravity = −17.1675 (1.75GEarth). The policy iterations trained with hyperparameters
“ε = 0.01 decaying learning rate and clipping” performed poorly in the source task and target task
with lower gravity. However, they perform consistently well in environments with a higher magnitude
of gravity (−17.1675, −14.715). Figures 8 and 9 show that decaying the clipping parameter and the
learning rate during training decreased the exploration and restricted the humanoid to stick to a more
careful way of moving forward after 1000 training iterations.
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Table IV. Hopper source environment.

Body Unit Mass
Torso 3.5
Thigh 3.9
Leg 2.7
Foot 5.1
Total Body 15.3

Figure 9. Performance of SC-PPO and PPO on target environment with gravity = −17.1675
(1.75GEarth).

5.4. Regularization in adversarial reinforcement learning
5.4.1. The morphology experiments
In this set of experiments, we compare our methods with RARL. In RARL, target tasks are generated
by modifying the torso mass of the robot in the range of 2.5–4.75. Following the same procedure, we
modify the torso mass in the range of 1–9. Table IV provides additional information on the morphology
of the Hopper source task.

The robot can successfully generalize using any regularized adversarial technique or SC-PPO with
early stopping when the target tasks are in the range of 1-6. Based on the target task performances of
ACC-RARL, SC-RARL, and RARL, in Fig. 10, different critic value function approximation techniques
have an effect on the type of control behavior learned. However, the performance of some policy iter-
ations trained with RARL, ACC-RARL, SC-RARL starts to become unstable in Fig. 10(a) and (e). In
harder target tasks like these, the agent should first resort to earlier snapshots of the policy and use early
stopping for adversarial RL. Let us assume that the agent only has several snapshots of the policy in its
buffer trained in the source task with standard torso mass. Then, the agent is put in a target task with torso
mass = 6 which is analogous to an agent expected to carry weight while performing a control task. We
propose that in cases like these, instead of training from the very beginning, the agent should primarily
resort to earlier policy iterations because the generalizable policies performing at the expert level are
readily available in the agent’s memory and were extracted from the source task training.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 10. Performance of SC-PPO and adversarial methods on Hopper target tasks with torso mass
(a) 1, (b) 2, (c) 3, (d) 4, (e) 5, (f) 6, (g) 7.

If we had not recognized the policy iteration as a hyperparameter then comparing the algorithms at
arbitrarily selected number of training iterations would not constitute a fair comparison. More impor-
tantly, the performance of PPO without adversaries, generally used as a benchmark algorithm, is highly
dependent on the number training iterations. Hence for target tasks with torso masses [1 − 6], the right
snapshots of SC-PPO are capable of obtaining high average reward per episode as seen in Fig. 10(a),
(b), (c), (d), (e), (f). Furthermore, the skills learned with RARL in the last 150 iterations are successful
in the source task and target task where torso mass is 3 and 4 units as provided in Fig. 10(c). However,
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they are clearly unstable in tasks where torso mass is 1, 2, 5, 6, 7 as illustrated in Fig. 10(a). The policy
buffer allows us to do a fair comparison among different methods. Training the algorithms for an arbi-
trary number of iterations will produce inaccurate results such as underperforming baselines or proposed
algorithms. Furthermore, the reproducibility of the transfer RL algorithms will be affected.

Regarding the parametric form of target tasks, the performance of the policies residing in the policy
buffer can be anticipated. Coinciding with the performances seen in Fig. 10(a), (f), (g), (b), it is antici-
pated that the earlier policy iterations trained with less samples perform better as the distance between
the target task and the source task increases in the task parameter space. We reproduced the original
RARL experiment; hence, the results are consistent with the performance of the last policy iteration
trained with RARL (Fig. 10(b), (c), (d)).

