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Abstract

Unfolding is a common technique in program transformations. Here, we present a computation
model where unfolding is a simple generalisation of the usual concept of evaluation. The
model is a variant of the well-known full substitution evaluation rule for recursive programs.
The evaluation mechanism involved is symbolic substitution of function definitions followed
by simplification. Simplification is expressed as a confluent rewrite strategy which uses three
kinds of reductions: ^-reduction, non-erasing reduction, and erasing reduction. Non-erasing
reductions include simplification of constant subexpressions. Erasing reductions formalize
the behaviour of nonstrict operations. In this computation model, we prove a termination
theorem of symbolic unfolding relative to more instantiated calls. A possible application of
the model is a technique called total unfolding, where a partially instantiated function call is
unfolded until no more calls exist. Under certain conditions the result will be a first order
term: such terms correspond to basic blocks in imperative programs and can be efficiently
implemented by scheduling techniques. Possible applications are hardware synthesis, and code
generation for parallel machines.

Capsule Review

Symbolic evaluation of functional expressions with respect to a recursive program scheme is
a key technique in partial evaluation, and if the result is a first order term it may be applied
in hardware synthesis, and code generation for parallel machines. It is a difficult question, in
general, when to stop evaluation, and whether it will lead to a first order term.

Bjorn Lisper formalizes the computation process as full substitution with three kinds of
simplification: besides ordinary ^-reduction he considers reductions defined by term-rewriting
systems in which the rules are either non-erasing or erasing, where the latter may describe
non-strict operations.

Using this model it is possible to prove that under certain conditions the result will be a
first order term. Sufficient conditions for the termination of unfolding are also given, and the
question of correctness of total unfolding is considered.

The paper presents an interesting combination of techniques from applicative program
schemes, typed A-calculus, and term rewriting systems.
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1 Introduction

Operational semantics for applicative languages can be given by term rewriting
systems. An example is recursive applicative program schemes, where recursive func-
tion definitions are considered as rewrite rules, possibly accompanied by additional
rules that model 'basic operations' in the language. See Courcelle (1990) for a thor-
ough introduction. Recursive applicative program schemes have been used to prove
properties of different evaluation orders for applicative languages, like correctness
(implements the least fixpoint solution) (Cadiou, 1972) and optimality (Berry &
Levy, 1979; Vuillemin, 1974). A salient feature of this kind of semantics is that
it directly extends into symbolic computation: thus, it can be used to model vari-
ous program transformations and prove properties of them. For instance, one can
prove conditions for the correctness of the fold-unfold transformations pioneered by
Burstall & Darlington (1977; 1976). (See Courcelle, 1990.)

A particular kind of program transformation is unfolding, where function defini-
tions are substituted for function calls and formal arguments are replaced by actual
(possibly symbolic) arguments. Unfolding is most often followed by a simplification
phase where constant subexpressions are evaluated, branches are selected in condi-
tionals with known conditions, etc. Unfolding and simplification are key techniques
in partial evaluation (Bjorner et al. , 1988). In partial evaluation a general function,
called with partially known arguments, is replaced by a specialized version, the
'residual', where the information about the arguments has been used to increase the
efficiency of the code.

A problem with unfolding is how to know when to stop. Unfolding the wrong
function calls may lead to code explosion, and the unfolding process itself may not
terminate. Thus, it is important to have conditions when unfolding can proceed
safely without risk of non-termination. Such conditions can be divided into two
classes. The first class consists of conditions that really ensure termination. An
example is Sestoft's structural induction condition (Sestoft, 1988). While these con-
ditions yield safe results when succeeding, their applicability is limited: the reason
is that the problem to be solved is the undecidable halting problem for symbolic
computation. In practice one is restricted to a number of easily recognisable cases,
unless theorem proving methods are used. The structural induction condition, for
instance, requires that recursive function calls are made with arguments from the
previous call 'staying in place', where each known argument is either unchanged or a
substructure of the previous corresponding argument. This ensures that arguments
always become strictly 'smaller' with respect to some non-negative measure which
guarantees that only a finite number of calls can be made. The second class ensures
'weak termination', i.e. under such a condition the unfolding will always terminate if
a corresponding function call, with totally known arguments, terminates. So this class
of conditions relates termination of unfolding to termination of the function to be
unfolded. While these conditions certainly are more 'unsafe', since one relies on the
programmer to write terminating functions, they have the advantage that they can be
put as simple syntactical tests. Furthermore, it turns out that the success of such tests
often is correlated to other 'good' consequences of unfolding. These tests typically
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Fig. 1. Data dependence graph for computing x5 and a uniprocessor schedule.

succeed when conditionals or the like can be evaluated and a branch be selected,
which simplifies the control structure of the resulting code and often enables further
simplifications. The partial evaluator Similix uses this kind of condition (Bondorf &
Danvy, 1991).

In extreme cases, repeated unfolding can be done until termination. This means
that there are no function calls left in the specialized function. Often the residual will
be a first order term. Such terms correspond to basic blocks (Aho et al. , 1986) in
imperative languages. Powerful code optimization techniques are applicable to first
order terms, due to the fact that their data dependence graph is fully known. Such
optimizations include the sharing of subexpressions, scheduling of operations and
register allocation. As a simple example, consider the following function definition
(similar to Dijkstra's 'obfuscation function' (1982). Also cf. Arsac & Kodratoff, 1882,
sec. 4.3.4):

f(x,n)«- if[n = l,x,/(x, \n/2))-f(x, |n/2j))

Obviously, this recursion equation describes a balanced algorithm for computing x"
when n > 1. Consider now the partially instantiated function call f(x, 5). A symbolic
unfolding and simplification at each step yields:

/(x,5) <- ifl5 = l,x,/(x,r5/2l)-/(x,L5/2j))

«- ((x • x) • x) • (x • x)

The residual function is a first-order term that yields a 'static algorithm' (fixed
dependence graph) for computing x5. If the common subexpression x • x is shared,
then the data dependence graph becomes that of Fig. 1, which also shows a possible
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schedule on a uniprocessor. The following piece of imperative code will support the
schedule:

tmpl := x*x;
tmp2 := x*tmpl;
resu l t := tmpl*tmp2

This code uses two registers and three multiplications, probably a substantial saving
compared with a naive applicative evaluation of f(x, 5).

