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Abstract

We give a survey of some of the realisations that have been given of monogenic inverse semigroups
and discuss their relation to one another. We then analyse the representations by bijections, combined
under composition, of monogenic inverse semigroups, and classify these into isomorphism types. This
provides a particularly easy way of classifying monogenic inverse semigroups into isomorphism types.
Of interest is that we find two quite distinct representations by bijections of free monogenic inverse
semigroups and show that all such representations must contain one of these two representations. We
call a bijection of the forma, = a,,,,i = 1,2,...,r — 1, a finite link of length r, and one of the form
a;—a,,.,i=12,..., aforward link. The inverse of a forward link we call a backward link. Two
bijections u: A — B and r: C — D are said to be strongly disjointif AN C,AND,BNCand BN D
are each empty. The two distinct representations of a free monogenic inverse semigroup, that we have
Jjust referred to, are, first, such that its generator is the union of a countable set of finite links that are
pairwise strongly disjoint and whose lengths are unbounded and, second, such that its generator is the
strongly disjoint union of a forward link and a backward link. One of these two kinds of representa-
tions must be a strongly disjoint part of any representation of a free monogenic inverse semigroup, the
remaining part not affecting the isomorphism type. Each representation of a monogenic inverse
semigroup that is not free contains a strongly disjoint part, determining it to within isomorphism, that
is generated by either the strongly disjoint union of a finite link and a permutation or the strongly
disjoint union of a finite link and a forward link.

1980 Mathematics subject classification (Amer. Math. Soc.): 20 M 20, 20 M 30, 20 M 50.

1. Introduction

A monogenic inverse semigroup is an inverse semigroup generated by a single
element. If u is this element, generating the inverse semigroup [u], then, in [u], u
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has a unique inverse v, say, i.e. v satisfies, and is the sole element in [u] satisfying,
(1) uou=u and ovuw =v.

Moreover, [u] = {(u, v) (= ({u,v})), the semigroup generated by the two ele-
ments u and v, subject of course to the identities defining inverse semigroups.
Thus each element of [u] is a product of positive powers of u and its inverse v.
In fact every element of [u] can be written in the form v*u’v™, and we may also
impose the conditions

(2) O<k<!, O<smxgl, [>0;

and where, if k or m is zero, we interpret this to mean that the corresponding
factor is not present. This result is due to L. M. Gluskin (1957).

Before giving his proof, let us make some elementary remarks. For any x, y in
an inverse semigroup, we have

(3) (xp) " =yt
Hence, for n>0, (u")'=(u'! -u?--- ul)y=(u")" Define, for n> 0,
therefore,
(4) wr=(ut)" = (u)”

It follows that (4) also holds for negative powers. For applying (4) to u™!, we
have

-1\-n 117 _1yn\-1
()" = (™))" = (()")
ie. (u V) " =u"= (u"")"!, using (4) again (applied to u) for the last replace-
ment. Put —n = m in this, and we have
()" = um = (um)”
which is (4) for m < 0.
In particular, v" is the unique inverse of u”, and vice versa.

LEMMA 1 (Gluskin (1957), Lemma 1.2). In the inverse semigroup [u}, for any
natural numbers k, I, m, not all zero,

k+m—1

u , ifkzl<m,

dom ukv'=m ifk > 1> m,
uvu" = Ik ’

v, ifkgl<m,

v Rul' M ifk <1< m.

ProoF (Gluskin). We continue to use the convention that any power to degree
zero, of u or v, that arises, is regarded as not being present.
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Let k > [ Then if / = 0, or if m = 0, the inequalities ensure that the first two
equations hold. Otherwise,

ukvlum = uk—l+1(ul—lvl—l)(vu)um—1 — uk—1+lvu . ul*lvl—l . urnrl

= ukvl‘lum_l = ...

From this, by repetition if necessary, follow the first two equations of the lemma.
The third follows similarly by working from the right.
For the fourth equation, suppose first that (a) / < k + m. Then

ukvlum — ukvkvl—kul—kuk+m—l = Ul—kul—kukvkuk+m-l — vl~kulvkuk+m-l

= ol kylpi—m
by the second equation of the lemma, since/ > k and / > m.

Suppose secondly that (b) / > k + m. Setk’ =1 —k,m’=]— m. Thenk’ </
and m’ </, and / < k’ + m’. Hence, using the symmetry of the relationship
between u and v, we have, by (a), that

=k bpl—m k

vkl m = 1=kl (=

uv™ = ul~*yly

= ukplu™,

THEOREM 1 (Gluskin (1957), Theorem 1.3). Every element of [u] can be written
in the form

vkul™ withO < k<!, 0smxgl!, 1>0.

PROOF (Gluskin). By Lemma 1 the result is true for all elements of the form
u'v*u’, with r, s, t natural numbers. Applying the dual of Lemma 1 to elements of
the form v*uv/, we reduce them to the form u'v*u‘, whence, again by Lemma 1,
the result follows. Since [u] = (u, v), it follows therefore that it remains to prove
the result only for products of four powers, of ¥ and v in alternation. For
example, consider

x = v*u'v™u",

with k, /, m, n all natural numbers and all non-zero. In view of the truth of the
result for products with just three factors, we can assume that k < /and m < L.

