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TOPOLOGICAL ESSENTIALITY AND DIFFERENTIAL INCLUSIONS

LECH GORNIEWICZ AND MIROSLAW SLOSARSKI

In the present paper a concept of topological essentiality for a large class of multi-
valued mappings is introduced. This concept is strictly related to the Leray-
Schauder topological degree theory but is simpler and also more general. Applying
the above concept to boundary value problems for differential inclusion with both
upper semi-continuous and lower semi-continuous right hand sides, several new
results are obtained.

0. INTRODUCTION

The use of topological methods in the study of boundary value problems of dif-
ferential equations was, in fact, started by J. Leray and J.P. Schauder in 1933 in the
context of their mapping degree theory. The topological degree theory was extended
to the multivalued setting [4, 13, 15]. The approach presented in this paper does not
refer to the above theory but is rather based on an elementary notion of essentiality of
a map which, in the single valued case, was introduced by Granas in [9].

First we define the notion of essentiality for a large class of multivalued mappings.
This class, of the so-called admissible maps (see [6, 7]), contains, in particular upper
semi-continuous convex- or contractible or acyclic-valued maps. It is also closed with
respect to composition. Our attitude is relatively simple since it relies only on the
Schauder Fixed Point Property of compact admissible maps of absolute retracts.

In the last two sections, we discuss certain boundary value problems for functional
differential inclusions with upper or lower semi-continuous right-hand sides. Roughly
speaking, we translate a boundary value problem into a problem of essentiality of a
related multivalued map. Using the homotopy approach combined with the "a priori
bounds" technique (introduced in 1912 by Bernstein — see for example [10] for details)
we obtain results that generalise those from for example [4, 5, 13, 15]. In our opinion
our methods are more effective although simpler.
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178 L. Gorniewicz and M. Slosarski [2]

1. MULTIVALUED MAPPINGS

In this paper all topological spaces are assumed to be metric. Below we recall some
preliminary notions and results. For details we recommend [6].

A space X is called an absolute retract (written X G AR) if for each space Y and
for each homeomorphism h: X —* Y such that h(X) is a closed subset of Y, the set
h(X) is a retract of Y; that is, there exists a continuous map r: Y —* h(X) such that
r(x) = x for any x G h(X). Note that a convex subset of a normed space E is an
absolute retract.

In what follows by H we shall let H denote the Gech homology functor with

compact carriers and rational coefficients Q (see [6]). A non-empty space X is called
acyclic provided:

Hn(X)
J O if n > 0

~{Q if n = 0.

Note that if X is a contractible space or, in particular, if X G AR, then X is an acyclic
space. A continuous mapping p: Z —• X is called a Vietoris map if the following two
conditions are satisfied:

(i) for each x G X, the set p-1(x) is acyclic,
(ii) p is proper (that is, p~x(K) is compact for any compact K C X).

Let X and Y be two spaces and assume that for every x G X a non-empty closed
subset <p(X) of Y is given. In such a case we say that <p: X -* Y is a multivalued

mapping. For a multivalued mapping tp: X —> Y and a subset U C Y, we let:

and <p-1(U) = {z£X;<p(x)nU ^ 0}.

If, for every open V C Y the set <p^l{U) (respectively tp~1(U)) is open then <p is called
an upper (respectively lower) semi-continuous mapping; we shall write (p is u.s.c. (l.s.c.)
continuous. In what follows Greek letters <p, \P, £, 77, x ^ reserved for multivalued
mappings; singlevalued mappings will be denoted by Latin letters for example, / , g,

p, q, h, et cetera.

Some important properties of u.s.c. mappings with compact values are summarised
in the following:

PROPOSITION 1 . 1 . (see [6] or [1]). Assume that <p: X -> I" and * : Y -* Z
are u.s.c. mappings with compact values and p: Z —* X is a Vietoris mapping. Then:

(1.1.1) for any compact A C X, the image <p(A) = U{tp(X); x G A} of the set

A under <p is a compact set;

(1.1.2) tie composition * o <p : X -> Z, (*o <p){x) - I^{*(i/);y G <p(x)}, is an

u.s.c. mapping;

https://doi.org/10.1017/S0004972700030045 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700030045


[3] Topological essentiality 179

(1.1.3) t i e mapping tpp: X —» Z, given by the formula. tpp(x) = P~1(x) > is u.s.c..

