The circumstellar environment of ${\tt lkh}\alpha$ 234

B.A. Wilking¹, L.G. Mundy², R.D. Schwartz¹
¹Physics Department, U. of Missouri-St. Louis, St. Louis, Missouri 63121, USA
²Caltech, Pasadena, CA 91125, USA

We present high resolution (HPBW = 5 arcsec) continuum and molecular-line observations of the circumstellar environment of the emission-line star LkH α 234 made with the Owens Valley Millimeter-Wave Interferometer. These 98 GHz observations have revealed an unresolved continuum source coincident with the star and a 10000 by 17000 A.U. ridge of enhanced CS(2-1) emission which peaks \sim 4" east of the star. The resulting spectral dependence for the radio continuum emission of $v^{1.5}$ is most easily interpreted as arising from a partially ionized stellar wind. Attempts are made to describe the properties of the CS emission in terms of a rotating molecular disk which would link LkH α 234 with large scale mass loss activity in the cloud. However, it appears most likely that the CS emission is arising from a dense (n(H₂) \sim 10⁶ cm⁻³) condensation of gas adjacent to, but not dynamically associated with, the star.