Then, by Lemma 1,
I+n— .
wlomyn = {ul "_'", .lfm <n,
uv™™ ", ifm>=n,

which reduces x to the required form. The other possibility is dealt with similarly.

2. Free monogenic inverse semigroups
The following model is suggested by Theorem 1. Let N denote the natural

numbers, i.e. the non-negative integers. Denote by GA the set
GA = {(k,I,m)k,l,meN,k<l,m<l,1>0},
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and endow GA with a multiplication by defining
(k, l,m)(k’, I', m)
=(k+n—IAnl+l'+n—IAn~U'Anm +n-1 An),

where n = m + k’. It may be checked that GA is then an inverse semigroup and
that, if we set u = (0,1,0), then GA = [u]. We then have v = u~! = (1,1,1),
u' = (0, 1,0), v* = (k, k, k) and, if k, I, m satisfy (1.2),

(1) vkulv™ = (k, 1, m).
Moreover,
(2) (k,l,m) " =(=m, 1 1-k).

This latter result follows by direct computation, or from Lemma 1.1, using (1).
For from (1) we have

(k, 1, m)™ = (vkulom) ™ = (0m) 7 (u!) ()
= umpluk
= v'""u'~%, by Lemma 1.1
=({-m,l,1-k).
The idempotents of GA are the elements,
(3) (k, k +m,m).

In particular,

(k, L, m)(k,1,m)™" = (k, 1,1 - k),

“ (k, l,m)-l(k, Lm)=(—-m,1, m).

Gluskin’s paper (1957) was devoted to classifying the different possible kinds of
monogenic inverse semigroup, and he did this by investigating what equations
could hold connecting two of the elements v*u'v™. The existence of the model GA
shows that all the elements v*u'v™, satisfying (1.2), may be distinct. It follows
that, since there is a free inverse semigroup on one generator, GA is this free
inverse semigroup.

In a later paper (1961) Gluskin approached the same topic afresh and began
with the consideration, not of an arbitrary monogenic inverse semigroup [u«], but
with the semigroup that we now define and call GB. Let Z denote the set of
integers, and, as before, N the non-negative integers. Then define

GB= {(k,I,m)eNXZXNk+!eNI+meNk+1!+m>0}
with the multiplication

(k, L, m)(K', U, m)y = (kv (K =1),1+1',m" V(m—1)).
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It may be straightforwardly checked that GB is an inverse semigroup generated
by the element u = (0,1,0). Here v = ™! = (1,-1,1), u’ = (0, ,0), v' = (J, -, ])
and, if &, /, m satisfy (1.2),

(5) viulvm = (k, 1 — m — k, m).
Moreover,

(6) (k,I,m)™" = (k+1,-1,1+ m),
and the idempotents of GB are precisely the elements

(7 (k,0,m).

In particular,
®) (k, 1, m)(k, 1, m)™ = (k0,14 m)
(k, 1, m) (k,1,m) = (k + 1,0, m).
The product in the semigroup GB is simpler than that in the semigroup G4, but
the representation of v*u’v™ by (k, ! — m — k, m) in GB as against (k, [, m) in
GA is a little more artificial. As has been implied by the discussion we have

LEMMA 1. GA is isomoprhic to GB under the isomorphism
(k,l,m)— ((k,]1— m -k, m)),

the inverse of which is
(52%) ((k,l,m))y = (k, k+1+m, m).

(We have used double parentheses to indicate elements of GB, retaining single
parentheses for elements of GA.)

In his papers (1957) and (1961) Gluskin was discussing, except for a generaliza-
tion that we shall refer to shortly, solely monogenic inverse semigroups. In (1973)
H. E. Scheiblich gave a construction for an arbitrary free inverse semigroup with,
of course, as a special case that of the free monogenic inverse semigroup. For the
monogenic inverse semigroup Scheiblich’s construction can be regarded as inter-
preting the element v*u’v™ of [u] as an ordered pair consisting of a finite interval
of integers, straddling the origin, together with some integer from this interval.
Indeed, set

SC = {([-a,b);n)|la,bE N,a+b>0,n € [-a,b]},
where [x, y]is defined, for x, y € N, to be the set of integers {z|x < z < y}, and
endow SC with a product thus:

9)  ([-a,b]; n)([-a’, b'}; ) = ([-a, ] U(n +[-a’, b']); n + n’).

Then SC becomes thereby an inverse semigroup generated by u = ([0, 1]; 1).
Thenv = u! = ([-1,0]; -1), u' = ([0,1]; 1), o/ = ([-1,0]; -1), and, if k, I, m satisfy
(1.2),

(10) vkulm = ([-k, 1 — k];1— k — m).
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Moreover,

(11)  ([-a,b];n)" = ([-n — a,-n + b]; n) = (-n +[-a, b]; —n).
The idempotents of SC are just the elements

(12) ([-a, 5};0).

In particular,

([-a, b]; n)([-a, b]; )™ = ([-a, b];0)

(13) o
([-a,b]; n) ([~a,b]; n) = (-n +[-a, b];0).