We may coin unfolding until termination 'total unfolding'. It has been argued
that total unfolding is rarely possible except for trivial cases (Sestoft, 1988). This
is, however, very dependent upon the application and the typical structure of its
algorithms: scientific computing seems to be an area where total unfolding often is
possible and beneficial (Berlin & Weise, 1990). The reason is that numerical algo-
rithms often are controlled by simple 'size' parameters like, say, matrix dimensions:
once these parameters are known, total unfolding will then succeed and first-order
residuals will most often result. Note that such residuals are particularly amenable
to implementation on fine-grain parallel and pipelined architectures. This is due
to the predictability of the execution and the very simple control structure, which
reduces control and synchronization overhead.

Algorithms given by first-order terms are especially suitable for implementation
directly in hardware. Here, the scheduling can take place already at 'design-time'.
Once a schedule is determined, a parallel system that supports the schedule with a
minimum of control can be designed. In particular, regular hardware systems like
systolic arrays (Kung, 1982) are amenable to synthesis by scheduling methods (Chen,
1986a; Delosme & Ipsen, 1987; Huang & Lengauer, 1987; Kung, 1987; Lisper, 1989;
Lisper, 1990b; Moldovan, 1982; Quinton, 1984; Rajopadye & Fujimoto, 1990; Rao
& Kailath, 1988). Also less regular processor structures than systolic arrays can be
derived by scheduling of static algorithms, like for instance efficient VLSI structures
for the Fast Fourier Transform algorithm (Lisper, 1989, 1990a).

In this paper, we investigate some properties of total unfolding. In order to do
this, we develop an operational model of recursive symbolic computation where
program transformations like unfolding can be readily expressed. The model is
a higher order variant of recursive applicative program schemes and essentially
formalizes the full substitution computation rule (Cadiou, 1972). This is a fixpoint
computation rule: thus, our computation model is denotationally equivalent to lazy
evaluation. Within the model we then show some theorems about total unfolding.
Theorem 1 gives sufficient conditions for the unfolding to yield first order terms
whenever it terminates. Theorem 3 states a general termination condition of the
second class above, ensuring termination of the unfolding whenever the original
function terminates. Syntactical tests can be based on this condition: some are
given in theorem 4. These tests can guide unfolding either dynamically, as unfolding
proceeds, or statically, in a preprocessing phase. For completeness, we also give a
correcness result for unfolding in theorem 2.
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2 Preliminaries

We assume that the reader is familiar with the basic concepts of A-calculus (Baren-
dregt, 1981; Hindley & Seldin, 1986). In this paper we consider terms in a A-calculus
with constants. We will sometimes consider a typed calculus where every well-formed
term is assigned a simple type. In these type schemes, a type can be either a base
type from a set B o r a function type x —* x' where x, T' are types. Terms of function
type may be 'uncurried': then the type x\ x • • • x xn —• x is considered equivalent to
xi -* (t2 —> • • • (xn —• T) • • •). Abstraction and reduction will then sometimes be with
respect to several arguments. We denote the set of free variables in the term e by
FV(e).

A constant of type TI X • • • x xn —* x, where t i , . . . , xn, x are base types, is called a
first order function symbol. First order terms are built from constants and variables
of base type, and then inductively by applying first order function symbols to first
order terms. First order terms free from variables are called ground terms.

Terms which are not first order are called higher order. Such a term contains
^.-abstractions, or variables or constants (besides first order function symbols) that
are not of base type. A higher order term is closed if it has no free variables.

We will also consider a weaker form of typing where each constant is just assigned
an arity > 0. If / has arity n, then any term f(t\ ...tm) where m < n is well-formed.
This makes it possible to express partially applied ('curried') functions.

We define a substitution to be a type-preserving partial function from variables
to terms. We use set notation, where pairs (x, a(x)) e a are denoted x *- a(x).
The substitution {(x, 17 + y), (y, y)} is thus written as {x <— 17 + y,y <— y}. The
domain of a substitution a, dom(a), is the set of all variables x for which CT(X)
is defined. The range of a, rg(o), is the set of all free variables that occur in
any <r(x), i.e. \J( FV(a(x)) | x € dom(a)). A substitution is finite if its domain is
finite. Substitutions can naturally be extended to general terms: o(e) is the term
obtained when all occurrences in e of variables x in dom{a) are replaced with a(x).
We distinguish between the original substitution (on variables) and the extended
transformation on terms by writing <r(x) when applying the former to a variable
x, but at (without parentheses) when applying the latter to a general term t.
Substitutions on higher-order terms must include some renaming scheme to avoid
capturing of free variables (see, for instance, Hindley & Seldin, 1986). Composition of
substitutions is defined as oxo2 = {x «- <7i(<x2(x)) | X G dom(o2)}u<jl\dom((,l)\dom(o2) (T
denotes restriction of function). It has the property that G\ai(e) = a\(oi{e)) always.

For a binary relation '-+', we denote its transitive-reflexive closure with '—>*'.
The relation —* is terminating (or noetherian) if there are no infinite sequences
ao —* a\ —*...—* cii —>.... Noetherian induction can be done with respect to a

terminating relation —»: to prove a predicate P(x) for all x in the universe under
consideration, one proves, for all x, that if P(y) holds for all y such that x -* y, then
P(x) holds. This proof method will be frequently used here. See Huet (1980) for a
more thorough introduction to noetherian relations and induction.