A u.s.c. mapping tp: X —* Y is called compact provided there exists a compact
subset K C Y such that tp(X) C K; tp is completely continuous if the restriction
of tp to any bounded subset of X is a compact mapping. A (single-valued) mapping
/ : X —> Y is called a selector of tp: X —*Y (written / C if) provided /(se) G tp(x) for
every x G X. If X C.Y and tp: X -+ Y, then a point x G X is called a _/ixe<2 potnl of
tp provided x G tp(x). We let

We shall say that two mappings tp, rj: X —> Y have a coincidence if there exists a point

x G X such p(a:) l~l TJ(X) ^ 0.

Now we are going to define the notion of admissible mapping.

DEFINITION 1.2: (see [6]). A multivalued mapping tp: X —* Y is called admissible
provided there exists a space Z and two continuous mappings p : Z —* X and q: Z —• Y
such that the following conditions are satisfied:

(1.2.1) p i s a Vietoris mapping,

(1.2.2) tp(x) = qip-1^)) for any z G X.

It follows from (1.1.2) and (1.1.3) that any admissible mapping is u.s.c. and has
compact values. Following [6] we would like to point out that the class of admissible
mappings is quite large. Namely, it contains all u.s.c. mappings with acyclic com-
pact values and all compositions of such mappings. Below we summarise some useful
properties of admissible mappings. Let us start with the following:

PROPOSITION 1 . 3 . ([6]) If tp: X -> Y and * : Yi -> T are admissible, then
so is the composition W o tp: X —* T (when Y = Yi) and the Cartesian product

Let E be a normed space over the field R of reals. Let tp, \P: X —> E be two
admissible mappings and let a: E —» R be a continuous mapping. Then letting:

{tp + * ) : X -» E, (tp + tf )(z) = {u + v; u G tp(x) and v G * ( z ) } ,

(tp - * ) : X -» E, (tp- *)(x) = {u-v;v.e tp(x) and v G *(«)},

(atp) :X-*E, (s<p)(x) = {a(x)u; u G tp(x)},

we have:

PROPOSITION 1 . 4 . (see [6]). If tp and * are admissible, then the mappings

(tp + 9), (tp — \P) and (atp) are admissible.

Finally, we formulate a version of the famous Schauder Fixed Point Theorem for
admissible mappings (see [6]).
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180 L. Gorniewicz and M. Slosarski [4]

THEOREM 1 . 5 . If X G A R and <p: X —> X is an admissible compact mapping,

then Fix(v?)^0.

2. TOPOLOGICAL ESSENTIALITY

The notion of a topological essentiality (sometime called a topological transversal-
ity) in the single-valued case was introduced by Gran as [9] and later studied by many
authors. This notion in the multivalued case was considered in [4] and [8]. In this
section we shall present an approach more general than given in [4] and [8]. Moreover
we study a larger class of multivalued mappings.

In what follows by E and F we shall denote real normed spaces. We shall assume
also that U is an open bounded subset of E. By SU we shall denote the boundary of
U in E and by clU its closure.

Let

Afu{U, F) = {<p: clU -» F; <p is admissible and 0 £ <p(SU)},

AC(U, F) = {<p: clU —> F; tp is admissible and compact},

A°(U, F) = {<p: clU -> F;<p£ AC(U, F) and <p{x) = {0} for all x G SU}.

We are now in a position to formulate the main notion of this section.

DEFINITION 2.1: (compare [11, 14]). A map ip e Atu(U, F) is called essential

provided that for every * e A°(U, F) there exists a point x 6 U such that p(x) D

* ( a ; ) ^ 0 .

Taking E = F and putting *(x) = {0} for any x € clU we get the notion of
essentiality as given in [9] (compare also [4, 8, 11, 14]). Let us enumerate several
properties.

2 . 2 . (Existence). If <p € Asu(U, F) is an essential mapping, then there exists a

point x € U such that 0 G f{x) •

Now, in view of (1-4), we deduce:

2 . 3 . (Compact perturbation). If a mapping tp G A{u(U, F) is essential and
f} G A°(U, F), then {tp + 77) G Asu(U, F) is an essential mapping.

We prove the following property:

2 . 4 . (Coincidence). Assume that tp G A(v(U, F) is an essential mapping, rj G
AC(U, F) and

A = {x£ clU; tp(x) n (tT])(x) ̂  0, for some t G [0, 1]}.
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[5] Topological essentiality 181

If A C U, then tp and TJ have a coincidence.