LEMMA 2. The mappings

(10a) (k,l,m)—> ([-k, I -k}, 1 -k —m)
and
(10b) ((k, I, m)) = ([-k, 1 + m]; 1)

are isomorphisms of GA upon SC and of GB upon SC, respectively. The inverses of
(10a) and (10b) are (10a") and (10V'), respectively, given by

(10a") ([-a,b];n) > (a,a+ b, b — n)
and
(10b") ([-a, b]; n) = ((a, n, b — n)).

We commented earlier in this section that GA must be the free inverse
semigroup on one generator. That it is free also follows from its isomorphism with
SC, once it has been shown that SC is free. We now give another way of showing
freedom directly, and the following lemma is what we need.

LEMMA 3. Let [u] be any monogenic inverse semigroup. Let w and w’ be any two
elements of [u}, so that, by Theorem 1.1, there exist k,l, m and k', l’, m’, each

satifying conditions (1.2), such that w = vfu'v™, and w’ = v*'u’v™. Then ww’ = w”’
k

= 0¥ u"v™" where
k"=k+n—-1An,
I"=1l+1'+n—=1IAn-1 An,
m’'=m'"+n—-1 An,

and where n is written form + k’.
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PROOF (after Eberhart and Selden (1972)). Set x = 0%,y = u’, z = v™, x’ = V¥,
y’ = u”,z’ = v™. Then, applying Lemma 1.1, we obtain

y(zx/)yr = ulvm+k’ul — ulvnul'
[+ —n . ,
u , flzng/l,
_ Jub ! iflznzl,
"ty iflgsngl,
vyl iflsnz .
Thus
ww' = x(uv"u")z’
= o (uhomu) o™
vyl flznzl,
_okufpm =t iflznz/l,
peFr=lyfpm ifi<sn<g/!,
Uk+n—1unvm’+n—l” Ifl <n> 1/.

It is now a straightforward matter to check that the given formula covers all these
cases.

As a corollary we have

THEOREM 1. Each of the semigroups GA, GB and SC is a free inverse semigroup
on one generator.

PROOF. Let us work with GA. Consider the mapping
(k, 1, m) > vkuo™

of GA into [u], an arbitrary monogenic inverse semigroup. Because of Lemma 4,
and because of the definition of multiplication in GA, this mapping is the unique
extension to GA of the mapping (0,1,0) — u, and by Lemma 4 it is a morphism.
Hence GA is free.

D. B. McAlister and R. McFadden also construct free, and hence free mono-
genic, inverse semigroups in their paper (1974), as a special case of what are now
called their P-semigroups (1974). W. D. Munn (1974), independently of Scheib-
lich, found a graph-theoretic representation of free inverse semigroups which we
now describe for the special case of monogenic semigroups.

In general Munn used what he called birooted trees, but for the one-generator
case, these reduce to a straight line, divided into a finite number of segments,
separated by vertices, their end-points, and with two distinguished vertices,
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Consider an element v*u'v™ of GA. Munn’s construction associates with this an
initial vertex a, say, and a final vertex f8, say. Starting from « (let us consider the
line of segments as being horizontally drawn on the page), the (line) graph is
constructed by first drawing k equal segments to the left, and then moving to the
right through / segments. Remembering that / > k, this takes us either back to the
starting vertex a, or gives us / — k segments drawn to the right of «. Finally, to
obtain the vertex 8, we move again to the left through m segments.

k m
/—*\ /-*\
o—0 -.-+- 0O—0—0—0 o——0—o0 -+ - 0—0

The number k, the first component of (k, /, m), represents the number of
segments to the left of the initial vertex a, / represents the length of (total number
of segments in) the line, and m represents the number of segments to the right of
the final vertex 8.

The product of two elements (k, /, m) and (k’, I, m’) of GA can be obtained
from their graphs: just make the initial vertex a’ of the graph of (k', /', m")
coincide with the final vertex B8 for (k,/, m), and superimpose the graph of
(k’, I', m’) upon that of (k, /, m), regarding « as the initial and B8’ as the final
vertex of the graph of the product (k,/, m}(k’,!I’, m’) in GA. Then the first
component of the product is the number of segments to the left of &« in the
superposed pair of graphs, the second component is the total length of the graphs,
and the third component is the number of segments to the right of 8’

Apart from giving this mechanical way of computing products, Munn’s repre-
sentation has a further advantage. In discussing G4, GB and SC we worked in
terms of canonical forms, unique ways of expressing each element of the semi-
group. But in practice the elements of a free inverse semigroup do not turn up in
their canonical forms and have to be reduced to them. Munn’s construction
provides an easy way to do this. For Munn proved, and the generalization of this
is the key to the usefulness of his construction for the general free inverse
semigroup, that you always get the same graph for any two representations of the
same word. For example v*u*® = (0’ u’ u2?)v? = (u2? ) (03 u?)v? = uiu®?,
since idempotents commute. The graph for u%’u’v? is formed, starting with a, by
first drawing two segments to the right, for 2, then going five segments to the
left, so going back over the first two, and then drawing another three, for p®; then
back to the right across three segments, for «*, and finally going two left to reach
the terminal vertex S8, for the final factor v.
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2
5 uzvsu“vz
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2
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We get the same graph for v*>u%* formed in the canonical way that we began
by describing.