Throughout this paper we will, unless stated otherwise, use letters a, b, c for
constants, e, r, s, t for general terms, / , g for functions or function symbols, A, p, u,
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v, w for positions in terms (see next section), x, y, z for variables, and greek letters
for transformations on terms and occasionally for types.

3 Reductions

Evaluation in general and partial evaluation in particular includes the notion of
simplification. In this paper we will, besides the usual ^-conversion, consider two
kinds of simplification: erasing and non-erasing simplification. Non-erasing simpli-
fication means that no 'unknown' parts of a term are thrown away. An important
kind of non-erasing simplification is ^-reduction which is defined for closed terms
only. Erasing simplification means that parts of a term that possibly contain free
variables are deleted. A typical example is simplification of a conditional, where one
branch is taken and the other is discarded. Erasing simplification thus gives opera-
tional semantics to (predefined) function symbols whose denotational semantics are
functions with nonstrict arguments, i.e. which may return defined values even when
some certain arguments are undefined.

The two types of non-yS-simplifications above will be modelled by term rewriting
systems. For completeness, we give the main definitions involved, and some results
that will be of use later. Details can be found in Huet (1980) and the survey by
Klop (1992). The notation is a mix of Huet's and that suggested by Dershowitz &
Jouannaud (1991).

First, we define some relevant concepts and state some properties for binary
relations:

Definition 1
Let —»,-»i, —>2 be binary relations over some set A.

1. a e A is a normal form (w.r.t. -*) if there is no b e A such that a —» b.
2. —*• is confluent (or Church-Rosser) if Va, b, c € A3d £ i [ (a ->' b A a —>* c) = >

(fc-»*dAc->*d)].
3. —» is locally confluent (or weakly Church-Rosser) if ~ia,b,c € Aid € A[(a —>

b A a -> c) = > ( i V d A c V d)].

4. The equivalence relation generated by —* is denoted <->. —» has the unique

normal form property if, for any normal forms a, b, a <-» b = > a = b.

The following well-known result (Huet, 1980; Klop, 1992) is easily proved:

Proposition 1
A confluent relation has the unique normal form property.

A family of binary relations is sometimes called an abstract reduction system.
Reduction systems model nondeterministic computations, since there may be more
than one possible reduction for a given element. If the reduction system is confluent
and terminating, however, then every element has a unique normal form which can
seen as a deterministic 'function value' computed by the reduction system. We want
the simplification phase of evaluation to always yield a well-defined result which
means that we are mainly interested in confluent and terminating reduction systems.
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Definition 2

Let —» be a binary relation over A. A (one-step) abstract reduction strategy F for —•
is a function F:A -* A such that:

1. F(a) = a if a is a normal form.
2. a —> F(a) otherwise.

A reduction strategy F models a 'deterministic implementation' of a reduction
system ->. It is easy to see that F is terminating if —> is terminating. Furthermore,
if —> is terminating and confluent, then F will always reach the normal form in a
finite number of steps.

Definition 3
An abstract reduction strategy F for —* is confluent if Va, ft, c G X3n, w[(a —>* bf\a —**
c) => F"(b) = Fm(c)]. F is terminating for a if there exists some n > 0 such that
F"(a) is a normal form. We then write F*(a) for F"(a). F is terminating if it is
terminating for all a under consideration.

(Cf. Barendregt, 1981, p. 351.) We have the following:

Proposition 2

If F is confluent and terminating, then a <-> b <=> F'(a) = F'(b).

Proof

Exactly analogous to the proof of lemma 2.1 in Huet (1980). •

Proposition 3

If F is terminating and if —• is confluent, then F is confluent.

Proof

F'(x) exists for all x since F is terminating. If a —•* b and a ->* c, then F*(b) = F*(c)
since these are normal forms w.r.t. —> of a and normal forms, due to confluence of
—>, are unique. Confluence of F follows. •

In particular, F is confluent and terminating whenever —» is confluent and termi-
nating. On the other hand, F can well be confluent and terminating even when —»
is not. So to make the theory more general we will actually model simplification by
confluent and termination reduction strategies rather than reduction systems.

We now review the relevant definitions for reductions of terms. First we need the
concepts of position and replacement. We define a position in a term to be a sequence
of nonnegative integers, where A denotes the empty sequence. For any term r we
define its set of positions Pos{t) and the subterm at position p, t/p, as:

• If t = x or r = c, then Pos{t) = {A} and r/A = t.
• If t = kx.t!, then Pos(t) = {A} U {Op | p e Postf)}, r/A = t and t/(Op) = t'/p.
• If t = to(ti... tn), then Pos(t) = {A} U {ip | 0 < i < «, p e Pos{ti)}, r/A = t and
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Furthermore, we define VPos(t) = { p | t/p e FV(t)} and FPos(t) = Pos(t)\VPos(t).
We say that p is a prefix of p', or p < p', if there exists a u such that p' = pu. u is
then unique and we denote it with p'/p. If neither p < p' nor p' < p, then p and p'
are disjoint.

The replacement in t with t' at p, t\p <— t'], is defined by:

• t[A <-f]= t'.
• (Xx.t)[0p ^ r'] = Xx.{t\p «- t1]).
• to(h ... tn)[ip < - r'] = to(ti ...u[p<-t']... tn).