When the torso mass is increased to 6, significant target performance drop (Fig. 10(f)) occurs until the
last policy iteration where all policies are affected. This implies overfitting occurs and policy iterations
trained with SC-PPO can still perform optimally around 395. The best-performing policy iterations of
adversarial algorithms start to get accumulated in the range [150, 300] when torso mass is greater than
5; thus, a mapping between the target task parameters and the policy iterations is highly probable.

In a harder environment with a torso mass of 7, the earlier iterations of the policy trained with ACC-
RARL perform the best. Figure 10(g) shows that the range of the best-performing policy iterations is
contracted more.

Using ME-RARL algorithms (EACC-RARL, ESC-RARL, and ERARL) increased the fluctuation
of the average rewards for all algorithms as provided in Fig. 11. Because entropy bonus encourages
exploration, the adversary takes more randomized actions which often change the protagonist’s hopping
behavior. None of the adversarial techniques were successful in completing target tasks without entropy
regularization where the torso mass of the hopper is increased to 8 and 9 units. EACC-RARL shows the
highest performance on the 9 unit torso mass target task (Fig. 12(b)). The average reward per episode of
the policy iterations trained with EACC-RARL is provided in Table VI. These results show that earlier
policy iterations show better performance as the target task becomes more challenging. Any target task
from the set can be used as a proxy validation task for the tasks that belong to the same set.

First, using SC-PPO and early stopping we formulate a more competitive baseline for the adversarial
algorithms. Then, we show the performance of one policy iteration (175th) with high generalization
capacity trained with the ACC-RARL algorithm in Table V to demonstrate that a policy is capable of
performing forward locomotion when torso mass is in the range of 1–7. Plots of the torque commands
generated by the 175th policy network in the source task and the target task with torso mass 1 are provided
in Appendix E. Finally, using EACC-RARL and early stopping we have increased the target task success
range used in RARL from [2.5, 4.75] to [1, 9].

5.4.2. The gravity environments
In this set of experiments, we will assess our methods in a large range [0.5GEarth, 1.75GEarth] of gravity
tasks. For these tasks, we will use the same policy buffer created using SC-PPO and different variations
of RARL for the hopper morphology experiments.

The performance evaluations in Figs. 13(a) and (b) prove that training with curriculum and maximum
entropy changes the number of generalizable policy iterations in 0.5GEarth target task. ESC-PPO included
in Fig. 13(b) still performs poorly compared to adversarial techniques. Although the improvement is
negligible, only for this case the entropy regularized SC-PPO (ESC-PPO) performs better than the
SC-PPO.

Policies trained with SC-PPO and adversarial methods can be transferred to the target task with grav-
ity = −14.715 in Fig. 14(a). Figure 14(b) shows that using entropy regularized methods ESC-RARL
and ERARL, not only increased the average reward per episode but also increased the number of
generalizable policy iterations.

As the target task gets harder by moving further away from the source task, the best-performing policy
iterations are aggregated around earlier iterations similar to the torso mass and the delivery humanoid
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Table V. Performance of ACC-RARL.

Unit Mass Iteration Average reward per episode
1 175 2921 ± 12
2 3072 ± 6
3 3196 ± 6
4 3253 ± 4
5 3279 ± 3
6 3259 ± 221
7 2792 ± 768

(a)

(b)

Figure 11. Performance of EACC-RARL, ESC-RARL, and ERARL on target tasks with torso mass
(a) 7 and (b) 8.
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Table VI. Performance of EACC-RARL.

Set Unit Mass Iteration Average reward per episode
1 1 508 2872 ± 36

2 3377 ± 501
3 3196 ± 13
4 3474 ± 7

2 5 479 2704 ± 764
6 2764 ± 901
7 3425 ± 3

3 8 463 3423 ± 5
9 3283 ± 500

(a) (b)

Figure 12. (a) Hopper that has torso mass of 9 units, and (b) Performance of EACC-RARL, ESC-RARL,
and ERARL on target task with torso mass 9.