Another approach, due to the author, to free inverse semigroups, may be found
in Preston (1973). When applied to monogenic inverse semigroups this approach
equivalently identifies the free monogenic inverse semigroup as the set

F={(-Ln,m)lb,neNmeZn+1>0,-I<m<n)
endowed with a multiplication
(-L,n,m)(-',n, m)=(-IA(m=1),n A(m+n'),m + m').

This description is virtually identical with that of Scheiblich (see (9)) described
earlier.

3. Possible generalizations

In the semigroups GA and GB the operations + and — , and V for maximum,
on the integers, are used to define the product. In his paper (1961) Gluskin begins
by considering an arbitrary totally ordered abelian group G, say, and defines a
producton G? = G X G X G by

(k, Lm)(k', I',m’)y = (kV(k' = 1)1+, m' v (m-1)),

a form identical to that used to define GB earlier. He notes that G* thereby
becomes an inverse semigroup, in which, as for GB,

(k,L,m) = (k+1,-1,1+ m),

https://doi.org/10.1017/51446788700027543 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700027543

330 G. B. Preston [10]

and idempotents are the elements
(k,0, m).
Moreover G* has an inverse subsemigroup H *(G), defined by
H*(G)={(k,I,m)€G|lk=>0,m>0,k+[>0,/+m>0,k+1+m>0}.
When G = Z, then H*(G) = GB.
Let us look at associativity more closely. The definition of product gives
((k, 1, m)(k’, I, m)) (K", 17, m”
=((kVv(k'=D) V(K" =(I+ 1), (+1D)+1",
mV (m' v (m = 1)) = 1))
and
(k, l,m)((k', ", m' )K", 1”7, m"))
=(kVv({(k' V(K" =1)=1),1+('+ 1),
(m”" v(m =1") v(im ="+ 1)).
If k&, I, m belong to an additive group, then for these to be equal we require
(kv(k' =) Vv(k"=(+1I)=kVv((kVv(k'=1))=1),
m' vV((m' v(im=10))=1")=(m'v(m =1") v(im—~(I'+1")).

As identities, required to hold for associativity, these two are the same, provided
that addition is commutative. They both hold when, for all k', k", I, I, we have

(k' v (k" = 1)) = 1= (k' = 1) v(k" —=(I+I');

in other words, it suffices that the partial order, with respect to which finite least
upper bounds exist, is compatible with subtraction.

Any partially ordered group, i.e. a group with a compatible partial order, and
which forms a semilattice (upper or lower) under this partial order, is necessarily
a lattice, indeed a distributive lattice, and addition and subtraction are compati-
ble with the meet and join operations of the lattice. This holds whether or not the
group operation is commutative. (See Dubriel-Jacotin, Lesieur and Croisot (1953),
Theorems 12 and 17, pp. 147-148.) Hence, for G any partially ordered abelian
group such that the partial order forms a semilattice (and hence a lattice), the
operation we have defined on G* makes G* an inverse semigroup of which H*(G)
is an inverse subsemigroup.

Similar remarks apply to generalizing GA. However, G4 can be generalized in a
quite different way, the way that Eberhart and Selden (1972) approached what
they called one-parameter inverse semigroups, of which monogenic inverse semi-
groups with identity are a special case.
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Eberhart and Selden begin with the multiplicative group R™* of positive real
numbers, they take a subgroup G of R* and let P = {x € G|x > 1}. For each P
they construct the free inverse semigroup Fp generated by P, in the sense that
there is a morphism f: P — Fj, such that Pf generates Fp, and that,if g: P - S'is
a morphism from P to any inverse semigroup S, then there exists a unique
morphism @, say, making the following diagram commute.

/
P—1—F,
Xla
S

In fact F, has a formal structure directly analogous to G4 and is indeed one of
the generalizations of GA for which the group G is totally ordered, as indicated
earlier.

There is an interesting comment on the connexion between the Eberhart-Selden
approach to monogenic inverse semigroups and the Scheiblich construction CS in
the review by D. B. McAlister (1973).

4. Representations

Our main purpose is to analyse the representations of monogenic inverse
semigroups. We then use our results to classify the isomorphism types of
monogenic inverse semigroups, providing thereby an alternative approach to the
results of Gluskin (1957), (1961), and also showing which of the types he listed
actually occur.

We first establish some facts about the representations of monogenic inverse
semigroups that we shall find convenient to use later. In his paper (1957) Munn
considered the representations, by bijective mappings, of elements of a finite
inverse semigroup. The situation for elements of an infinite inverse semigroup can
be dealt with very similarly.