The following lemma is the direct generalisation of Proposition 3.4 in Huet (1980):

Lemma 1
If no variable in dom{a) U rg(c) is bound in t, then it holds that:

1. Pos(a(t)) = Pos{t) U \JpeVPos(t){ pp' I p' G Pos{G{t/p))}.
2. For all p € Pos(t), a(t)/p = <r(t/p).

Definition 4
A term rewriting system is a set R of pairs of terms, where s is not a single variable,
s and t have the same type and (s, t) € /? = > FF(s) 2 ^ ( 0 - The reduction
relation —*R associated with R is the finest relation containing R that is closed under
substitution and replacement, i.e.:

1. t —>R f7 = > a(t) —>R atf) for any substitution a.
2. t ->R t' ==> t"[p <- t] ->R t"[p <- t'] for any term t" and position p e Pos(f).

Each pair in R is called a rewrite rule. A rewrite rule (s, t) is erasing if FK(s) => ,FF(£),
otherwise non-erasing.

One more technical definition is needed. To keep track of where subterms go
when a term is rewritten, we must define the notion of residual (cf. Berry & Levy,
1979). Formally, we express this as a relation between 'old' and 'new' positions. This
relation is a function of the term e to be rewritten, the position p of the redex, and
the matching rewrite rule (s, t).

Definition 5
For any position p' e Pos(e), the relation Res(e, p, s, t) is given by:

• If p ^ p', then p' Res(e,p, s, t) p'.
• If p' = puw, s/u = x and t/v = x for some variable x, then p' Res(e, p, s, t) pvw.

For any set of positions P £ Pos(e), Res(P,e,p,s, t) = {p" | 3p' e ? : p ' /?es(e,p,s, t)

P"}-

Whenever the meaning is clear from the context we will write Res(P) rather than
Res(P,e,p,s,t). We will also use Res(P) to denote the set of residuals originating
from P after several rewritings, i.e. in a term e' where e —>'R e' (with the obvious
definition for the case e —>̂  e')-

Let us now be a little more specific about the kinds of simplification we consider:
First comes the usual /^-conversion of applied terms: let /? be the set of term pairs
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> {x <— t'}t) (with possible change of bound variable to avoid name clashes).
We denote the finest relation containing /?, closed under replacement, by -*p. —>p
is confluent, closed under substitution, and for certain A-calculi, most notably the
simply typed A-calculus, it is also terminating. See, for instance, Thompson (1991).

Next comes non-erasing reductions: we model these by a term rewrite system v
with only non-erasing rules. In particular, v can have 5-rules {t, t!) where t and t1

are closed terms. It is especially common to have <5-rules of the form (t,c), where c
is a constant, d -rules are intended to model evaluation of operators supported on
'machine-instruction level', like arithmetic and logical operations, e.g. 2 + 3 —>„ 5,
true Vfalse —>v true, etc.

Finally, we have erasing, or nonstrict reductions. We model these by a term
rewriting system e where a rule may be erasing. As an example, consider the
following erasing rules, that give operational semantics to the usual (/"-function:

ij\true,x,y) ->e x

ififalse,x,y) ->f y

Adding the rule:

yields the 'parallel if. Another example is the left-OR rule:

true Vx —>e true

which is common in logic programming languages. We will refer to rewritings with
rules from e as nonstrict reductions.

We denote —>v U -*e with —>ev and —>,, U —>p U —>e with —>pev. This relation is
closed under replacement and substitution since it is a union of such relations. Of
particular interest are term rewriting systems v, e where —>/jfV is also confluent and
terminating, since then every reduction strategy must be confluent and terminating
as well. A result of Dougherty (1992) is particularly useful in this context and we
give it below. First a definition; for a term rewriting system R, a set of terms is
R-stable iff:

1. It is closed under taking subterms and under —>pR (i.e. —>p U —>«),
2. Each term in the set is strongly ^-normalizing, and contains no subterm of

the form f(e\ ...en) where n is greater than the arity of / .

The main result of Dougherty is now the following:

• If R is confluent, then —*^R is confluent on .R-stable terms.
• If R is terminating, then —>/)R is terminating on R-stable terms.

Thus, under the weak condition of instability, the question whether —*pev is confluent
and terminating reduces to the question whether —*ev is confluent and terminating.
How to prove such properties of term rewriting systems is a well researched subject.
Again, we refer to the survey by Klop (1992) for a comprehensive discussion of
proof techniques.
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4 Recursive programs

In this section we give a formalization of recursive programs. Essentially it is a
kind of recursive applicative program scheme (Courcelle, 1990), albeit put in a form
somewhat more convenient for our purposes. The operators of the language under
consideration have their semantics defined by term rewriting systems v and e as
defined in section 3.

Definition 6
A recursive program n is a finite substitution where rg(n) ^ dom(n), no variable in
dom(n) occurs in any rule of v or e, and any / € dom(n) has the same type as n(f).

If 7i is a recursive program, then we will refer to each / e dom{n) as a defined
function of n, and to n(f) as the definition of/. Reconsider the example in section 1.
The definition of the balanced x"-algorithm can be formally put as the substitution:

{/ - Xxn. ifin = 1,x,f(x, \n/2\) • f(x, [n/2\))}

The full substitution evaluation rule is known to be a fixpoint computation rule
(Cadiou, 1972), i.e. it terminates with the correct answer exactly when the function
that is least fixpoint solution of the recursive definition is defined. It can be informally
described as follows. In order to compute a function call f(ai... an), do the following:

1. Replace concurrently all occurrences of denned functions with their definitions.
2. Simplify the result as far as possible.
3. Repeat steps (1) and (2) until termination, i.e. until a closed term remains

(representing a value in the domain we are computing in).