target tasks. This concavity is analogous to the convexity of the test error curve in supervised learn-
ing problems where earlier training iterations lead to underfitting and the later iterations overfit to the
training set. The regularization effect of early stopping is pivotal in increasing the generalization capac-
ity. The domain randomization in SC-RARL does not suffice for generalization in harder target tasks
when gravity is 1.75GEarth (Fig. 15(a)). We observe that encouraging the exploration of the protagonist
policy and the adversary through the inclusion of entropy bonus increases the performance of adver-
sarial algorithms in Fig. 15(b). Results in the gravity environments are in line with the morphology
experiments. Above all, entropy regularized adversarial techniques, early stopping, and SC produce
competitive results in hard target tasks.

6. Discussion
Deep RL and Model Predictive Control (MPC) have shown promising results for legged locomotion.
MPC is a model-based algorithm used to find an optimal control action in real time. Due to online
computation at each timestep, MPC algorithms are computationally expensive and prone to the curse of
dimensionality [43]. In contrast, data-driven RL algorithms are deployed after training and only require
forward propagation for policy networks or online lookup for discrete table representations. Another
drawback of MPC algorithms is their dependence on an accurate dynamics model. Developing robot-
specific dynamics requires expert knowledge and task-specific assumptions. On the other hand, deep RL
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(a)

(b)

Figure 13. Performance of (a) SC-PPO, ACC-RARL, SC-RARL and RARL, and (b) ESC-PPO,
ACC-RARL, ESC-RARL, and RARL with curriculum on target environment with gravity = −4.905
(0.5GEarth).

algorithms can recover control actions within time constraints without tailored heuristics and detailed
domain knowledge with sufficient training data.

Deep RL algorithms exploit the high representational capacity of neural networks to achieve more
efficient control behavior than MPC algorithms. However, the black-box optimization in deep RL leads
to the loss of intuition for the control behavior. Hence, a limitation of neural network-based policy
gradient algorithms, including our approach, is the lack of human interpretability. Conversely, MPC
is advantageous for control tasks that require specific modifications or human interpretations. Another
limitation of the proposed approaches is the space requirement. As the number of recording intervals
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(a)

(b)

Figure 14. Performance of (a) SC-PPO, ACC-RARL, SC-RARL and RARL, and (b) ACC-RARL,
ESC-RARL and ERARL on target environment with gravity = −14.715 (1.5GEarth).

and the complexity of the model increase, the space requirement increases. Tuning the intervals and
discarding the models based on validation in a proxy task can mitigate this problem.

Recent advances in deep RL and MPC accelerated the research in the real-world application of
legged locomotion. One promising work on the application of an optimization-based control algorithm
to a quadrupedal robot is ref. [44], where a data-driven approach is used to extract more sophisticated
heuristics with Regularized Predictive Control. Although sim-to-real RL is challenging, recent works
[8, 9, 10, 5, 11, 12, 13] show that RL algorithms are robust and applicable to real robotics platforms.
Gangapurwala et al. show promising results on the safety-critical robust application of model-free RL
on a real ANYmal quadruped robot using guided constrained policy optimization [5]. Similarly, we use
model-free RL to circumvent limitations of the estimations and constraints imposed on the dynamics
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(a)

(b)

Figure 15. Performance of (a) SC-PPO, ACC-RARL, SC-RARL and RARL, and (b) EACC-RARL,
ESC-RARL and ERARL on target environment with gravity = −17.1675 (1.75GEarth).

in MPC. In ref. [9], Li et al. used a model-free RL framework for locomotion of a real bipedal human-
sized Cassie robot. Using the policies trained in MuJoCo simulator, the Cassie robot can fast walk
outdoors, side walk, turn, recover from foot sliding, walk with unknown load, and on anti-slip and slip-
pery surfaces. Li et al. used domain randomization during training to increase robustness. The techniques
they used in the simulator include joint damping, noise injection, communication delay, modification of
ground friction and mass.

