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Characterization of Parallel Isometric
Immersions of Space Forms into Space
Forms in the Class of Isotropic Immersions

Sadahiro Maeda and Seiichi Udagawa

Abstract. For an isotropic submanifold Mn (n ≧ 3) of a space form eMn+p(c) of constant sectional

curvature c, we show that if the mean curvature vector of Mn is parallel and the sectional curvature K

of Mn satisfies some inequality, then the second fundamental form of Mn in eMn+p is parallel and our

manifold Mn is a space form.

1 Introduction

An n-dimensional space form Mn(c) is a complete connected Riemannian manifold

of constant sectional curvature c. Locally it is congruent to a standard sphere Sn(c),

a Euclidean space R
n, or a hyperbolic space Hn(c), if c is positive, zero, or negative,

respectively.

We review the notion of isotropic immersions which plays a key role in this paper.

An isometric immersion f : M → M̃ of an n-dimensional Riemannian manifold
into an (n + p)-dimensional Riemannian manifold is said to be isotropic at x ∈ M if

‖σ(X, X)‖/‖X‖2(= λ(x)) does not depend on the choice of X( 6= 0) ∈ TxM, where σ
is the second fundamental form of the immersion f . If the immersion is isotropic at
every point, then the immersion is said to be isotropic (see [7]). When the function

λ = λ(x) is constant on M, we call M a constant (λ-)isotropic submanifold. Note

that a totally umbilic immersion is isotropic, but not vice versa.

Here we recall examples of isotropic immersions which are not totally umbilic.
Let f : M → S4(1) be a superminimal immersion of a Riemann surface into a sphere

in the sense of Bryant [1]. It is known that in general this immersion is non-constant

isotropic. Next, let f : M(= G/K) → M̃ be a G-equivariant isometric immersion
of a rank one symmetric space M(= G/K) into an arbitrary Riemannian manifold

M̃. Then we easily see that this submanifold (M, f ) is a constant isotropic subman-
ifold of M̃, so that in particular, every standard minimal immersion (in the sense

of do Carmo and Wallach [2]) f : M → SN(c) of a compact rank one symmetric

space M into a sphere is constant isotropic. Moreover, there exist many constant
isotropic minimal immersions which are not standard minimal immersions into a

sphere (see [10]). These examples tell us that the class of isotropic immersions into a

sphere is an abundant class in submanifold theory.
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On the other hand, it is natural to give geometric characterizations of parallel
isometric immersions of rank one symmetric spaces Mn into a space form M̃n+p(c)

of constant sectional curvature c. It is well known that this submanifold is either
totally umbilic in M̃n+p(c), one of compact rank one symmetric spaces embedded

into some totally umbilic submanifold in M̃n+p(c) through the first standard minimal

embedding, or a sphere immersed into some totally umbilic submanifold in M̃n+p(c)
through the second standard minimal immersion (see [3, 9]). This fact implies that

every parallel isometric immersion of a rank one symmetric space into a space form

is isotropic. Hence it is interesting to consider the problem of how to characterize
parallel isometric immersions of rank one symmetric spaces into a space form in the

class of isotropic immersions. In this paper, we pay particular attention to parallel
isometric immersions of compact space forms into space forms.

The main purpose of this paper is to characterize all parallel isometric immer-

sions of compact space forms into space forms M̃n+p(c) in the class of isotropic sub-
manifolds Mn under conditions that the mean curvature vector of Mn in M̃n+p(c) is

parallel with respect to the normal connection and the sectional curvature K of Mn

satisfies K ≧ n/2(n + 1) · (c + H2), where H is the length of the mean curvature
vector of Mn in M̃n+p(c) (Theorem 2.1). None of our results (Theorems 2.1, 3.1 and

Corollaries 3.2, 3.3) hold if we replace the condition that “the mean curvature vector

is parallel with respect to the connection” for a weaker condition that “the length of
the mean curvature vector is constant”.

2 Main Result

Theorem 2.1 Let M be an n (≧ 3)-dimensional connected compact oriented isotropic

submanifold whose mean curvature vector is parallel with respect to the normal con-
nection in an (n + p)-dimensional space form M̃n+p(c) of constant sectional curvature

c through an isometric immersion f . Suppose that every sectional curvature K of Mn

satisfies K ≧ (n/2(n + 1))(c + H2), where H is the length of the mean curvature vector

of Mn in M̃n+p(c). Then the immersion f has parallel second fundamental form and the

submanifold (M, f ) is congruent to one of the following.

(i) Mn is a compact space form Mn(K) of constant sectional curvature K = c + H2

and f is a totally umbilic embedding.

