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Prostate cancer (PC) is one of the most common cancers globally and is the second most common cancer in the 

male population in the US. Integration of mass spectrometry imaging (MSI) and hematoxylin and eosin (H&E) 

data offers the potential to improve the identification of prostate cancer (PC). In 2015, [1] reported a data fusion 

framework for MSI and H&E stain microscopy enabling the prediction of a molecular distribution both at high 

spatial resolution and with high chemical specificity. [2] compared two pansharpening methods, Intensity–Hue–

Saturation and Laplacian Pyramid, and demonstrated the latter was more robust for image fusion between MSI 

and electron microscopy. However, these fusion-based approaches are limited by the fundamental difference 

between physical mechanisms of image generation and are prone to reconstruction errors. Here, we have 

demonstrated that a physically constrained model between two different imaging modalities can accurately 

reconstruct and predict both high spatial resolution images and high spectral resolution mass spectra. We spatially 

register features obtained through deep learning from whole slide H&E-stained data with MSI data to correlate the 

chemical signature with the cellular morphology and then use the learned correlation to predict PC from observed 

H&E images using trained co-registered MSI data. 

 

MSI data consisted of human prostate tissue specimens, cryosectioned and imaged at a pixel size of 120 m using 

a 9.4 Tesla SolariX XR FT ICR MS (Bruker Daltonics, Billerica, MA). Corresponding high-resolution annotated 

H&E images of the same tissue were provided [3]. Raw data were converted to HDF5 format and binary masks 

for cancerous regions were extracted from the annotated images. Deep features were obtained from whole slide 

H&E data using the pretrained Resnet-50 model. Then the high-resolution features were downscaled and 

regridded to co-register with the low-resolution MSI data. Logistic regression has been used to predict PC directly 

from the H&E data using the learned correlation. Biomarkers for PC were also searched using m/z values from a 

Lipid Maps database. 

 

A qualitative result is shown in Figure 1 which corresponds to the logistic regression results we achieved for two 

different tissue specimens. If we look closely in Figure 1B and Figure 1F, some secondary regions are revealed 

with the MSI to label prediction. These regions can be random noise or cancerous regions missing in the original 

annotation. When we look at the prediction for the second tissue specimen directly from H&E in Figure 1G, the 

secondary region seen with MSI prediction is revealed more. Interestingly, this region is revealed even more 

when we predict from predicted MSI components as seen in Figure 1H. For the other tissue specimen in Figure 1, 

cancerous regions are revealed well for all three predictions. 

 

Figure 2 shows the result of H&E to MSI prediction for two different tissue specimens. We used a linear 

regression model with regridded H&E features as the input and MSI PCA modes as the labels. Out of 200 PCA 

components, prediction for the component having the highest    is shown. We can see similar patterns in the 

predicted MSI images corresponding to the actual MSI images. Prediction for tissue specimen 2 as shown in 

Figure 2B is slightly better compared to the other tissue specimen. A single pixel is chosen from the cancerous 

region for each tissue specimen and the mass spectrum is plotted shown in Figure 2C, and Figure 2F. It is evident 
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that there is an intensity mismatch between the actual and predicted spectrum, but the prediction is clearly able to 

capture most of the m/z peaks in the actual spectrum. 
 

Our deep learning methodology was able to address the limitations in predicting PC from H&E data. We have 

found that H&E can predict mass spectra somewhat accurately, indicating a correlation between features visible in 

optical H&E imaging and the chemical information present in MSI. We have also found that PC regions can be 

predicted reliably from MSI indicating that the mass spectra contain sufficient information for image 

segmentation. Combining these results, we verified that the overlapping information between modalities matches 

that needed for segmentation, by predicting cancerous regions directly from H&E as well as from predicted MSI. 

Moreover, we found two MSI biomarkers corresponding to specific masses that correctly identified the cancerous 

regions. Our approach shows the feasibility of using readily available H&E data to predict the rich chemical 

information available in MSI images. Although our training process requires paired data including both H&E and 

MSI data from the same samples, the resulting trained models could be relevant in clinical settings where only 

H&E is available. We have also identified some secondary regions in the prediction using MSI. These regions 

could be errors due to random noise or cancerous regions which were missing in the original pathology 

annotation. Additional validation of these secondary regions would be useful in future studies, for example using 

immunohistochemistry (IHC) imaging. By first predicting mass spectra, our method retains the ability to 

accurately reproduce labels, but adds additional useful chemical information, with relatively little manual training 

data required. These preliminary results along with a relative lack of MSI in public pathology datasets motivate 

the collection of larger paired H&E/MSI datasets in the future to support large-scale feature learning efforts for 

H&E analysis. This methodology lays the groundwork for developing more accurate predictions for PC in 

patients to improve patient care and trajectories. 

 
Figure 1. (A), and (E) are original cancer annotations for two different tissue specimens. (B), and (F) show 

predicted cancer regions from MSI PCA modes for the two tissue specimens. (C), and (G) show predicted 

cancer labels from regridded H&E features for the two tissue specimens. (D), and (H) show prediction of 
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cancer labels from MSI predictions which is predicted from H&E features. All the predictions in this figure 

are achieved using logistic regression. 

 

 
Figure 2. Prediction of MSI directly from regridded H&E features. (A), and (D) show the first PCA 

components of MSI for two different tissue specimens. (B), and (E) shows the corresponding predicted MSI 

PCA component directly from H&E. For the two tissue specimens, spectra of a single pixel from the 

cancerous region are shown both for actual and predicted images in (C), and (F). Negative values of the 

predicted spectra are clipped here. 
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