We hope to apply our methods to the Cassie robot for future work. Following the similar procedure in
ref. [9], we will use a high fidelity simulated environment before deploying the policy on the real robot.
In particular, we wish to replicate a modification of the friction and morphology experiments discussed
in this work.
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(a) (b)

(c)

Figure 16. Torque commands (Nm) for the source task.

(a) (b)

(c)

Figure 17. Torque commands (Nm) for the target task with torso mass = 1.

7. Conclusion
In this study, we propose a set of methods to extract generalizable knowledge from a single source task.
Training independently for each task is a customary sample inefficient process in deep RL. With each
environment interaction, the agent’s strategy of solving the source task is expected to advance. However,
we find that the transferability of these strategies to similar tasks relies significantly on the number of
environment interactions in the source task. The best strategy to solve the source task fails substantially
in the target task.
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Our experiments show that the performance of transfer RL algorithms is dramatically dependant on
the choice of hyperparameters and the number of policy iterations used in the training of the source task.
This dependency affects the reproducibility and evaluation accuracy of the algorithms in transfer RL.
We addressed this issue in 19 different transfer RL experiments to show how experimental results can
be manipulated in favor of an algorithm in the transfer RL domain.

In our work, we proposed keeping a policy buffer to capture different skills because source task
performance is not indicative of target task performance. Accordingly, transferring the policy with the
best source task performance to the target task becomes a less adequate evaluation technique as the
difference between the source and target task increases. In line with this, we suggest using a proxy
validation task to extract the generalizable policies. To account for the early stopping regularization
technique, we propose the inclusion of the policy iteration to the hyperparameter set. After this inclusion,
we have retrieved the generalizable skills that generate high rewards in the target tasks.

We introduced SC-PPO and early stopping as a regularization technique in transfer RL. Training
SC-PPO promotes the elimination of samples that overfit the source task. We experimentally show
that these robust policies generate a higher jumpstart performance than the baseline in the target
tasks. Using SC-PPO and early stopping, we transferred the forward locomotion skills of a standard
humanoid to humanoids with different morphologies (a taller humanoid, a shorter humanoid, and a
delivery humanoid), humanoids in environments with different gravities (0.5G, 1.5G, and 1.75G), and a
humanoid in an environment with 3.5 times the ground friction coefficient of the source task. Moreover,
our results show that we can increase the extrapolation range of Hopper morphology tasks from the
range of [2.5, 4.75] used in RARL to refs. [1, 6] via SC-PPO and early stopping. We applied the same
technique to transfer the skills of a hopper to the target task with gravity 1.5G.

We conducted a comparative analysis with RARL with different critic methods, entropy bonus, and
curriculum learning. Our results show that the choice of hyperparameters and training iteration affect the
generalization capacity substantially in adversarial RL. Using entropy regularized ACC-RARL and early
stopping via policy buffer, we have increased the extrapolation range of Hopper torso mass tasks from the
range of [2.5, 4.75] used in RARL to refs. [1, 9]. We prove that a hopper is capable of performing forward
locomotion in a target task in the range of [0.5G, 1.75G] by learning in the source task with regularized
adversarial RL. Using entropy regularized adversarial RL significantly increased the performance on
target tasks and the number of generalizable policies extracted from the source task.

We believe that the first step of determining the most promising policy parameters lies in the accurate
parameterization of the source and target task space. In the future, we plan to investigate the relationship
between the environment parameters and the source task training hyperparameters.
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A. Action spaces
A.1. Humanoid actions

Table VII. Humanoid actions.