(ii) Mn is a compact space form Mn(K) of constant sectional curvature

K =
n

2(n + 1)
(c + H2),

and f is given by

f = f2 ◦ f1 : Mn(K)
f1−→ Sn(n+3)/2−1(2(n + 1)K/n)

f2−→ M̃n+p(c),

where f1 is a minimal (parallel) immersion and f2 is a totally umbilic embedding.

In order to prove Theorem 2.1 we prepare four lemmas.
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Lemma 2.2 The second fundamental form σ of an isotropic submanifold M in a Rie-
mannian manifold M̃ with Riemannian metric 〈 , 〉 satisfies the following at each point

x ∈ M.

(i) 〈σ(X, X), σ(X,Y )〉 = 0 for each pair of orthonormal vectors X,Y in TxM.

(ii) ‖σ(X, X)‖2
= 〈σ(X, X), σ(Y,Y )〉 + 2‖σ(X,Y )‖2 for each pair of orthonormal

vectors X,Y in TxM.
(iii) 〈σ(X, X), σ(U ,V )〉 = −2〈σ(X,U ), σ(X,V )〉 for each triplet of orthonormal vec-

tors X,U ,V in TxM.

Proof It is known that the second fundamental form σ is λ-isotropic if and only if σ
satisfies the following equation:

〈σ(X,Y ), σ(Z,W )〉 + 〈σ(X, Z), σ(Y,W )〉 + 〈σ(X,W ), σ(Y, Z)〉 =

λ2(〈X,Y 〉〈Z,W 〉 + 〈X, Z〉〈Y,W 〉 + 〈X,W 〉〈Y, Z〉)

for arbitrary vectors X,Y, Z,W ∈ TM. Thus we get equations in (i), (ii), and (iii).

Lemma 2.3 Let Mn be an n-dimensional isotropic submanifold of M̃n+p . We take

v ∈ UxM = {v ∈ TxM : ‖v‖ = 1} and an orthonormal basis {v = E1, E2, . . . , En} of

TxM. Then these vectors satisfy the following.

(i) n(‖σ(v, v)‖2 − 〈h, σ(v, v)〉) = 2

n∑

j=2

‖σ(v, E j)‖2,

where h is the mean curvature vector of Mn in M̃n+p.

∑

2≦ℓ, j≦n

〈σ(v, E j), σ(v, Eℓ)〉〈σ(v, v), σ(E j , Eℓ)〉 = ‖σ(v, v)‖2
n∑

j=2

‖σ(v, E j)‖2(ii)

− 2

n∑

j=2

‖σ(v, E j)‖4 − 2
∑

2≦ℓ6= j≦n

〈σ(v, E j), σ(v, Eℓ)〉2.

∑

2≦ℓ, j≦n

〈σ(v, v), σ(E j, Eℓ)〉2
= (n − 1)‖σ(v, v)‖4 − 4‖σ(v, v)‖2

n∑

j=2

‖σ(v, E j)‖2(iii)

+ 4

n∑

j=2

‖σ(v, E j)‖4 + 4
∑

2≦ℓ6= j≦n

〈σ(v, E j), σ(v, Eℓ)〉2.

Proof For (i), by Lemma 2.2(ii) and h = (1/n)
∑n

j=1 σ(E j , E j) we get

2

n∑

j=2

‖σ(v, E j)‖2
=

n∑

j=2

(
‖σ(v, v)‖2 − 〈σ(v, v), σ(E j , E j)〉

)

= n‖σ(v, v)‖2 − n〈σ(v, v), h〉.
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For (ii) from Lemma 2.2(ii) and (iii) we have

∑

2≦ℓ, j≦n

〈σ(v, E j), σ(v, Eℓ)〉〈σ(v, v), σ(E j, Eℓ)〉

=

n∑

j=2

〈σ(v, E j), σ(v, E j)〉〈σ(v, v), σ(E j, E j)〉

+
∑

2≦ℓ6= j≦n

〈σ(v, E j), σ(v, Eℓ)〉〈σ(v, v), σ(E j , Eℓ)〉

=

n∑

j=2

〈σ(v, E j), σ(v, E j)〉
(
‖σ(v, v)‖2 − 2‖σ(v, E j)‖2

)

+
∑

2≦ℓ6= j≦n

〈σ(v, E j), σ(v, Eℓ)〉
(
−2〈σ(v, E j), σ(v, Eℓ)〉

)

= ‖σ(v, v)‖2
n∑

j=2

‖σ(v, E j)‖2 − 2

n∑

j=2

‖σ(v, E j)‖4

− 2
∑

2≦ℓ6= j≦n

〈σ(v, E j), σ(v, Eℓ)〉2.

The same computation as that in (ii) yields the equation in (iii).