Following Munn, let us call a finite link of length s a mapping

a4 d. - a
N aa )
where {a,, a,,...,a,} is a set with s elements, and where the notation means that
Aja;,—a;, ,fori=12_...5— 1 Then, forl <t <s, wehave
N =( a; a as—t)’

s Ay Ayyy a

and N, = [, the empty mapping, for 7 > s.
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The inverse of A is also a finite link of length 5. To see this, merely observe

that
A_l = ( a as_ o (12)
s a,1 4,2 0 G4 )
A mapping A of the form
A _ al az LY ak ...
a2 a3 R ak+1 ... b

where a,, a,,...,a,,..., us a countably infinite sequence of distinct elements, will
be called a forward link. Here

¢ _ al a2 “ e )
A (a1+t Arve "
_[ % vy a, 4y, a, 4y -
- (01+: Ayy2¢ " ) U(“2+: Ayiae " ) Y U(“zr as )’
a union of ¢t forward links. Notice that any two of these forward links have
disjoint domains and disjoint ranges and, moreover, are such that each domain is
disjoint from each range of the other links. Any two bijections u: 4 — B and v:
C — D with these properties, i.e. such that A N C, BN D, A N D and BN C are
each empty, or, equivalently, such that (4 U B) N (C U D) is empty, will be said
to be strongly disjoint.
Notice that A™! is not a forward link. A property of a forward link is that the

domain of all powers X, ¢ > 1, is the same as that of A, while the range of X" has ¢
less elements than that of A. A mapping of the form of A 1, viz.

— b2b3b4 bk+1
F=\ bbb, -+ b,

will be called a backward link. The range of all powers of p is the same as that of
p. As for forward links, the power p' of the backward link g, is the union of ¢
strongly disjoint backward links.

Forward and backward links will be called infinite links; infinite links and
finite links will generally be called links.

LEMMA 1. Let u: A — B be a bijection of A upon B. Then u can be decomposed
into a strongly disjoint union of a uniquely determined set of finite links, forward
links, backward links, and a permutation.

PROOF.Set X = A\ B,Z=B\Aand Y = 4N B.

Let a, € X. If a,u € Z, then (a,u)u does not exist. If a,u € Y, then au’
exists. Write a;u’ = a, ;. There are two possibilities: either (a) there exists a least
r (> 1) such that a,u” does not exist, or (b) all a,u’ exist. In case (a), part of the
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mapping u is the finite link of length r

o
Ao a

r

Here, a,, a,,...,a,_, all belong to Y, and a, € Z. In case (b), we get an (infinite)

forward link
_(may, - a
A_(‘1203 . .0 ak+1 -.-)

that is part of the mapping u.

If there are any further elements of X which are not in the domain of A, then
we select one of them and proceed as before. We obtain another link «, say, which
is either a finite or a forward link, and, because u is a bijection no element in its
domain or range can be an element of the domain or range, respectively, of A.
Moreover, any element of the range of A is either in the domain of A or belongs to
Z (and so belongs to the domain of no part of u). So the range of A does not meet
the domain of «, and vice versa. Hence A and « are strongly disjoint. We continue
like this until X is exhausted.

If all the elements of Z have not been used up, we select one of them and then
proceed as above, but for the mapping « ! instead of u. In other words, we take
the inverses of the links we have already isolated from u, giving finite links and
backward links of u~!, and then, starting from unused elements of Z, we obtain
by the above process any further finite links and forward links of «~!. There can
be no finite links left, because their inverses are finite links of u, and we have
obtained all of these. The forward links we obtain determine the backward links
of u.

If any elements of 4 remain unused, they must be elements of ¥; and their
images under ¥ must also be elements of Y; and none of these elements left
unused has occurred either in the domain or the range of the links, forward,
backward or finite, that we have so far constructed. So the set of elements of Y
yet to be used must be mapped bijectively upon itself by u. Thus this remaining
action of u is a permutation and is strongly disjoint from each link.

LEMMA 2. Let A, i = 1,2,...,k, be finite links, of lengths ry < r, < -+ <1y,
respectively, that are pairwise strongly disjoint. Let u = A, UA, U --- U X, and
set X, = p. Then the inverse semigroups [u] and [p.] are isomorphic.

PROOF. Set A\, UA,U -+ UX,_;=0.Thusu=oUp=pUoq. Setul =0,
o l=1,u!=v,r, =r Letfi[p] — [u] be the mapping
pk”IVm — v"u’v'",

where (k, [, m) satisfies (1.2). We first show that this is a well-defined mapping.
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Suppose that
u a,a, a,
a,a; a, p
so that
a, a,
,[=
a, a,
Then
il a, o Gga\f 4 a4\ a, T G
vouvs =
a, a, |\ag,, a, |\a,_, a
_|Gr-u-0 T Gk & e a, )\ a4, T 8
ar—l DRI al al+l .« e ar ar—m - e al
(since k < /)
G-y T Gk 4 a4\ &, al+1)
a,y a \%Ge 0 4 \G . 7 Gy
(sincem < 1)
a, -k T Ay
G m a1+(l—m) ’

and this holds for / < r — 1. If I > r, then »*u/»y™ = O, the empty mapping.

Now it follows from this equation that, if v*u'v™ = v*u"v™, where k, I, m and
k’, I’, m’ both satisfy (1.2), then this equation holds independently of the value of
r, provided that r > /. If r < I, the equation necessarily holds, since then both
sides equal 1.