PROOF: First observe that the essentiality of tp implies that A is a non-empty set.
Hence A is a closed set and A D SU — 0.

Let s: clU —» [0, 1] be an Uryshon function such that s(x) = 1 for x £ A and
s(x) = 0 for x £ SU. Then we can define a map x: C^U —• F by the formula

X(x) = s(x)r](x), for every x £ clU.

In view of (1.4), we have % S -^"(^i F) a nd, since y> is essential, we get:

<p{x0) D x(*o) = p(*o) n (S(XO)TI(XO)) ^ 0

for some xo £ U. This implies that xo G -4 and, hence, s(xo) = 1; consequently io is
a coincidence point of if and 77 and the proof is completed. D

A general example of an essential mapping is given in the following proposition:

2 . 5 . (Normalisation). Assume that 0 ^ SU, clU £ AR and i: clU —> E,
i(x) = x, is the inclusion mapping. Then i is an essential mapping if and only if
0£U.

PROOF: Evidently, it suffices to show that 0 £ U implies essentiality of i. Let
V £A°(U, E). We put:

A = {x £ clU;x e (<*(«)), for some t £ [0, 1]}.

Since 0 £ A we infer that A is a closed non-empty subset of clU and A C U. We
consider an Uryshon function s: E —> [0, 1] such that a(x) = 1 for x £ A and s(x) = 0
for x (fc U. Let r: E —» clU be a retraction mapping. Consider a map x: E —» E

defined as follows:

for every x £ E.

Applying the Schauder Fixed Point Theorem for the map x (see (1-5)) w e get a

point x £ E such that

If x £ U, then a(x) = 0 and x — 0 contrary to the fact that 0 £ U. If x £ U, then
we get x = i(x) £ 9{x) and the proof is completed. D

2 . 6 . (Localisation). Let tp £ Agu{U, F) be an essential mapping. Assume fur-
ther that V is an open subset of U satisfying the following conditions:

(2.6.1) ^ (
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182 L. Gorniewicz and M. Slosarski [6]

and

(2.6.2) clV £ A R .

TJien the restriction ip~ : V —> .F of <p to V is an essential mapping.

PROOF: From (2.2) we deduce that the set V-1([0]) is non-empty.
Let ¥ ~ £ A°(V, F) and let A be a subset of clV defined as follows:

A={xe clV; x £ (y(x) D (t#~(z))) ^ 0, for some t £ [0, 1]}.

Then V'~1([0]) C A and again let s: clU —> [0, 1] be an Uryshon function such that
a(x) = 1 for x G. A and s(x) = 0 for x £ V. Moreover, we fix a retraction r: clU —>
clV. Now define a map x '• CW —* F by the formula:

X{x)=s(x)9~(r(x))

for every x £ clU.

Obviously \P G A°{U, F). Since <p is essential there is a point x £ U such that

<p(x) PI \P(a:) T^0 . It is easy to see that a; £ V and this concludes the proof. 0

2 . 7 . (Homotopy). Let <p G Agu{U, F) be an essential mapping.

If x '• CIU x [0)1] —* F is a. compact admissible mapping such that:

(2.7.1) x(*i 0) = [0] for everY x£SU,
(2.7.2) {x e cZZ7;yJ(a!)nx(x, t) ^ 0>'<"«"» * € [0, 1]} C I/, then (<p - X{; 1)) :

clU —* F is an essential mapping.

PROOF: Let * £ A°{U, F). We let:

A = {x £ clU; ip[x) n (*(x) + x(*, t)) ̂  0, for some t £ [0, 1]}.

Since (^ + x("i 0)) £ -^°(^J -f) an<i V is essential we gather that A is a non-empty
closed subset of clU contained in U. Now let a: clU —> [0, 1] be an Uryshon function
equal to 1 on A and 0 on 6U. Assume that £: clU —* F is a mapping defined as
follows: £(x) = *(x) + x(x, s(x)). Then £ £ -A°(£/; F) and our assertion follows from
the essentiality of <p. u

We shall end this section by proving the following property.