We recall fundamental equations for a Riemannian submanifold Mn of a space
form M̃n+p(c). We denote by R (resp. R⊥) the curvature tensor (resp. the normal

curvature tensor) of M and A the shape operator of Mn in M̃n+p(c). Then, for any

X,Y, Z,W ∈ TM and any ξ ∈ T⊥M we have

R(X,Y )Z = c(〈Y, Z〉X − 〈X, Z〉Y ) + Aσ(Y,Z)X − Aσ(X,Z)Y,(2.1)

R⊥(X,Y )ξ = σ(X, AξY ) − σ(Y, AξX),(2.2)

(∇X∇Y σ)(Z,W ) − (∇Y∇Xσ)(Z,W ) = R⊥(X,Y )σ(Z,W )(2.3)

− σ(R(X,Y )Z,W ) − σ(Z, R(X,Y )W ),

(∇Xσ)(Y,W ) = (∇Y σ)(X,W ).(2.4)

In the following, we regard UxM as an (n − 1)-dimensional unit sphere Sn−1(1)
in TxM(∼= R

n), and denote by ∆ the Laplacian on Sn−1(1).

Lemma 2.4 For an orthonormal basis {v = E1, E2, . . . , En} of TxM we consider
smooth curves v j(t) = (cos t)v + (sin t)E j ( j = 2, 3, . . . , n) on Sn−1(1). Let

Ψ(v) = 〈(∇v∇vσ)(v, v), σ(v, v)〉 for v ∈ Sn−1(1)
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for a Riemannian submanifold Mn (which is not necessarily isotropic) in a general Rie-
mannian manifold M̃n+p. Then

(∆Ψ)v = −6(n + 4)〈(∇v∇vσ)(v, v), σ(v, v)〉

+ 6

n∑

j=1

〈(∇E j
∇E j

σ)(v, v), σ(v, v)〉 + 4

n∑

j=1

〈(∇E j
∇vσ)(v, v), σ(E j, v)〉

+ 6

n∑

j=1

〈(∇v∇E j
σ)(E j , v), σ(v, v)〉 + 12

n∑

j=1

〈(∇v∇E j
σ)(v, v), σ(E j, v)〉

+ 2

n∑

j=1

〈(∇v∇vσ)(v, v), σ(E j, E j)〉.

(2.5)

Proof We first have

d

dt
Ψ(v j(t)) = 〈(∇v̇ j

∇v j
σ)(v j , v j), σ(v j , v j)〉 + 〈(∇v j

∇v̇ j
σ)(v j, v j), σ(v j, v j)〉

+ 2〈(∇v j
∇v j

σ)(v̇ j, v j), σ(v j, v j)〉 + 2〈(∇v j
∇v j

σ)(v j , v j), σ(v̇ j , v j)〉,

where v j = v j(t), v̇ j(t) =
d
dt

v j(t) = (− sin t)v + (cos t)E j . We similarly obtain

d2

dt2
Ψ(v j(t)) = 〈(∇v̈ j

∇v j
σ)(v j , v j), σ(v j, v j)〉 + 3〈(∇v j

∇v̈ j
σ)(v j , v j), σ(v j , v j)〉

+ 2〈(∇v j
∇v j

σ)(v j , v j), σ(v̈ j , v j)〉 + 6〈(∇v̇ j
∇v̇ j

σ)(v j, v j), σ(v j, v j)〉

+ 4〈(∇v̇ j
∇v j

σ)(v j , v j), σ(v̇ j , v j)〉 + 6〈(∇v j
∇v̇ j

σ)(v̇ j, v j), σ(v j, v j)〉

+ 12〈(∇v j
∇v̇ j

σ)(v j , v j), σ(v̇ j , v j)〉 + 2〈(∇v j
∇v j

σ)(v j , v j), σ(v̇ j, v̇ j)〉,

where v̈ j =
d2

dt2 v j(t) = (− cos t)v + (− sin t)E j . Hence, from the above equation we

can verify that (∆Ψ)v =
(∑n

j=2
d2

dt2 Ψ(v j(t))
)

t=0
is given by (2.5).

Lemma 2.5 The second fundamental form σ of a Riemannian submanifold Mn with

parallel mean curvature vector in a space form M̃n+p(c) satisfies the following at each
point x ∈ M.

∫

UxM∋v

n∑

j=1

〈(∇E j
∇vσ)(v, v), σ(E j, v)〉 = 0.(i)

∫

UxM∋v

n∑

j=1

〈(∇v∇vσ)(v, v), σ(E j, E j)〉 = 0.(ii)
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Proof Let Φ(v) =
∑n

j=1〈(∇E j
∇vσ)(v, v), σ(E j, v)〉 for ∀v ∈ Sn−1(1). Then the com-

putation in the proof of Lemma 2.4, together with the assumption that the mean cur-

vature vector is parallel with respect to the normal connection, tells us the following.