Thus, since r =r, 2 r,_, > -+ > r, the equality »*u'»™ = »*u'»™ implies
that t%6'r™ = 7¥6"7™'. Hence the mapping f is well-defined.

Clearly f is a morphism by Lemma 2.3, and by Theorem 1.1 it is onto [u].
Suppose that (v*u'v™)f = (v*u"v™)f. Then, since o is strongly disjoint from u,

we must have v*u'v™ = pky/p™,

LEMMA 3. Let u be the union of the strongly disjoint forward links A(i), i € I. Let
A be any (specific) one of these links. Then [u] is isomorphic to [A].

PROOF. Let

A_ ala2 « an PR
a2a3 “ .. a"+1 “ee
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and set p = AL, Then, taking k, /, m to satisfy (1.2), we have

ki, m
pAp
_ al+k Y at+k .. al az . o 0w at « v o» a1+m « o=
al Y at ... a1+1 a2+l . e a’+l . o al o« v
I K Ly Y T
al+l « o a1+1 « s . al ...
Qv " 41 .
= ... | (sincem <)
ay 4y AQivi—m

=( a4k Ark )
Asiem 7 Qypem )
Hence p*Np™ = p¥Nu™ if and only if k=k' and / — m =/ — m’. This
applies for each of the forward links A (7). Hence
pENp™ s ok ylpm,
where v = u~', is an isomorphism.
Part of what has been proved above is worth isolating for future use.

1

LEMMA 4. Let X be a forward link and set p = X\°1. Then, if k, [, m and k', I', m’
each satisfy conditions (1.2), we have
p‘kxlp'm — Mk'AI'le'
ifandonly ifk = k' andl —m=1 —m".

As a dual to Lemma 3, we have

LEMMA 5. Let u be the union of the strongly disjoint backward links p(i), i € I.
Let p. be any specific one of these links. Then [u] is isomorphic to [p].

Again we wish to note the analogue to Lemma 4.

LEMMA 6. Let p be a backward link and set A\ = p~'. Then, if k,l, m and
k’, I', m’ each satisfy conditions (1.2), we have
AkﬂIAm = )\klp,llN"l
ifandonlyifm=m'andl — k=1 - k'.

THEOREM 1. Let u be the union of strongly disjoint finite links of unbounded
lengths. Then [u] is a free inverse semigroup.

Proor. If
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and v = p7}, as in the proof of Lemma 2, then, with k, /, m satisfying (1.2), we
have

phylym — Ar—(1-k) At ‘

a,_m a3 +(i-m)

Hence, if r is large enough, we have »*u/y™ = »*u»™ if and only if

I—k=1I-k, m=m, k=K, I-m=1I—-—m,
ie.if and only if (k, [, m) = (k’, I’, m’).

Now, setting v = u~!, we have v*u’v™ = v*'u’v™ if and only if the correspond-
ing equation holds for each of the strongly disjoint links whose union is u. Since
these are of unbounded length, it follows that k = k', / = I’, m = m’. Hence [u] is
isomorphic to GA (or GB or SC), which we have seen to be free.

A point from the proof of Lemma 2 is perhaps worth emphasising: namely we
have obtained Corollary 5 of Djad¢enko and Sain (1974).

THEOREM 2. Let A be a link of length r. Then [N\ has 1 + 22 + 32 + -+ + r?
= tr(r + 1)2r + 1) elements.

PrOOF. The proof of Lemma 2 involved showing, incidentally, that the ele-
ments v*u’v™ for I < r — 1 were all distinct. For / = r, X is the empty mapping.
The result follows.

A second point worth noting is

THEOREM 3. Let A be a forward link and p a backward link. Then [A] = [p], and
each is isomorphic to the bicycle semigroup.

PROOF. [p] is equally generated by p~!, and p~! is a forward link. Hence
[n] = [A]
Suppose that

aa, - a, -
S P |
Then AX"! = 1, the identity on {a,, a,,...}, and so an identity for the semigroup
[A]. Moreover AIA = 1, the identity on A4, where 4 = {a,, ay,...}. So A'A <
AA! = 1. Hence, by Lemma 1.31 of Clifford and Preston (1961), [A] is a bicyclic
semigroup.

We can also use the techniques developed to prove

THEOREM 4. Let A be a forward link and o a backward link strongly disjoint from
A. Let u = XA U o. Then [u] is a free inverse semigroup.
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PrROOF. Set v = u™!, p =X, 7 =071 Then v*uv™ = p*Np™ U 7%c'r™. The
elements of [u] can all be written in the form v*u’v™ with k, /, m satisfying
conditions (1.2). It will suffice to prove that no two such elements are equal.

Suppose then that v¥uv™ = v*'u'v™; then pkNp™ = p*Np™" and tke'rm =
8elr™.

From Lemma 4, the first of these equations implies that k = k" and { — m =
I’ — m’. Taking inverses in the second equation to give 6™r's* = 0™7/6*", and
again applying Lemma 4, we obtain m = m’ and / — k = I’ — k’. Alternatively,

we may use Lemma 6. Hence we have (k, [, m) = (k', I', m’).