Now, let the simplification phase (/?-, v-, e-reduction) be defined by a confluent
and terminating reduction strategy F for -*pev. This strategy defines a total function
F* on the terms under consideration, that maps a term to its normal form. One full
step of the full substitution rule can then be expressed as the function F'n on terms.
Repeated application of F'n models several steps of the full substitution rule. We
define termination as (F'n)n being free of n-defined functions for some n:

Definition 7
Let t be a term. Then, if for some n > 0 it holds that (F*n)"t is free from variables
in dom(n), we define (F'n)'t = (F'n)"t. The evaluation of t terminates if (F'n)'t is
defined.

5 Properties of total unfolding

In section 4 we formalized evaluation by the full substitution rule as a partial
transformation {F'n)* of terms. Applied to function calls with fully instantiated
arguments it always yields a ground term when terminating. In this section we study
the case where (F'n)' is applied to general terms. When the term is a function
call with partially instantiated arguments, (F'n)' can be seen as a simple partial
evaluator.

Reconsider now the x"-example in section 1. It is immediately clear that the
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step by step-derivation of the first order term for x5 really is a tracing of the
transformations of (F'n)'. Thus:

When F'n is applied to a term e, all occurrences in e of variables defined by n are
replaced by their definitions. {F'n)' performs what can be called total unfolding;
it will either terminate, with all occurrences of defined functions unfolded, or not
terminate at all. The following theorem gives a sufficient condition under which total
unfolding, when terminating, yields a first order term (i.e. a static algorithm). We
assume a typing scheme with base types and function types.

Theorem 1
Assume that for any rule (s, t) e v u e, any higher order constant function symbol
in f also occurs in s. Let n be a recursive program without higher order constant
function symbols. Let e be a term of base type whithout higher order constant
function symbols and where any free higher order variable is defined by n. Then
(F'n)'e, when defined, is a first order term.

Proof
Assume that (F'n)'e is defined and that the condition in the theorem holds. In
a first order term the only subterms with a function type are first order function
symbols. Terms of function type, except for these, are higher order variables, higher
order (constant) function symbols and 1-abstractions. We will prove that no such
subterms can occur in (F'n)'e under the given conditions:

• Higher order variables: since neither F nor n introduce any new variables,
and since (F'n)'e is free of variables in dom(n), there can be no free higher
order variables in {F'n)'e. Any bound higher order variables must occur in
A-abstractions, see below.

• Higher order constant function symbols: there are no higher order constant
function symbols in e. n cannot introduce any new. In F, the potential places for
introduction of new such symbols is reduction of first order terms eo(ei... en),
by v- or e-reduction as -*ev at, where (s,t) G v U e and as = eo(e\ • • • en).
From the assumption on v U e, the only possible occurrence of a higher order
function symbol in at is in a(x), for some variable x e FV(s). But a(x) is then
a subterm of the original term, so no new function symbols are introduced.
By induction it now follows that (F'n)'e is free from higher order constant
function symbols.

• A-abstractions: {F'n)'e has no /?-redex, so it contains no applied 2-abstrac-
tions. Furthermore, e is of base type, and so is (F'n)*e since (F'n)' obviously
does not change the type. Thus, any possible A-abstraction in (F'n)'e must
occur as an argument e,- in an term eo(e\... en). eo is then of higher order type.
By the above, no such eo can occur in (F'n)'e. •
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Corollary 1
Under the conditions in theorem 1, any free variable in (F'n)'e is a first order
variable occurring in e.

Higher order constant function symbols typically appear in programs as represen-
tations for 'system-defined' higher order functions. An example is the the function
symbol 'apply'. At a first glance, the conditions of theorem 1 seem to disqualify pro-
grams with such functions. It is, however, often possible to add formal definitions
of such functions to n. This turns the constants into defined functions, that even-
tually are substituted away whenever (F'n)* terminates. For instance, a definition
apply <— Xfx.f(x) may be added to n, in which case (F'n)' apply(lx.x + x,y) = y+y.

Correctness of unfolding can be formulated as follows. Consider a term t and
a substitution 6 such that dom(0) n dom(n) = 0. 9t is then an instance of t, where
free variables x possibly have been replaced by 9(x). So we may choose to apply
the original functions in n to Ot, i.e. calculate (F'n)*9t. As an alternative, we may
choose the unfolded version (F'n)'t (if defined), instantiate the free variables, and
finally evaluate the result. This means that we compute (F'n)'6(F"n)'t. If unfolding
is correct, these two terms should be equal. We will now prove that this is indeed the
case. For simplicity, we assume that rg(6) is free from functions defined by n: since
dom(9) n dom(n) = dom(0) n rg(n) — 0, this means that 6 and n are totally disjoint,
and thus On = n6.

Lemma 2
For any term t and substitution a, F'ot = F'aF't.

Proof
t —>pev F't implies at —>p€V aF't. Proposition 2 now gives the result. •

An immediate consequence of lemma 2 is that (F'n)"t = F"n"t for all n > 0.
Proposition 11 of Raoult & Vuillemin (1980) says essentially the same thing, but in
a somewhat more restricted computation model.

Theorem 2
(Correctness of unfolding) (F'n)'6(F'n)'t = (F'n)'6t, whenever (F'n)* is defined
for the terms in question.

Proof
We prove by induction, that it for all n > 0 holds that (F*n)'6(F'n)nt = (F'n)*Of.

• n = 0: obviously true.
• n > 0: assume true for n - 1, i.e. (F*n)'0(F*n)n-lt = (F'n)'6t. We prove that

(F'n)*d(F*nf'h = (F'n)*e(F'n)"t, which then yields the desired result:

(F*n)'G(F*n)n-lt = (F'n)'F'n6(F'n)n~h

= (F'n)'F'6n(F'n)n-xt

= (lemma 2)

= (F*n)*F'eF'n(F*n)n-lt

= (F'n)'F*6(F'n)nt
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= (F'n)'F'nF'O{F'n)nt

= (lemma 2, again)

= (F'n)'F'n9(F'n)nt

= (F'n)'6(F'n)nt. D

As can be seen from the proof, any 'prematurely interrupted' unfolding (that is:
(F'nft, where {F'nft j= (F'n)'t) is also correct (cf. Courcelle, 1990, where a similar
result is given).