(∆Φ)v = −(4n + 8)Φ(v) + 6
∑

1≦ j,k≦n

〈(∇E j
∇Ek

σ)(v, v), σ(E j, Ek)〉.

Here, let Φ̃(v) =
∑

1≦ j,k≦n〈(∇E j
∇Ek

σ)(v, v), σ(E j, Ek)〉. Then, again by using the as-

sumption that the mean curvature vector is parallel, the same computation as above

yields (∆Φ̃)v = −2nΦ̃(v). Therefore, by Green’s theorem we see that
∫

UxM∋v
Φ(v) =

0, so that we get (i) in our lemma. Similarly we have (ii) in Lemma 2.5.

Proof of Theorem 2.1 We are now in a position to prove Theorem 2.1. Suppose that

our manifold M satisfies the hypothesis of Theorem 2.1. We note that the fourth term

in the right hand side of (2.5) vanishes because of (2.4) and the assumption that the
mean curvature vector is parallel. So, it follows from Lemmas 2.4 and 2.5 that

(2.6)

(n + 4)

∫

UxM

〈(∇v∇vσ)(v, v), σ(v, v)〉 =

∫

UxM∋v

( n∑

j=1

〈(∇E j
∇E j

σ)(v, v), σ(v, v)〉

+ 2

n∑

j=1

〈(∇v∇E j
σ)(v, v), σ(E j , v)〉

)
.

This, together with (2.1), (2.2), Lemma 2.2, and the hypothesis that the mean curva-

ture vector is parallel, shows

(2.7)

n∑

j=1

〈(∇E j
∇E j

σ)(v, v), σ(v, v)〉 = 2c

n∑

j=2

‖σ(v, E j)‖2

+ 2‖σ(v, v)‖2
n∑

j=2

‖σ(v, E j)‖2 − 8
∑

2≦ℓ, j≦n

〈σ(v, E j), σ(v, Eℓ)〉2.

Also, we have

n∑

j=1

〈(∇v∇E j
σ)(v, v), σ(E j, v)〉 =

n∑

j=1

〈(∇E j
∇vσ)(v, v), σ(E j, v)〉

+ 2c

n∑

j=2

‖σ(v, E j)‖2 + 2‖σ(v, v)‖2

n∑

j=2

‖σ(v, E j)‖2

− 8
∑

2≦ j,k≦n

〈σ(v, E j), σ(v, Ek)〉2.

(2.8)
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In consideration of (2.6), (2.7), (2.8), and Lemma 2.5(i) we find that

(2.9) (n + 4)

∫

UxM

〈(∇v∇vσ)(v, v), σ(v, v)〉 =

∫

UxM∋v

(
6c

n∑

j=2

‖σ(v, E j)‖2

+ 6‖σ(v, v)‖2

n∑

j=2

‖σ(v, E j)‖2 − 24
∑

2≦ j,k≦n

〈σ(v, E j), σ(v, Ek)〉2
)

.

On the other hand, by the result of Ros [8] for T(v) = 〈σ(v, v), σ(v, v)〉, we know

that

0 =

∫

U M

(∇2T)(v, v, v, v, v, v)

=

∫

U M

(2‖(∇vσ)(v, v)‖2 + 2〈(∇v∇vσ)(v, v), σ(v, v)〉),

so that

(2.10)

∫

U M

〈(∇v∇vσ)(v, v), σ(v, v)〉 = −
∫

U M

‖(∇vσ)(v, v)‖2 ≦ 0.

Our aim here is to show that the submanifold M has parallel second fundamental
form. Hence, by virtue of (2.4), (2.9), and (2.10) we have only to prove the following

inequality:

c

n∑

j=2

‖σ(v, E j)‖2 + ‖σ(v, v)‖2

n∑

j=2

‖σ(v, E j)‖2 − 4
∑

2≦ j,k≦n

〈σ(v, E j), σ(v, Ek)〉2 ≧ 0.

To do this, we set

A =

n∑

j=2

K(v, E j) =

n∑

j=2

〈R(v, E j)E j, v〉 and B =

∑

2≦ j 6=k≦n

K(E j, Ek).

It follows from (2.1) and Lemma 2.2(ii) that

(2.11) A = (n − 1)c + (n − 1)‖σ(v, v)‖2 − 3

n∑

j=2

‖σ(v, E j)‖2.