THEOREM 5. Let A be a forward link and let ¢ be a permutation strongly disjoint
from \. Then [A U o] = [A). The result also holds if X is a backward link.

PROOF. Set u =AU 0, v = u"}, = X1 As in Theorem 4, it suffices to show
that, for k, I, m and k', I’, m’ each satisfying conditions (1.2), v¥u’v™ = v¥'u’v™ if
and only if p*Np™ = p*Nu™,

Suppose pfNp™ = p*N'p™. Then, by Lemma 4, k =k’ and [ —m =1’ — m’.
Hence

Ukulvm = p'kAl’_"m U o—kolo-m
= p‘kAl‘um U al—k—m
= g™ U ol K-
= vk 'u'v™.
The reverse implication holds because A and ¢ are strongly disjoint.
As an extension of the isomorphism given in Theorem 3, we have

THEOREM 6. Let A be a forward link, p a backward link, ¢ a finite link of length r
strongly disjoint from X\ and  a finite link of length r strongly disjoint from u. Then
[6 U= [y U pl

PrOOF. As for Theorem 3 this result follows immediately from the observation
that [¢ U Al is also generated by (¢ U A)~L.

The result of the next lemma we have to use several times.

LEMMA 7. Let u, v, w be strongly disjoint bijections such that [u U v] = [v]. Then
[uvovuUw]l=[vuwl

PROOF. Since w is strongly disjoint from u U v, the isomorphism between
[u U v] and [v] extends immediately to an isomorphism between [ U v U w] and
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[v U w]), if we use the fact that (u U v U w) K(uUvUw)(uUovUw)y ™=
(u U 0) *(u U v)(uU o)™ U wk w!w™ and if we note that this latter union is
also strongly disjoint.

As an immediate corollary we have

LEMMA 8. Let u be a bijection that generates a free inverse semigroup. Let w be a
bijection strongly disjoint from u. Then [u U w] is free.

We have now in fact isolated all the distinct isomorphism types of monogenic
inverse semigroups. We state this as the next theorem, but first define the types.
In these definitions r denotes an integer > 1 giving the length of a finite link
involved in the definition, and s denotes an integer > 1 or can be infinite,
denoted oo, being the order of an element of a group.

Type (r, s): isomorphic to an inverse semigroup generated by the strongly
disjoint union of a finite link of length r and a permutation of order s. If u is such
a union, then the semigroup (u) (in constrast to the inverse semigroup [u]) is a
cyclic (i.e. monogenic) semigroup of index r and period s (in the terminology of
Clifford and Preston (1961)). So we call r the index and s the period of a
semigroup of type (r, s).

Type (r, Fwd): isomorphic to an inverse semigroup generated by a finite link of
length r and a strongly disjoint forward link (or, by Theorem 6, a finite link of
length r and a strongly disjoint backward link).

Type FI: a free monogenic inverse semigroup.

THEOREM 7. Let [u] be a monogenic inverse semigroup, generated by u. Then [u]
is of one of the types (r, s), (r,Fwd), FI. Moreover, these isomorphism types are
distinct.

PrOOF. By taking some faithful representation of [u] we can suppose that u is a
bijection. Hence, by Lemma 1, # can be decomposed, uniquely, into a strongly
disjoint union of a set {¢,|i € I'} of finite links, a set {A |j € J} of forward
links, a set { 1, |k € K} of backward links and a permutation o, say. Set U ¢, = ¢,
UA, =AandUp, = p.

Because of Lemmas 3 and 7, the isomorphism type of {«] is unchanged if, when
J # 0O, we replace A by any one of the A ;. We do this and may assume therefore
that either J is empty or that J = {1}. Similarly, by Lemmas 5 and 7, we may
assume that either K'is empty or K = {1}.

For the ¢, there are two possibilities: either there is a ¢, of maximal length or
not. In the first event, by Lemmas 2 and 7, we may, without changing the
isomorphism type of [u], replace the set of ¢, by any single ¢, which has maximal
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length. In the second event, by Lemma 8, we may, again preserving the isomor-
phism type of [u], replace the ¢, by a subsequence of finite links of unbounded
lengths.

Let us deal with this final case first: by Lemma 8 and Theorem 1, [u] is then
isomorphic to [¢], a union of a sequence of finite links of unbounded lengths, and
is free, i.e. of type FI.

There is another case leading to this isomorphism type, namely that when J and
K are each non-empty. In that event, as we have assumed, ¥ contains the bijection
A, U p, which, by Theorem 4, generates a free inverse semigroup. Hence, by
Lemma 8, [«] is of type FI.

For the remaining cases, consider first when J and K are both empty; then
[u] = [¢ U o], where ¢ is a single finite link. So [u] is of type (7, s), where r is the
length of ¢ and s is the order of 6. We can always assume that ¢ and o are both
present, if necessary, by taking r = 1, so that ¢ is the empty mapping, or by
taking o to be the permutation of the empty set.