2 . 8 . (Continuation). Let <p £ Asu{U, F) be an essential mapping. Assume that
(p is proper, that is, y>-1(JiQ is compact for any compact K C F. Assume further
that x: °IU X [—1, 1] —> F is a compact admissible mapping such that x(x) 0) = {0}
for every x £ 6U. Then there exists a positive real number e such that the mapping
{.¥ ~ x("> ^)) : CW —* F is essential for each A £ (—£, e).

PROOF: According to the homotopy property it is sufficient to show that there
exists an e > 0 such that:

¥>(*)nx(x, A) = 0
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for any A G (—e, e) and for every x G SU.

But this condition is readily verified reasoning by a contradiction. D

REMARK 2.9. Observe that the proofs of all the above properties rely only on (1.3),
(1.4) and (1.5). Therefore, we are able to repeat all results of this section for an arbitrary
class of multivalued mappings satisfying (1.3), (1-4) and (1.5).

3. TOPOLOGICAL CONSEQUENCES AND EXAMPLES

In this section we shall show that the notion of essentiality developed in the pre-
ceding section enables one to get the same consequences as those obtained by means
of the topological degree theory. In the second part of this section some examples of
essential mappings are given. In what follows we keep the notation used in the above
section.

THEOREM 3 . 1 . Let <p G AmiU, F) be an essential and proper mapping. IID

is a connected component oithe set F \ <p(6U) containing 0 G F, then D C tp(clU).

PROOF: The set <p(SU) is a closed subset of F because any proper mapping
is closed. Let D be a connected component of the open set F \ <p(6U) containing
0 G F and let v G D. We shall prove that v G <p{U). To this end we consider
a path tr: [0, 1] —• D such that <r(0) = 0 and o-(l) = v. We define a homotopy
X'.clUx [0, 1] - • F by the formula:

X(x, t) = <r(t)

for every (x, t) G clU x [0, 1].

Now, observe that <p and x satisfy all conditions of the homotopy property; hence
the map (y? — x(-» 1)) = {f ~ <T(1)) = {.V ~ {"}) is essential. Using the existence prop-
erty for the map (<p — {v}), we deduce that v G <p{U). Therefore the proof is com-
pleted. D

Now, we are able to formulate a coincidence version of the so-called nonlinear
alternative.

THEOREM 3 . 2 . Let <p e ASU(U,F), * G AC(U,F). It <p is essential and

<p(x) n *(x) = 0 lor any x G SU, then at least one of the following conditions holds:

(3.2.1) t iere exists a coincidence point of tp and \P or

(3.2.2) there exists A G (0, 1) and x G SU such that <p(x) n (Atf(a;)) ^ 0.

To prove (3.2) it is sufficient to apply the homotopy property for <p and x where

X{x, t) = t*(x) for x G clU, t G [0, 1].

Theorem (3.2) and the normalisation property immediately imply:
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184 L. Gorniewicz and M. Slosarski [8]

3.3. (Nonlinear alternative). Let <p G AC(U, E) and assume that 0 G U. Then
at least one of the following two conditions is satisfied:

(3.3.1) Fix(p)^0 or

(3.3.2) there exists x G 6U and X G (0, 1) such that x G (*<p(x)).

Now, by a standard procedure, by (3.3), we get:

3 . 4 . (Leray-Schauder alternative). Let <p: E —* E be an admissible and com-
pletely continuous mapping. Let

E{tp) = {x G E; x G \<p(x) for some A G (0, 1)}.

T ien E(tp) is unbounded or <p has a fixed point.

REMARK 3.5. Observe that we are able to state some other results using the technique
of essential mappings. For example we can prove the version of the Birkhoff-Kellogg
theorem and Borsuk's theorem on antipodes. Since the proofs are similar to those
obtained using the topological degree technique we left them to the reader (compare
[6, 9, 1 1 , 13]).

Below we shall show some concrete examples of essential mappings.

EXAMPLE 3.5. Let tp G ASU(U, R) where U is a connected open subset of E and
there are two points xo, x\ G SU such that, for every u G (p(xo), u > 0 and for every
v G tp(xi), v < 0. Then tp is essential.

Indeed, let * G A°(U, R) and suppose to the contrary that <p(x) f~l *(x) = 0 for
each x G clU. Then the map \- CW ~* -R \ {0}» x(x) — v ( z ) — *(*) is admissible
(compare (1.4)) and hence has connected values. So we get that:

= X71((-oo, 0)) U x ^ K O , +oo))

but it contradicts the assumption that U is connected.