By the definition of the mean curvature vector h we see that

(2.12) n2‖h‖2
= ‖σ(v, v)‖2 + 2

n∑

j=2

〈σ(v, v), σ(E j , E j)〉

+
∑

2≦ j,k≦n

〈σ(E j , E j), σ(Ek, Ek)〉.
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In view of (2.1), (2.12), and Lemma 2.3(i) we find that

(2.13) n2‖h‖2
= 2n‖σ(v, v)‖2 − n〈σ(v, v), h〉 − 2(n − 1)c + 2A + B

− (n − 1)(n − 2)c +
∑

2≦ j 6=k≦n

‖σ(E j , Ek)‖2.

On the other hand, we have

n∑

j=2

〈σ(v, v), σ(E j , E j)〉 = n〈σ(v, v), h〉 − ‖σ(v, v)‖2,

and

∑

1≦ j,k≦n

〈σ(E j , E j), σ(Ek, Ek)〉 = (n − 1)‖σ(v, v)‖2 + (n − 1)(n − 2)‖σ(v, v)‖2

− 2
∑

2≦ j 6=k≦n

‖σ(E j , Ek)‖2

because of Lemma 2.2(ii). Substituting these equations into the right hand side of
(2.12), we get

∑

2≦ j 6=k≦n

‖σ(E j, Ek)‖2
=

n(n − 2)

2
‖σ(v, v)‖2 + n〈σ(v, v), h〉 − n2

2
‖h‖2,

which, together with (2.13), implies

(2.14) 3n2‖h‖2
= n(n + 2)‖σ(v, v)‖2 − 2n(n − 1)c + 4A + 2B.

It follows from (2.11) and (2.14) that

‖σ(v, v)‖2
=

2(n − 1)

n + 2
c +

3n

n + 2
‖h‖2 − 4

n(n + 2)
A − 2

n(n + 2)
B,(2.15a)

n∑

j=2

‖σ(v, E j)‖2
=

n(n − 1)

n + 2
c +

n(n − 1)

n + 2
‖h‖2 − n2 + 6n − 4

3n(n + 2)
A(2.15b)

− 2(n − 1)

3n(n + 2)
B.

Moreover, from (2.11), (2.15a), and Lemma 2.3(i) we obtain

(2.16) B = (n − 2)A +
3

2
n2(‖h‖2 − 〈σ(v, v), h〉).
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Substituting (2.16) into the right-hand sides of (2.15a)and (2.15b), we can see that

‖σ(v, v)‖2
=

2(n − 1)

n + 2
c − 2

n + 2
A +

3n

n + 2
〈σ(v, v), h〉,(2.17a)

n∑

j=2

‖σ(v, E j)‖2
=

n(n − 1)

n + 2
c − n

n + 2
A +

n(n − 1)

n + 2
〈σ(v, v), h〉.(2.17b)

We next estimate
∑

2≦ j,k≦n〈σ(v, E j), σ(v, Ek)〉2. By (2.1), for j = 2, . . . , n we have

‖σ(v, E j)‖4
=

(
c − K(v, E j) + 〈σ(v, v), σ(E j , E j)〉

)
‖σ(v, E j)‖2,

which, combined with Lemma 2.2(ii), yields

(2.18) 4

n∑

j=2

‖σ(v, E j)‖4
=

4

3
c

n∑

j=2

‖σ(v, E j)‖2 − 4

3

n∑

j=2

K(v, E j)‖σ(v, E j)‖2

+
4

3
‖σ(v, v)‖2

n∑

j=2

‖σ(v, E j)‖2.

It follows from (2.18) and the assumption that every sectional curvature K of M

satisfies K ≧ n
2(n+1)

(c + ‖h‖2) that

(2.19) 4

n∑

j=2

‖σ(v, E j)‖4 ≦
( n∑

j=2

‖σ(v, E j)‖2
)

×
( 4

3
c − 4n

6(n + 1)
(c + ‖h‖2) +

4

3
‖σ(v, v)‖2

)
.

For simplicity we take an orthonormal basis {E2, . . . , En} of UxM satisfying

〈σ(v, E j), σ(v, Ek)〉 = δ jk〈σ(v, E j), σ(v, E j)〉 for j, k = 2, . . . , n,

so that

(2.20)
∑

2≦ j,k≦n

〈σ(v, E j), σ(v, Ek)〉2
=

n∑

j=2

‖σ(v, E j)‖4.

On the other hand, by the assumption on the sectional curvature K of M we know
that

(2.21) A ≧
n(n − 1)

2(n + 1)
(c + ‖h‖2), B ≧

n(n − 1)(n − 2)

2(n + 1)
(c + ‖h‖2).
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It follows from the second inequality in (2.21) and (2.16) that

(2.22) 〈σ(v, v), h〉 ≦ ‖h‖2 +
2(n − 2)

3n2
A − (n − 1)(n − 2)

3n(n + 1)
(c + ‖h‖2).