Name Gear Armature Damping Range Stiffness Axis Position
Abdomen z 100 0.02 5 [−45,45] 20 [0 0 1] 0, 0, 0.065
Abdomen y 100 0.02 5 [−75,30] 10 [0 0 1] 0, 0, 0.065
Abdomen x 100 0.02 5 [−35,35] 10 [0 0 1] 0, 0, 0.1
Right hip x 100 0.01 5 [−25, 5] 10 [1 0 0] 0, 0, 0
Right hip z 100 0.01 5 [−60, 35] 10 [0 0 1] 0, 0, 0
Right hip y 300 0.0080 5 [−110, 20] 20 [0 1 0] 0, 0, 0
Right knee 200 0.0060 1 [−160, −2] 1 [0 −1 0] 0, 0, 0.02
Left hip x 100 0.01 5 [−25, 5] 10 [−1 0 0] 0, 0, 0
Left hip z 100 0.01 5 [−60, 35] 10 [0 0 −1] 0, 0, 0
Left hip y 300 0.01 5 [−110, 20] 20 [0 1 0] 0, 0, 0
Left knee 200 0.0060 1 [−160, −2] 1 [0 −1 0] 0, 0, 0.02
Right shoulder1 25 0.0068 1 [−85, 60] 1 [2 −1 1] 0, 0, 0
Right shoulder2 25 0.0051 1 [−85, 60] 1 [0 1 1] 0, 0, 0
Right elbow 25 0.0028 1 [−90, 50] 0 [0 −1 1] 0, 0, 0
Left shoulder1 25 0.0068 1 [−60, 85] 1 [2 −1 1] 0, 0, 0
Left shoulder2 25 0.0051 1 [−60, 85] 1 [0 1 1] 0, 0, 0
Left elbow 25 0.0028 1 [−90, 50] 0 [0 −1 −1] 0, 0, 0
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A.2. Hopper actions

Table VIII. Hopper actions.

Name Gear Armature Damping Range Axis Position
Thigh joint 200 1 1 [−150, 0] [0 −1 0] 0, 0, 1.05
Leg joint 200 1 1 [−150, 0] [0 −1 0] 0, 0, 0.6
Foot joint 200 1 1 [−45, 45] [0 −1 0] 0, 0, 0.1

B. Hyperparameters

Table IX. Source task training hyperparameters.

Hyperparameters Symbol Values
Clipping parameter ε 0.01 0.025 0.05 0.1 0.2 0.3
Batch size b 64 512
Step size α 0.0001 0.0003
Curriculum parameter χ 0.3 0.5
Learning schedule constant linear
Clipping schedule constant linear
Entropy coefficient βpro, βadv 0.01 0.03
Trajectory size H 2048
Discount γ 0.99
GAE parameter λ 0.95
Adam optimizer β1 0.9
Adam optimizer β2 0.999
Number of epochs 10
Number of hidden layers 2
Hidden layer size 64
Activation function tanh

C. Humanoid environment specifications
We use the reward function formulated in Open AI Gym [37], a toolkit used for comparing RL methods.
The reward function of the humanoid environment, rhumanoid [37], consists of a linear forward velocity
reward vfwd, a quadratic impact cost cimpact(s, a) with lower bound 10, a quadratic control cost, and an
alive bonus Cbonus.

rhumanoid(s, a) = 0.25 ∗ rvfwd + min(5 · 10−7 ∗ cimpact(s, a), 10) + 0.1 ∗ ccontrol(s, a) + Cbonus (C1)

If the z-coordinate of the center of mass of the agent is not in the interval [1, 2], the episode terminates.
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D. Hopper environment specifications
The reward function of the hopper environment in Open AI Gym [37] consists of linear forward velocity
reward vfwd, sum of squared actions

∑
a2, and an alive bonus Cbonus.

rhopper(s, a) = rvfwd − 0.001 ∗ ∑
a2 + Cbonus (D1)

E. Torque commands in the Hopper task
In this section, plots of the torque commands from the policy network trained with ACC-RARL are
provided in Figs. 16 and 17. The policy network outputs torque control commands to the hopper robot.
Joint names of the torque indices are given in Table VIII, Appendix A.2.

Cite this article: S. E. Ada, E. Ugur and H. L. Akin (2022). “Generalization in transfer learning: robust control of robot
locomotion”, Robotica 40, 3811–3836. https://doi.org/10.1017/S0263574722000625
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