EXAMPLE 3.6. Let U C E be an open bounded subset such that clU G A R . Assume
that / : clU —> F is a homeomorphism onto the closed subset f(clU) of F. Assume
further that f(U) is open in F and 0 G f(U). Then / is essential.

In fact, let * G A°(U, F). Since f(clU) is homeomorphic to clU, f(clU) G A R .
Let r: F —» f(clU) be a retraction mapping. We shall denote by g: f(clU) —> clU the
mapping inverse to / . Consider the set B C U defined as follows:

B = {x G clU; f(x) G {M(x)), for some t G [0, 1]}.

It is easy to see that 0 G B. Moreover, B is closed so f(B) is a closed non-empty
subset of F contained in f(U). Let s: F —* [0, 1] be an Uryshon function such that
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[9] Topological essentiality 185

s(y) = 1 for every y G f{B) and a(y) = 0 for every y G (F\f(U)). Define an admissible
mapping \ : F —* F by the following formula:

for every y G F.
Observe that X *s a compact mapping (because \P is compact) so, in view of the

Schauder fixed point theorem, there exists a point y G F such that y G *(y) • Now
by a standard procedure we can find a point x G U such that y = f(x). Therefore,
f(x) G *(z) and this means that / is essential.

As a special case of (3.6) we have the following:

EXAMPLE 3.7. Let L: E —* F be a. continuous linear isomorphism. Then for any open
bounded neighbourhood U of the origin in E the restriction L~: clU —> F of L to
clU is an essential mapping.

Next there is

EXAMPLE 3.8. If p: clU —* F is a Vietoris mapping such that p-1({0}) C U, then p
is essential.

Indeed, let * G A°(U, F). Consider the map (pp: F -> clU defined in (1.1.3). The
composition ($ o <pp): F —* F is a compact admissible mapping hence, in view of (1.5),
there exists a fixed point y of ($ o tpp). Observe that if j>(x) = y, then x G U and
p(z) G ̂ ( s ) , therefore p is essential.

4. PRELIMINARY TOPICS OF DIFFERENTIAL INCLUSIONS

In this section we shall present some background material necessary for the last
two sections. We recommend [1, 4, 7, 13, 15] for more details. In what follows, by jRn

we shall denote the n-dimensional Euclidean space with the norm || ||. We also let:

Rnm =Rn x ...x Rn

m times .

We recall the following consequence of the Leray-Schauder alternative observed in
[2] (see also [7]).

PROPOSITION 4 . 1 . Let T be a compact space and let <p:Tx Rnm x Rn -> Rn

be an admissible mapping such that:

(4.1.1) 3 0 < Jfe < 1 3a , 0 > 0 Vt G T Vz G Rnm Vj/ G Rn Vu G <f(t, z, y) :

\\u\\£a + 0\\x\\+k\\y\\.
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186 L. Gorniewicz and M. Slosarski [10]

Then the mapping * : T x Rnm -> Rn defined as follows:

*(*, x) = {y E Rn;y € <p(t, x,y)}

is u.s.c. with compact non-empty values.

The proof of the following generalised Gronwall inequality is strictly analogous to
the ordinary one (see, [1, 10, 13, 15]).

PROPOSITION 4 . 2 . Let / : [0, 1] —» [0, -)-oo) be a continuous mapping which
satisfies the following condition:

(4.2.1) 3c < 0,fi > 0 Vi, Xu . . . \k e [0, 1] :

e+ J*Pf{s)ds +J* (J l fif(B)dajdX1 +J* (J l ' H

Tien for every t 6 [0, 1] we Aave:

) c e / J + 1 -

Now, given spaces X and Y" by C(X, Y) we shall denote the set of all continuous
functions from X to Y. By Ck([a, b], Rn), where a < b, k = 0, 1, 2, . . . , we shall
denote the Banach space of all C -functions with usual maximum norm:

j|x|| = max{||«(*)||, i G [a, b)} + max{||z'(0ll i < e [a, 6]} + . . . +

Here x^ denotes the fcth derivative of x and we also put x^ — x', x^ — x. Observe

that C([a, b], Rn) = C°([o, 6], Rn).