Hence, from (2.19), (2.20), (2.17a), (2.22) and the first inequality in (2.21) we can
see that

c

n∑

j=2

‖σ(v, E j)‖2 + ‖σ(v, v)‖2
n∑

j=2

‖σ(v, E j)‖2 − 4
∑

2≦ j,k≦n

〈σ(v, E j), σ(v, Ek)〉2

≧
( n∑

j=2

‖σ(v, E j)‖2
)(

c + ‖σ(v, v)‖2 − 4

3
c +

4n

6(n + 1)
(c + ‖h‖2) − 4

3
‖σ(v, v)‖2

)

=
( n∑

j=2

‖σ(v, E j)‖2
)(

− n

n + 2
c +

2n

3(n + 1)
(c + ‖h‖2) +

2

3(n + 2)
A

− n

n + 2
〈σ(v, v), h〉

)

≧
( n∑

j=2

‖σ(v, E j)‖2
)(

− n

n + 2
c +

2n

3(n + 1)
(c + ‖h‖2) +

2

3(n + 2)
A

− n

n + 2
‖h‖2 − 2(n − 2)

3n(n + 2)
A +

(n − 1)(n − 2)

3(n + 1)(n + 2)
(c + ‖h‖2)

)

=
( n∑

j=2

‖σ(v, E j)‖2
)( 4

3n(n + 2)
A − 2(n − 1)

3(n + 1)(n + 2)
(c + ‖h‖2)

)
≧ 0,

so that M has parallel second fundamental form. This, together with the assumption

that M is connected, shows that the length ‖h‖ is a constant function on the subman-

ifold M. Moreover, the last inequality shows that our discussion is divided into the
following two cases.

One is to investigate the case of σ(v, E j) = 0 for j = 2, . . . , n. This, combined

with Lemmas 2.3(i) and 2.2(ii), implies ‖σ(v, v)‖2
= 〈σ(v, v), h〉 = ‖h‖2. So equa-

tion (2.1) yields K(v, E j) = c + ‖h‖2, which is a constant for j = 2, . . . , n. As v is

an arbitrary (unit) vector of TxM, our discussion shows that the manifold Mn has
constant sectional curvature K ≡ c + ‖h‖2 at the point x and x is an umbilic point on

Mn.

The other is to consider the case of σ(v, E j) 6= 0 for some j. In this case, the
last inequality tells us that Mn has constant sectional curvature K ≡ n

2(n+1)
(c + ‖h‖2)

at the point x. Then by the connectivity of M we see that our manifold Mn is a

space form either Mn(c + ‖h‖2) or Mn
(

n(c + ‖h‖2)/2(n + 1)
)

. Therefore, by the
classification theorems of parallel submanifolds in a space form (see [3,9]) we get the

conclusion.

https://doi.org/10.4153/CJM-2009-034-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2009-034-4


Parallel Isometric Immersions of Space Forms Into Space Forms 651

3 Concluding Remarks

Our aim here is to establish Theorem 3.1. Note that in Theorem 3.1 we do not sup-

pose that the immersion f is isotropic.

Theorem 3.1 Let M be a 2-dimensional, connected, compact, oriented submani-
fold whose mean curvature vector is parallel with respect to the normal connection in

a (2 + p)-dimensional space form M̃2+p(c) of constant sectional curvature c through
an isometric immersion f . Suppose that every sectional curvature K of M2 satisfies

K ≧ (1/3)(c + H2), where H is the length of the mean curvature vector of M2 in

M̃2+p(c). Then the immersion f has parallel second fundamental form and the sub-
manifold (M, f ) is congruent to one of the following.

(i) M2 is a compact space form M2(K) of constant sectional curvature K = c + H2

and f is a totally umbilic embedding.

(ii) M2 is a compact space form M2(K) of constant sectional curvature K = (1/3)(c +

H2) and f is given by f = f2 ◦ f1 : M2(K)
f1−→ S4(3K)

f2−→ M̃2+p(c), where f1 is
a minimal (parallel) immersion and f2 is a totally umbilic embedding.

Proof Let {X,Y} be a local field of orthonormal frames on M2. We set Z =

(1/
√

2 )(X −
√
−1Y ). In the following, our computation is expressed in terms of

Z, Z. We can set

(3.1) ∇ZZ = aZ,∇ZZ = −aZ,∇ZZ = aZ,∇ZZ = −aZ,

where a is a local smooth function on M2. We here review some fundamental

facts. M2 is totally umbilic in an ambient Riemannian manifold M̃ if and only if
σ(Z, Z) = 0 on M2. The mean curvature vector h of M2 in M̃ is parallel if and only

if ∇⊥
eX
σ(Z, Z) = 0 for ∀X̃ ∈ TM, which is equivalent to saying that (∇eXσ)(Z, Z) = 0

for ∀X̃ ∈ TM. Hence, from (2.4) and the parallelism of the mean curvature vector

we have

(3.2) (∇Zσ)(Z, Z) = (∇Zσ)(Z, Z) = 0.