We now consider termination. It is essential to have a criterion that decides when a
function call can be unfolded without risk of nontermination. Theorem 3 gives such
a criterion, where termination of the unfolding of a partially instantiated function
call is related to the termination of a call with totally instantiated arguments. It is
based on a family of relations '>*', for sets of variables X, between terms, t >x f
means roughly that t is less instantiated than t' but they agree on the variables
in AT.

Definition 8
For any set of variables X, the relation >* between terms t, t! is defined by: t >x t'
iff there is a substitution 9 such that dom(G) C\X = 0 and Ot ->* t'.

Some examples: if x £ X then x + 3 >x 2 + 3, and x >x 5 since 2 + 3 —>v 5.
But if x G X, then x + 3 ^x 2 + 3 and x ^.x 5, and in no case it holds that
kx.(x + 3) >x Xx.(2 + 3). >x also compares structured data, like lists, if we consider
them as terms built with the constructors for the datatype. Thus, a::(x::NIL) >x
a::(b::NIL) whenever x £ X, and L >x a::(x::NIL) whenever L $ X. Before
proving the theorem we now state and prove some technical lemmata.

Lemma 3
If t >x t' and X' £ X, then FV(t) n l ' c FVtf) nX'.

Proof
6t ->•* t' = > FV(6t) = FV{t') since ->v is non-erasing. Thus, the result follows if
FV(t) n l ' g FV{6t) nX' whenever dom(9)nX = 0. Since no variable in X' may be
substituted away from t by 6, the result follows directly. •

Lemma 4
For any substitution a, if t ^xudomta) f' anc* ^ r8(a) — dom{a), then at >x ot'.

Proof
There is a 6, where dom{6)n(ludom(a)) = 0, such that 6t ->; t'. Thus, odt ->'v at".
Now, by the definition of composition of substitutions, ad = {x <— a(9(x)) \ x E
dom{6)} V o\dom(a)\dom(6) = (since dom{a)Ddom{0) = 0) = {x <- ff(0(x)) | x G
dom(0) \ dom((j)} U {x «- <r(x) | x G <iom((r)}. Define 0' by dom(9') = dom(9) and
9'(x) = o(9(x)) for x G dom(9). For x G dom(a) it then holds that 9\x) = x.
Since rg(cr) £ dom(a) we have <r(x) = 0'(a(x)) for x G dom(a). It follows that
CT0 = {x <- 0'(x) | x G dom(0') \ dom(a)} U { x <- 0'(ff(x)) | x G rfom(er)} = 0'a. Thus,
9'at ->*v at1, i.e. at >x at!. D

17 FPR4
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The following definition formalizes a situation where a term in a 'critical' position
may prevent a nonstrict rewrite rule to match, while a more instantiated term would
possibly match. To avoid this situation is essential for termination of unfolding.

Definition 9
t has a potential eX-match iff there exists a term t! such that t >x f and t'/p is an
e-redex for some p e Res(FPos(t)). t has a potential applied vX-match iff there exists
a term t' such that t >x t', for some p e Res(FPos(t)), where f'/p is a v-redex that is
applied, i.e. occurs as (t'/p)(t"). t has a potential pX-match iff it has a subterm of the
form x(t'), where x £ X. t has a potential X-match iff it has a potential eX-, /?X-, or
vX-match.

Thus, a term has a potential eX-match if there is a way to instantiate the variables
outside X and simplify the resulting term so the result matches a nonstrict reduction
in a position occurring in the original term. Similarly, a potential applied vX-match
exists if there is a way to instantiate the variables outside X and simplify so a higher
order v-reduction can take place and the result be applied to an argument. Finally,
a potential /?X-match exists if there is a way to instantiate a variable outside X so
a /?-redex is created. (For instance, x{t) >x (Xy.\l){t) when x £ X.) The next four
lemmata provide the major part of the forthcoming result.

Lemma 5
Let dom 9 n X = 0. If t is a normal form w.r.t. —>̂ fv that has no potential X-match,
and if 9t ->'v t', then t' has no jS- or e-redex in Res(FPos(t)).

Proof
Apparently, t' can have no e-redex or applied v-redex in Res(FPos(t)). We prove by
induction over —>" that no /?-redex ever appears:

• 9t —>„ tf: t is a normal form: thus, it has no /?-redex. Since there is no potential
/JX-match, 6 cannot introduce any /?-redex in FPos(t) = Res(FPos(t)).

• Qt ->J+1 t': Assume the statement is true for t" where 6t - ^ t" ->v t'. Since
t" has no /J-redex in Res{FPos(t)), the only possible way of introducing a
/?-redex in Res(FPos(t)) of t" is through a v- or f-reduction t'/p —>„ Ax.t",
p G Res(FPos(t)), where t'/p occurs in a context (tJ/p)(tl"). But since there are
no potential applied vX- or eX-matches, this cannot occur. •

In the next lemma, {F'O} denotes the substitution {F'9(x) | x e dom(9)}. (Note
that {F'9}t j= F'(9t) in general.)

Lemma 6
If F't has no potential X-match then, for each substitution 9 where dom(9)C\X = 0,
it holds that {F'9}{F't) -»; F'{9t).

Proof
By noetherian induction over the terminating subrelation of -^pey defined by F:
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Pev

F*M {F*O}t

F*(F*(6t)) = F*{Oi) = F*({F*6}t)

Fig. 2. Illustration of the base case of the proof of lemma 6.