Moreover, by Li([a, b], Rn) we shall denote the Banach space of all Lebesgue

integrable functions with the norm:

Following [3, 5] we recall the notion of decomposable sets. A subset K C

L\([a, b], Rn) is called decomposable provided for each u, v G K and any Lebesgue

measurable set A C [a, b] we have:

where, for B C [a, b], we denote the characteristic function of B by £B •

The following selection theorem was proved in [3].
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[11] Topological essentiality 187

THEOREM 4 . 3 . Let 7: X -> Lx([a, b], Rn), where X is a separable complete
metric space, be an l.s.c. mapping with closed decomposable values. Then there exists
a continuous mapping f: X —> Lx([a, b], R") such that f C <p.

We shall also make use of the following special case of the famous Kuratowski-Ryll-
Nardzewski Selection Theorem [12]:

THEOREM 4 . 4 . Let 7: [o, b] —> Rn be an u.s.c. or l.s.c. mapping with closed
values. Assume further that 7 is bounded, that is, there exists M ^ 0 such that
\\y\\ < M for every x G X and y G 7(2). Then there exists a Lebesgue integrable
selector u : [a, b] —» Rn of tp.

We shall end this section with the following remark important in the theory of
differential inclusions:

PROPOSITION 4 . 5 . Let <p: [a, b] x Rn -> Rn be a bounded and l.s.c. map-
ping with closed values. Define the mapping 7: C([a, b], Rn) —> Li([a, b], Rn) by the
formula:

f(x) - {« € i i ( [o , 6], Rn);u(t) G <p(t, x(t)) for almost everywhere (a.e.) t G [o, 6]}.

Then 7 satisfies the assumptions of (4.3).

We can consider (4.5) as an example of an l.s.c. multivalued mapping with closed
decomposable values.

5. APPLICATIONS TO DIFFERENTIAL INCLUSIONS WITH U.S.C

RIGHT-HAND SIDES

First, we shall consider a boundary value problem for functional differential inclu-
sions of order Jfe, where k > 1. To do this we need some auxiliary notation. Let a, r

be two positive real numbers. We let:

A: [0, a] -> C(C( [ - r , a], Rn), C( [ - r , 0], Rn)), be defined by the formula:

{[A(t)](x)}(a) = x{t + s), for every t G [0, a], a G [-r, 0] and x G C([ - r , a], Rn)\

* i , /,•: C^W-r, a], Rn) - C([-r, 0], Rn), i = 0, 1, . . . , Jfe - 1, where «,- is
admissible and completely continuous for each » = 0, . . . , Jfc — 1, U is continuous for
each * = 0, 1, . . . , Jfe — 2 and It-i(x) = a^*"1) |[_r>o] is the restriction of a;(*~1) to
[-T, 0] for each x G C*"1([- r , a], Rn). Moreover let

F = Ch-l{[-r, a], JT),

F = C([-r, a], Rn) x d x . . . x Ck-U Fo = d x ... x Ck,

<p: [0, a] x Fo ^ Cu
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where C\ = C2 = • • • = Ck = C([—r, 0], Rn) and tp is an u.s.c. completely continuous
bounded mapping with convex values. Finally, let g: E —» F,

, a.e. t £ [0, o]

lo(x) G /x*o(z)

for every x £ E.

For any (i € [0, 1] we shall consider the following boundary value problem:

(5-1),

By a solution to (5.1)M we mean a map x £ E such that z^*"1) is absolutely continuous

and (5.1) M holds a.e.

Let S^tp, l j , \P,-) denote the set of all solutions of (5.1)M. In what follows we shall

treat S^ip, l j , *&») as a subset of E. Observe that for k = 1 problem (5.1)M reduces

to the following one:

which is an often considered problem.

Now we are going to formulate our first application of the notion of essentiality for

multi-valued mappings.

THEOREM 5 . 2 . Under the above notion and assumptions let us assume that the

following conditions are satisfied:

(5.2.1) there exists M ^ 0 such that for any /i £ [0, 1] and x 6 SM(y, U, *%),
||*|| < M;

(5.2.2) the map g: E —» F is essential on the ball kM — {x E E; \\x\\ ̂  M}.

Then the set Si((p, U, \Pj) is non empty.