Then from (3.1) and (3.2) we see that

∇Z‖σ(Z, Z)‖2
= 〈∇⊥

Z
σ(Z, Z), σ(Z, Z)〉 + 〈σ(Z, Z),∇⊥

Z
σ(Z, Z)〉

= 〈2σ(∇ZZ, Z), σ(Z, Z)〉 + 〈σ(Z, Z), (∇Zσ)(Z, Z) + 2σ(∇ZZ, Z)〉

= 〈σ(Z, Z), (∇Zσ)(Z, Z)〉.

This, together with (3.1), implies

∆‖σ(Z, Z)‖2
= ∇Z∇Z‖σ(Z, Z)‖2 −∇∇Z Z‖σ(Z, Z)‖2

= 〈∇⊥
Z σ(Z, Z), (∇Zσ)(Z, Z)〉 + 〈σ(Z, Z),∇⊥

Z (∇Zσ)(Z, Z)〉

− a〈σ(Z, Z), (∇Zσ)(Z, Z)〉

= ‖(∇Zσ)(Z, Z)‖2 + 〈σ(Z, Z), (∇Z∇Zσ)(Z, Z)〉.
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Here, it follows from (2.1), (2.2), (2.3), and (3.2) that

(∇Z∇Zσ)(Z, Z) = R⊥(Z, Z)σ(Z, Z) − 2σ(R(Z, Z)Z, Z)

= 〈σ(Z, Z), σ(Z, Z)〉σ(Z, Z) + (2c + 2‖h‖2 − 3‖σ(Z, Z)‖2)σ(Z, Z).

Then the above computation yields

(3.3) ∆‖σ(Z, Z)‖2
= ‖(∇Zσ)(Z, Z)‖2 + |〈σ(Z, Z), σ(Z, Z)〉|2

+ (2c + 2‖h‖2 − 3‖σ(Z, Z)‖2)‖σ(Z, Z)‖2.

On the other hand, from (2.1) we have

(3.4) K = 〈R(X,Y )Y, X〉 = 〈R(Z, Z)Z, Z〉 = c + ‖h‖2 − ‖σ(Z, Z)‖2,

which, combined with the assumption K ≧ (c + ‖h‖2)/3, shows that

2c + 2‖h‖2 − 3‖σ(Z, Z)‖2
= 3K − (c + ‖h‖2) ≧ 0.

Thus, from (3.3) we can see that

0 =

∫

M

∆‖σ(Z, Z)‖2

=

∫

M

(
‖(∇Zσ)(Z, Z)‖2 + |〈σ(Z, Z), σ(Z, Z)〉|2 + (3K − c − ‖h‖2)‖σ(Z, Z)‖2

)

≧ 0,

so that Mn has parallel second fundamental form, and moreover ‖σ(Z, Z)‖2 is con-

stant on Mn because of Hopf ’s Lemma. Hence equation (3.4) shows that the man-
ifold Mn is a space form Mn(K). When K > (c + ‖h‖2)/3, σ(Z, Z) = 0 on Mn,

which implies that the immersion f is totally umbilic and K = c + ‖h‖2. When

K = (c + ‖h‖2)/3, the immersion f is given by Theorem 3.1(ii) (see [3, 9]).

Theorem 3.1 is a generalization of Itoh’s result for the case of n = 2 (see [4]). As

immediate consequences of Theorems 2.1 and 3.1 we obtain the following corollaries.

Corollary 3.2 Let M be an n (≧ 3)-dimensional, connected, compact, oriented, iso-

tropic submanifold whose mean curvature vector is parallel with respect to the normal
connection in an (n+p)-dimensional space form M̃n+p(c) of constant sectional curvature

c through an isometric immersion f . Suppose that every sectional curvature K of Mn

satisfies K ≧ (c + H2)/2, where H is the length of the mean curvature vector of Mn

in M̃n+p(c). Then Mn is a compact space form Mn(K) of constant sectional curvature

K = c + H2 and f is a totally umbilic embedding.
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Corollary 3.3 Let M be a 2-dimensional, connected, compact, oriented submani-
fold whose mean curvature vector is parallel with respect to the normal connection in

a (2 + p)-dimensional space form M̃2+p(c) of constant sectional curvature c through
an isometric immersion f . Suppose that every sectional curvature K of Mn satisfies

K ≧ (c + H2)/2, where H is the length of the mean curvature vector of M2 in M̃2+p(c).