• Base case, t = Ft. Thus, F't = t. Consider Gt. We have 6t ->^v {F'B}t
and 9t -»)„ F'(dt). Confluence of F gives F'({F'6}t) = F'(F'(0t)) = F'(0t)
which implies {F'9}t —>'pev F'(0t). There can be no redexes of any sort in any
F'9(x): thus, any reductions affecting {F'6}t and subsequent terms must occur
at positions in Res(FPos{t)). By lemma 5 then follows that {F'0}t -*'V F'(6t).
An illustration of the situation is given in figure 2.

• Inductive case, t —>pev Ft: assume the theorem is true for Ft. F'Ft = F't , so if
F't has no potential A"-match of any of the kinds above, then {F*6}(F't) —•*
F'(9(Ft)). Furthermore, t —>̂ ev Ft and substitutivity of —>pev yields 9t —*pev

9(Ft). Proposition 2 then gives F'(6t) = F'(9(Ft)). {F'9}(F't) ->J F*(0t)
follows. •

Lemma 7

If t >x t' and F*f does not have any potential AT-match, then F't >x FY.

Proof

t >x f means that 9t -t*v tl for some 9. Thus, by proposition 2, F'(9t) = F Y .
Lemma 6 then yields {F*0}(FY) -^J FY, i.e. F't >X F't'. U

Theorem 3
(Relative termination of unfolding) If dom(n) c x, and if it for all n > 0 holds
that (F'n)"t has no potential A'-match, then ( >x f implies that (F'n)'t is defined
whenever (F*7r)Y is defined.

Proof

If ( >x f and if dom(n) £ X, then lemma 4 is applicable and nt >x nt! follows.
By assumption, (F'n)t = F'(nt) has no potential A"-match. Lemma 7 then yields
F'nt >x F'nt1. Simple induction over n now gives (F'n)"t >x (F'TT)"^ also for all n >
1. Since dom{n) = X, lemma 3 gives that FV{{F'n)"t)ndom{n) £ FK((F*7i)Y)ndom(7r)
for all n > 0. Thus, (F*7r)"£ is free from variables in dom(n) whenever (F'Tt)nt/ is.

•
Consider the classical pattern for partial evaluation: a partially instantiated func-

tion call f(b,x), where b is static (constant) and x is dynamic (i.e. unknown, a
variable), relative to a totally instantiated function call f(b,c) where both b and c
are static. Whenever / is defined by n, where dom(n) £ X and x £ X, it holds that
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f(b, x) >x f(b, c). Theorem 3 can then be applied. The theorem is, however, not lim-
ited to this simple instance of partial evaluation: it can also, for instance, be applied
to situations where a structured argument (say, a list) is partially instantiated.

When theorem 3 is used to certify termination of unfolding, it must be checked
for each application of F'n whether the result has a potential Z-match or not. A
direct application of definition 9 to decide this is not feasible, however: that would
require applying each possible substitution with domain distinct from X and check
whether there is any way to v-reduce the result so that any subterm matches a
nonstrict reduction. Fortunately, there are often simple conditions that are sufficient
to prevent any potential X-matches. Below, LPos(t) denotes the set of 'leaf positions
in the term t, i.e. the positions in Pos{t) that are not prefixes to any other positions
in Pos(t).

Theorem 4
Assume that v contains only S -rules of the form (t,c), where c is a constant. Then e
has no potential eX-match if, for each position p e FPos(e), some of the following
holds (ep = e/p below): for any (s, t) G e:

1. There is a p' G Pos(s) that has no prefix in VPos(ep).
2. There is a p' G Pos(ep) \ Pos(s) such that there is no prefix to p' in LPos{s).
3. There is a p' G Pos(s) where s/p' is a closed term, ep/p' is a normal form w.r.t.

-»„„, ep/p' ± s/p', and FV(ep/p') £ X.
4. There are distinct positions p',p" € Pos(s) where s/p' = s/p", ep/p' and ep/p"

are normal forms w.r.t. ->pev, ep/p' j= ep/p", FV(ep/p') £ X and FV(ep/p") £ X.

Proof
We will prove for any e' such that e >x e' that if u G Pos(e') is a residual of p, then
e'/u cannot be a e-redex, i.e. there is no a such that as = e'/u for any (s, t) G e. So
assume there is a 8 with dom(8) n X = 0 such that 6e —>'v e'. Since v-rules are of the
form {t,c), either p has no residual in e' (a reduction took place at a prefix of p) or
8ep = (8e)/p-+*ve'/u:

1. By lemma 1, there is no a such that as = 9ep, i.e. 8ep cannot be a e-redex.
Since v-rules of the form (t,c) cannot match any subterm with free variables
it holds that VPos(e'/u) = VPos(ep): thus, e'/u cannot be a e-redex either.

2. Since VPos{s) £ LPos(s) lemma 1 yields that there is no a such that as = 8ep.
By the same reason the only way for s to match e'/u is if all positions
in Pos(e'/u) \ Pos(s) have a prefix in LPos(s). This can only happen if, for
some e" where ep —>* e" —>* e'/u, some v-rule matches e" at a position in
Pos(s) \ LPos{s) that is a prefix to p'. But then (e'/u)/pf = c which gives
p' G LPos(e'/u). By lemma 1 follows that there is no a such that p' e LPos{as),
so LPos(e/u) =/= LPos(as) and e'/u cannot be a e-redex.