PROOF: Let x 6 E and u G $*_j(z). Using (4.4) (<p is bounded) there exists
a Lebesgue integrable function z: [0, a] —» Rn such that z[t) G <p(t, A(t)(x), . . . ,
A(t)(x(k~1ty} for any t £ [0, a]; then z is called a Lebesgue selector of tp with respect
to x. Define a function yx,u,z G C([—r, a], Rn) by the formula
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and let (: E - • C([-r, a], Rn), be denned as follows:

£(x) — {y I ] u < z ;u G ^t_i(a;) and z to be a Lebesgue selector of tp

with respect to x} .

Evidently £ is an u.s.c. completely continuous mapping with convex values and hence
£ is an admissible mapping. Consider a map <p: KM —» F given as follows:

(p(x) = g{x) - C{x) x ¥„(*) x . . . x *k-2(x).

From our assumptions and (1-4) it follows that (p is an admissible and compact
map. Observe also (see (5.2.1) that 0 $ <p{x) f ° r x £ &KM- NOW it is sufficient to show
that 0 G <p(x) for some x £ KM- This contradiction will follow from the essentiality of
<p. In view of (5.2.2), g is essential on KM- We shall end the proof of essentiality of
(p by showing that (p is homotopic on KM to g (compare (2.7)). Define the following
homotopy

X: [0, 1] x KM -> F, by the formula

, x) = g{x) - ^ ( x ) x *„(*) x . . . x *k-2(x)),

for every /x and x.

Then (5.2.1) guarantees that x ls a well-defined homotopy; hence the theorem

follows from (2.7) and (2.4). D

REMARK 5.3. (5.3.1) Similarly to [2] we can assume merely that <p satisfies the linear
growth condition; moreover, we are able to get a solution of (5.1) i in the case when
the right-hand side depends also on the derivative of order k (use (4.1) and see [2] for
details).

(5.3.2) Evidently, Theorem (5.2) implies the respective result for differential inclu-
sions.

(5.3.3) Even the special case of Theorem (5.2) formulated in the context of differ-
ential inclusions gives a generalisation of several earlier results presented in [4, 13, 14,
15]. Since we have considered functional differential inclusions, we have assumed only
that g is essential, meanwhile in [4, 13, 14, 15] g was actually a linear isomorphism
and its essentiality follows from (3.7).

Now we are going to present two examples as an illustration of the method of the
proof of Theorem (5.2).

EXAMPLE 5.4. Let /<(x) = A{0)(x^) , 0 < i < Jb - 2, /*-i(x) = z (*-x ) and let
p : [-r, 0] -» Rn be a C*"1 mapping. We let:

*i(x) = p(%\ 0 < t < fc — 1 ( \P f i sa single-valued mapping).
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Then U(x) G *i(s:) means simply that U(x) - pW, 0 ^ i < k - 1.

Taking the same tp as in (5.2) we claim that the problem (5.1) i has a solution.
Indeed, let E and F be as above. We let

G= l(z,u0,..., u*_2) G F; 3y G E such that y( f c - 1 ) = z and 4(0)( j / ( i ) ) = u;,

« = 0 , . . . , Jb - 2 J .

It is easy to see that G as a closed subspace of F is a Banach space too.

Define a map g: E —> G by the formula:

g(x) = (s**-1) , A(0)(x), . . . .

Since ^ is a linear isomorphism, it is essential on any bounded neighbourhood U of the
origin in E (see (3.7)). Now observe that the map ( x $ o X , . . x ^*-2 has values in (7,
where C, is as defined in the proof of (5.2). Therefore, in (5.2) we can replace the space
F by G, and since condition (5.2.1) is easy to verify, we conclude that the considered
problem has a solution.

EXAMPLE 5.5. Here we shall present a more concrete example which gives a generali-
sation of the main result obtained in [14]. Let tp : [0, 1] x R3 —» R be an u.s.c. bounded
and connected valued mapping. Consider the following boundary value problem:

<p{t, x(t), x'(t), x"(t)), a.e., t € [0, 1]

a;(0) = 0

(5.5.1) I /-i
1 / x3(t)dt = 0

Jo
x"(0) = 0.