Then M2 is a compact space form M2(K) of constant sectional curvature K = c + H2

and f is a totally umbilic embedding.

Here we recall the following characterization of totally umbilic submanifolds in a

space form, which is a local statement [6].

Proposition 3.4 Let Mn be a Riemannian submanifold in a space form M̃n+p(c). Then

the following are equivalent:

(i) Mn is totally umbilic in M̃n+p(c),
(ii) Mn is an isotropic submanifold with flat normal connection of M̃n+p(c).

At the end of this paper we shall show that in the assumptions of Theorems 2.1,
3.1 and Corollaries 3.2, 3.3, if we replace the condition that “the mean curvature is

parallel with respect to the connection” for a weaker condition that “the length of the

mean curvature vector is constant”, these results are no longer true.

Remark. There exist many connected, compact, oriented, n(≧ 2)-dimensional sub-

manifolds Mn’s of an (n + p)-dimensional sphere Sn+p(c) of constant sectional cur-
vature c satisfying the following four conditions.

(1) Mn is an isotropic submanifold of Sn+p(c).
(2) The length H of the mean curvature vector h of Mn in Sn+p(c) is constant on Mn.

(3) Every sectional curvature K of Mn satisfies K ≧ (n/2(n + 1))(c + H2).

(4) The mean curvature vector h is not parallel with respect to the normal connec-
tion,(so that the second fundamental form of Mn in Sn+p(c) is not parallel).

Proof We shall construct an example of a submanifold satisfying the above four con-
ditions in Sn+p(c), which is due to the first author [5]. Let χ1 : Sn(n/2(n + 1)) →
Sn+(n(n+1)/2)−1(1) be the second standard minimal immersion and χ2 : Sn(n/2(n +

1)) → Sn(n/2(n + 1)) the identity mapping. Using these minimal immersions, we
define the following minimal immersion:

(3.5)

χt (= (χ1, χ2)) : Sn
( n

2(n + 1)

)
→ Sn+(n(n+1)/2)−1

( 1

cos2 t

)
× Sn

( n

2(n + 1) sin2 t

)
.

for t ∈ (0, π/2). Here the differential (χt)∗ of the mapping χt is given by (χt )∗X =

(cos t · (χ1)∗X, sin t · (χ2)∗X) for each X ∈ TSn(n/2(n + 1)). The product space of

spheres in (3.5) can be embedded into a sphere as a Clifford hypersurface:
(3.6)

Sn+(n(n+1)/2)−1
( 1

cos2 t

)
× Sn

( n

2(n + 1) sin2 t

)
→ Sn+(n(n+3)/2)

( n

n + (n + 2) sin2 t

)
.

Combining (3.5) and (3.6), we obtain the following isometric immersion ft :

(3.7) ft : Sn
( n

2(n + 1)

)
→ Sn+(n(n+3)/2)

( n

n + (n + 2) sin2 t

)
.
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By virtue of the result in [5], we find the following properties of ft for each t ∈
(0, π/2).

(a) The length Ht of the mean curvature vector ht for ft is given by

(3.8) Ht =
(n + 2) sin t cos t√

2(n + 1)
(

n + (n + 2) sin2 t
) 6= 0.

(b) The mean curvature vector ht is not parallel with respect to the normal connec-
tion ∇⊥. The length of the derivative of ht is given by

‖∇⊥ht‖2
=

n(n + 2)2

4(n + 1)2
sin2 t cos2 t 6= 0.

(c) ft is constant λt -isotropic. λt is given by

λt =

√
n − 1

n + 1
cos4 t +

(c1 cos2 t − c2 sin2 t)2

c1 + c2
6= 0,

where c1 = 1/ cos2 t and c2 = n/
(

2(n + 1) sin2 t
)

.

Now, in particular we set cos t = 1/
√

n + 1 and sin t =
√

n/(n + 1) in (3.7). Then
we have the following isometric immersion f :

(3.9) f : Sn
( n

2(n + 1)

)
→ Sn+(n(n+3)/2)

( n + 1

2n + 3

)
.

The rest of the proof is to show that the length H of the mean curvature vector for

the isometric immersion f given by (3.9) satisfies the following inequalty:

K >
c + H2

2

(
>

n

2(n + 1)
(c + H2)

)
.

It follows from (3.8) that

H =
n + 2

(n + 1)
√

2(2n + 3)
.

This, together with K = n/
(

2(n + 1)
)

and c = (n + 1)/(2n + 3), yields that

K − c + H2

2
=

n2 − 2

4(n + 1)2
> 0.

Hence, by the continuity of Ht we have many examples satisfying the conditions (1),

(2), (3), and (4) of our Remark.
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