Suppose then that J = {1} and K is empty. Thus u = ¢ U A, U o, a strongly
disjoint union of a finite link, a forward link and a permutation. By Theorem 5,
[A; U a] = [A,]. Hence by Lemma 7, [u] = [¢ U A,] and so is of type (r, Fwd),
where r is the length of ¢.

If K = {1} and J is empty, then similarly [u] = [¢ U p], where ¢ is a finite link
of length r, say, and where p is a strongly disjoint backward link. By Theorem 6,
fu] is therefore of type (r, Fwd).

We have dealt with all possibilities.

It remains to show that the isomorphism types are distinct. We do this by
appealing to equations that hold in the various types that Gluskin (1957) and
ErSova (1961) have in fact used to characterize the types.

Let u = ¢ U A, a strongly disjoint union of a finite link ¢ of length r and a
forward link A. Set v = u~!. Then it is easily calculated that

(1) wu=u',
but that
(2) wu # u®, ifl<s<r.

Equation (1) also immediately implies, by left multiplying by the apprpriate
power of u, that

(3) u'w=u', ift>r.

Equation (3), combined with the inequalities (2), immediately leads to the
conclusion that the isomorphism types (r, Fwd) are distinct for distinct values of
r.

Again our representation of a free monogenic inverse semigroup as, for
example, a strongly disjoint union of a sequence of finite links of unbounded
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lengths immediately shows that no equation (1) is satisfied in a semigroup of type
FI.

Consider now those of type (r, s) for s finite, so that we may take u = ¢ U o as
a generator, where ¢ is a finite link of length r and o is a permutation of finite
order s. Then it is easily calculated that
( 4) ur+s =y’
and that r + s is the least power of # equal to a smaller power, so that both r and
s are uniquely determined by this equation. It follows immediately, for s finite,
that semigroups of types (r, s) and (7', s") are isomorphic if and only if r = r’
and s = s’. Moreover, it is easily calculated that no equation (4) is satisfied in a
semigroup of type (r, Fwd) or of type FI.

It remains to consider those of type (r, ). Suppose u = ¢ U o, where ¢ is a
finite link of length r strongly disjoint from o, a permutation of infinite order. Set
v = u~}, as before. Then, by an easy calculation, we have
(5) vuu’” = uuw
and

vuu® + uuv, 1<s<r.
Hence, immediately, monogenic inverse semigroups of type (r, oo), for distinct r,
are not isomorphic.

Our representations of semigroups of type FI immediately show that no
equations (5) hold in these semigroups.

We know that in an inverse semigroup of type (r, Fwd) equation (1) holds; but
it is quickly checked that vuu® = u® holds for no s > 1 when u is the strongly
disjoint union of a finite link and a forward link. Hence, in particular, equation
(5) does not hold.

The proof of the theorem is complete.

COROLLARY (TO THE PROOF). The distinct types of monogenic inverse semigroup
[u] can be characterized as follows (where v = u™):
Type (r,s), s finite: satisfy u™** = u’, with r + s the minimum such natural
number.
Type (r, o0): satisfy vuu" = u"uv, with r the least such natural number.
Type (r,Fwd): satisfy either (a) u"uv = u’, with r the least such natural number,
and with vuu® + u’ for all s =2 1; or (b) vuu" = u’, with r the least such natural
number, and with u’uv # u’ for all s > 1.
Type FI: satisfy for no r or s > 1, any of the equations satisfied by the other types.

ProoF. The only point perhaps requiring comment is that alternative char-

acterizations are given to type (r, Fwd). This results from Theorem 6; for a
semigroup of type (r, Fwd) is generated by an element that can be regarded as a

https://doi.org/10.1017/51446788700027543 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700027543

[21] Monogenic inverse semigroups 341

strongly disjoint union of a finite link and either a forward link or a backward
link. Characterization (a) results from taking the first alternative, and (b) from the
second alternative.

The proof of the corollary is complete.

Of course each of (a) and (b) in the above corollary results from the other by
replacing u by its inverse. In this sense the other characterizations, for types (r, 5),
are self-dual.

It is also worth noting that the representations that we have obtained for the
different types enable us quickly to calculate that x"** = x” is an identity for
monogenic inverse semigroups of type (r, s), with s finite, and that x xx" =
x"xx1is an identity for those of type (r, c0). (This latter is also an identity for
type (1, s), with s finite.) Hence, the monogenic inverse semigroups of type (r, s),
with s finite or infinite, are free inverse semigroups with one generator in the
variety of inverse semigroups determined, respectively, by these identities.

The equation x"xx~! = x” is not an identity for monogenic semigroups of type
(r, Fwd); for if it were, then v'vu = v” would hold, which by taking inverses gives
u” = puu’, a contradiction. A similar statement holds for the alternative char-
acterization (b) of the corollary.

Addendum

Since this paper was written, J. B. Conway, J. Duncan and A. L. T. Paterson, in
Section 1 of their paper (1984), ‘Monogenic inverse semigroups and their C*-
algebras’, have obtained the same classification results for monogenic inverse
semigroups, by using results from operator theory on the decomposition of partial
power isometries on a Hilbert space.
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