We shall show, using the technique developed in Theorem (5.2), that problem (5.5.1)
has a solution (the singlevalued case was considered in [14]). Let

E = C2([0, 1], R), F = C([0, 1], R) x R2

g-.E^F, g(x) = (x", x(Q), £ x3(t)dt),

ip~: E —> F, <p~(x) - g ( x ) - < ( y , 0 , 0 ) ; y ( t ) - / Z(T)CIT, w h e r e x i s a

Lebesgue selector of tp with respect t o i L
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It is easy to see that g is essential on some bounded neighbourhood of the origin

of E (see (3.7)). Indeed, to see this we consider a linear map L: E —> F, L{x) =

(x", x{0), Jg x(t)dt) and homotopy

h{x, fi)= (0, 0,

Then g = (L — h(-, 1)) and our assertion follows from the homotopy ptoperty (2.7).
Now we only have to verify condition (5.2.1). Let Mi be an upper bound for <p. We
claim that condition (5.2.1) for M = (2Mi + 1) holds. First, observe that the norm
||!B||K = max{|x"(t)|;< G [0, 1]} + |x(0)| + |x(a)| is equivalent to the usual norm of
C2([0, 1], R). Since max{|x"(t)| ;t G [0, 1]} < Mi and x(0) = 0 it suffices to show
that the values x(a) are uniformly bounded by Mi for any solution to (5.1.1)p. We
shall proceed by contradiction. Suppose that |x(l) | > Mi for some x to (5.5.1) p . Then
without any loss of generality we may assume that x( l ) > 0. Since J"o x3(t)dt = 0,
there exists <i G [0, 1] such that x(t\) < 0. We can also choose t2 in such a way that
*'(«,) = 0.

Using the Lagrange theorem two times (for x and x ') we get ts G (0, 1) and ti in
an open interval determined by ts and t2 such that:

Mi < x(l) - x(0) = x'{t3)

and (assuming that, for example, ts < t2)

Mx < x'(h) - x'(t3) = (*, - h)x"(U) < Mj

se we get a contradiction. Therefore all assumptions of Theorem 5.2 are satisfied and
problem (5.5.1) i has a solution.

REMARK 5.6. Finally we would like to add that, for instance, all results obtained in [4]
or [15] can be generalised using our technique of essentiality. Observe that Theorem 5.2
can also be formulated in terms of hyperbolic or eliptic partial differential inclusions.
We leave it to the reader (see [15]). In order to verify the assumption related to (5.2.1)
we need (4.2) (that is the reason we have formulated Proposition (4.2) in Section 4).

6. APPLICATIONS TO DIFFERENTIAL INCLUSIONS

WITH L.S.C. RIGHT-HAND SIDES

In this section we shall show that the notion of essentiality works also in the case
of functional l.s.c. differential inclusions and the main idea is exactly the same as in the
u.s.c. case. In the case of l.s.c. right-hand side we can say even more because, in view
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of selection Theorem (4.4), we can assume only that <p has compact values. Below we

formulate the main theorem of this section which generalises results from [5].

We shall keep the notation of Section 5 introduced before the formulation of The-

orem 5.2. So, consider mappings U, i — 0, . . . , k — 1, A and g satisfying the same

assumptions as in Section 5. We also consider a mapping <p: [0, a] X Fo —> C\ being

l.s.c, bounded and having compact values.

Now (see Section 5) for every /z £ [0, 1] we can consider problem (5.1)M. We prove

the following:

THEOREM 6 . 1 . Under all of the above assumptions let us also assume (5.2.1)

and (5.2.2). Then the set S\(<p, U, \Pj) is non-empty.

PROOF: Define a map 7: E -* £i([0, a], Rn) by putting:

7 («) = {y 6 Zi([0, a], r);y{t) G V(i, A(t)(x), ..., A(t)(x^-^)) a.e, t e [0, a]}.

Then 7 is an l.s.c. mapping with closed decomposable values (see [5]) and, hence, using
(4.5), we get a continuous selection / : E —> £i([0, a], Rn) of 7. Evidently M is an
upper bound for / . Now we define a map

as follows:

COO = {ye c([-r, a], Rny,

j s(Q) + J* f(x)(X)d\, for t e [0, a] 1

[ s(t), for t G [-r, a] J

and a map X : E — y F

by letting: x(«) = ff(*) - C(«) X *t-2(*)

To end the proof it is sufficient to show that x is an essential mapping. In view of

(5.2.1) and (5.2.2), the essentiality of x follows from the homotopy property (2.7).

Observe that, because of (4.5), the proof of Theorem 6.1 is simpler than that of

(5.2). D

REMARK 6.3. We would like to add that in the l.s.c. case we are able to repeat the

results obtained in the u.s.c. case (compare results and comments of Section 5).
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