3. We have 8(ep/p') = ep/p' since dom{8) n X = 0. Since ep/p' is a normal form,
(e'/u)/p' = ep/p'. Furthermore, {as)/p' = s/p' since s/p' is closed. (e'/u)/p' j=
(as)/pr follows. Again, e'/u cannot be a e-redex.
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4. Similarly, it follows that (e'/u)/p' £ (e'/u)/p". Since it must hold that (as)/p' =
(as)/p", e'/u cannot be a e-redex. •

The requirements on v can be weakened in some cases: in case one it is for
instance sufficient that t —>v t

7 = > Pos(t) 3 Posit1), which relaxes the condition
that v only has (5-rules (t,c). The three first conditions can also be used to rule out
the existence of potential applied vX-matches. Potential jSX-matches, finally, can
always be found directly. Note also that there are quite common situations when
vX- and jSX-matches are not interesting. If there are no higher order v-rules, then
there is no need to check for potential applied vZ-matches. All results proved here
will still hold. Furthermore, in a first order language where the only higher order
variables are functions defined by n, there cannot be any potential /^-matches.

Some examples: let e = {ij[true,x,y) —> x,ij[false,x,y) —* y}. Furthermore, we
assume that / G X and that x,y £ X:

), x,y) is, by theorem 4, not a potential eX-match (so any unfolding can
safely proceed). Any term that is 'more instantiated' must still have /(17) in a
position where the left-hand side of both rewrite rules has a constant, which
prevents the term from reducing non-strictly.

• ij[x, x, y) is a potential eX-match.
• /(true, x, y) is not a potential eX-match.
• x(true, x,y) is a potential e^-match. x, here a higher order variable, may be

instantiated to if. It is also a potential /?X-match and a potential applied
vX-match.

Let us now consider e' = eU {if[y,x,x) —* x}. Then, the following holds:

,y) ' s a potential f'X-match. x and y may well be instantiated to the
same value.

• if[f(n),x,x + 1) is a potential e'A'-match. Actually it cannot reduce, but to
infer this would require the 'semantical knowledge' that x ^ x+ 1 always.

• (/(/(17), 7,8) is not a potential e'X-match. Here, the 'syntactic knowledge' that
7 =̂ 8 is used to decide that a reduction if[y, x, x) —* x cannot take place.

Theorems 1, 3 and 4 provide a basis for unfolding recursive programs to static
terms. A practical method based on theorem 3 can operate in two ways. It can prove
syntactically, from the structure of the program, that certain arguments can be safely
left uninstantiated without causing non-termination. The other way is to actually
perform the symbolic evaluation. Then the method must have some mechanism, for
instance based on theorem 4, to decide when the condition in the theorem is fulfilled
and then stop the unfolding. This may result in partially unfolded programs, where
the method has found parts of the programs which are static.

Theorem 3 is based on a computational approach where the value of a term
becomes known only by evaluating it to the extent that it is known whether or not
it will match any nonstrict reduction. A partial evaluator may, however, be able to
decide the value of a term in a 'non-constructive' way, without evaluating it at all,
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e.g. e = e, b V ->b and x :: NIL =£ NIL can all be found to be true without evaluating
e, b, and x, respectively. This can be seen as allowing the rewrite strategy F to
use additional rewrite rules, which are not present at runtime. Such rules will not
have to be checked for potential X-matches, since they will not be used at runtime.
If the rewrite strategy is still terminating, then these rules can only improve the
termination properties from pure unfolding techniques based on theorem 3.

6 Conclusions

We gave a formalization of the full substitution computation rule, where simplifi-
cation of terms is expressed as a confluent and terminating rewrite strategy using
v-, /?- and e-reductions, where the latter may be erasing and thus give operational
semantics to nonstrict operations. Through this formalization, the computation rule
is directly extended to symbolic evaluation of general terms. This leads to a form
of partial evaluation which in its pure form is called total unfolding. When total
unfolding succeeds a static algorithm, often in the form of a first order term, remains.
We gave a theorem connecting termination of total unfolding with termination of
the corresponding evaluation when the function arguments are fully instantiated.
Under certain conditions, the termination properties are the same. These conditions
can be checked during the unfolding to stop if it is found not to be safe.

It is not always necessary to perform an explicit unfolding to find that total
unfolding will succeed. In the x"-example in section 1, for instance, it is easy to
see that the only variable ever affecting the conditional is n. It follows that for
any value of n > 0, f(x, n) will be unfolded to a finite first-order term. Apparently,
techniques like Known/Unknown abstract interpretation (Sestoft, 1985), normally
used for binding-time analysis, can be useful. Methods to schedule dependence
graphs directly from function definitions, without actually creating the graphs,
have a potentially great practical importance, since in practice the unfolded graphs
can be prohibitively large. Another consequence is that if a scheduling strategy is
found that is parameterised in the static argument (n in the x"-example), then an
imperative implementation is found for the general function, with all arguments
dynamic. An area where this is actually done is synthesis of regular hardware
structures from simple classes of recurrences (Chen, 1986b; Karp et al., 1967;
Quinton, 1984; Rajopadye & Fujimoto, 1990; Rao & Kailath, 1988; Shang &
Fortes, 1989). Investigating and generalising such techniques is a very interesting
thread for further research.

It seems like the greatest potential for techniques based on total unfolding lies
in the areas where functions with relatively simple structure are used. Typical
such areas are scientific computing and signal processing. These areas also require
highly efficient code: conventionally executed functional programs are as a rule
totally inadequate for these purposes. Numerical algorithms are often defined by
straightforward recurrences that in many cases should be possible to treat by
total unfolding techniques. Recent work regarding partial evaluation in scientific
computing show encouraging results (Berlin & Weise, 1990). Total unfolding and
scheduling may provide new compilation methods for applicative languages that
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make them more suitable to scientific computing. In fact, when it comes to parallelism
and vectorization, such methods should have a greater potential for success than
parallelizing compilation of imperative languages, since the former only have to deal
with pure data dependencies while the latter are hampered by the artefacts of the
inherently seqential semantics for imperative languages.
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